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ABSTRACT. The logic of ‘utility maximizers’ L*™ is proposed which
is an extension of a system of modal logic for two players. The sound
models according to L*™ are given in terms of game theory. It is
shown for the models that two utility maximizing players must take
the same action if they mutually believe that each takes a dominant
action, even when they have different informations. We remark that
the logic L“™ has the finite model property.

1. INTRODUCTION

The purpose of the paper is to develop a formal theory of decision
making processes among two players under uncertainty based on modal
logics rather than on probability measures (as in the standard theory).

Recently researchers in such diverse fields as Game Theory, Logics,
Artificial Intelligence, and Computer Science have become interested in
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reasoning about knowledge. There are pragmatic concerns about the
relationship between knowledge and actions, and there are also concerns
about the complexity of computing knowledge. Of most interest to us is
the emphasis on considering situation involving the knowledge of a group
of players rather than that of a single player although logicians tend to
focus on the process of reasoning about knowledge in the latter case.

We propose the formal theory of ‘utility maximizers’ that consists of
a formal system and a class of models, in which each player takes the
actions being the best response to the other players’ actions. In the
system we use a ‘logic of belief’ in stead of using the logics of knowledge,
and we show the two results in the models: First, each player chooses
an action when he simply believes that it is dominant, and second the
utility maximizing players must take the same action if they mutually
believe that each takes a dominant action, even when they have different
informations.

There are other kinds of theories of decision making. The theory of
‘agreeing to disagree’ is most interesting, in which all players must make
the same prediction about an event (c.f. Aumann [1], Bacharach [2]
and Matsuhisa [6].) It is noted that the latter one of the two results
mentioned above is a variation of the ‘agreeing to disagree’ theorem.

This paper organizes as follows: Section 2 presents a game with be-
lief. In Section 3 we propose a system for ‘utility maximizers’ that is an
extension of a system of modal logic. The sound models according to
the system are given in terms of the game theory with belief. Section 4
presents the logic of utility maximizers and shows the two theorems: the
completeness and the finite model property for the logic. The most im-
portant idea is that of a canonical model such as the sentences true in the
model are precisely the theorems of the logic. The idea of I'-filtration
is also important in the argument for the finite model property. The
main problems in proving the two theorems become those of defining a
canonical model and its I'-filtration. In Section 5 we show that two util-
ity maximizers in each sound model must take the same actions if they
mutually believe that each takes a dominant action, even when they have
different informations. Example (Prisoner Dilemma) demonstrates that
they does not always take the same actions in case that each player sim-
ply believes that he takes a dominant action. Section 6 presents the logic
for ‘agreement of dominant actions’ L%# and remarks that the logic has
the finite model property.
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2. THE MODEL

Let € be a non-empty set called a state-space, N a set of two players
{1,2}, and let 22 be the family of all subsets of Q. Each member of 2
is called an event and each element of {2 called a state.

2.1. Information and Belief (Binmore [3]). An information structure
(P,)ien is a class of mappings F; of ) into 29, Given our interpretation,
player ¢ for whom P;(w) C E believes, in the state w, that some state
in the event E has occurred. In this case we say that in the state w the
player ¢ believes E.

Player i's belief operator is an operator B; on 2% such that B;E is the
set of states in which 7 believes that F has occurred; that is,

B;E = {w € Q|F(w) & E}. (1)

We note that i’s belief operator satisfies the following properties: For
every F, F of 29,

N: BQ=Q and Bd=0;

K: B,(EHF) :B',EHB,F,
The set P;(w) will be interpreted as the set of all the states of nature that
i believes to be possible at w, and B;F will be interpreted as the set of
states of nature for which ¢ believes E' to be possible. We will therefore
call P, i’s possibility operator on © and also will call P;(w) i’s possibility
set at w. An event E is said to be an ¢’s truism if £ € B;E

We should note that the information structure P; is uniquely deter-
mined by the belief operator B; with F;(w) = (,ep,g E-

2.2. Game and Belief. By a game for two players we mean a triple
(N, (Ai)i=12; (Vi)i=12) with the following structure and interpretations:
N is a of players {1,2} , A; is a finite set of i’s available actions (or 7’s
pure strategies) and V; is an ¢’s utility-function of A; x Az into R. We
denote by A_; the set A; for j # =

An action a; in A; is called dominant for 7 if V(a;, a—;) > Vi(b,a—;) for
allbe A, and forall a_; € A_; . '

Example 1. (Prisoners’ dilemma:) Let A be a set of two available ac-
tions {aj,as} which is common for players 1,2. The utility functions
(V4, Va) are given by Table 1.

In this example we can plainly observe that the action a; is dominant for
each player 1 and 2. O
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TABLE 1
Player 2
V1, V2) | a1 | a9
Player 1 a;11,113,0
as 0, 3 2, 2

Definition. By a game with belief we mean a tuple

V = (Q, (P)e=12,E) (Ai)i=1,2, (Vi)iz1,2)
with the following structures:

e (2 is a state-space;

e P.: Q — 2% is i's information function for i = 1, 2;

o Pp: Q) — 29 is defined by Pg(w) = Uiz12 Pi(w);

e A; is a set of available actions for player 7;

o V;: A x Ay x 2 — R is i’s utility function with the property
that V;(a:,a_i;w) is injective on A; for eacha_; € A_; andw €

Q.

Example 2. A tuple V = (Q, (P,)iz1,2, (Ai)i=1.2, (Vi)i=1,2) given as below
is a game with belief:
o Q= {w;,wa}
o P,: Q) — 2%isgiven by P(w;) := {w1}, Pi(w2) := {wa}, Pa(w1) =
{w2}, and Py(w2) := {w1};
o Ay = A; = {a1,a2};
o Vi: A x Ay x @ — R is defined by Table 2.

TABLE 2
Player 2
(Vl(" ';wl)a V2() ';wl)) (V1(7 "3 w2)a ‘/2( ';w2))
a; as a) as
Player 1 a111,113,0 a112,210,3
az 03 2,2 as 3,0 1,1
O
3. SYSTEM

Let us consider a system of multi-modal logic as follows.
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3.1. Syntax. The language of the system consists of the symbols, the
terms and the sentences as follows:

e Symbols:
Non-modal operators : T, -, =, A, +++;
Modal operators : Oy, 0y, Og;
Variables: aj,aj, - ,a;, ~ (Actions for players 1)
aaZ ... a2, (Actions for players 2)
Predicates: = (Equality on the actions)
: dom,;, doms. (Dominant actions)

e Terms and Sentences:

(i) The variables are terms;
- (ii) If s and t are two terms then s =t and dom;(s), domy(t)
are atomic sentences;

The sentences of the language form the least set containing all
atomic sentences P,,,(m = 0,1,2,...) closed under the following
operations:
— nullary operators for falsity 1 and for truth T;
— unary and binary syntactic operations for negation —, con-
ditionality — and conjunction A, respectively;
— three unary operations for modality (J;, s, and Og.

The intended interpretation of [J; is the sentence that ‘player ¢ be-
lieves a sentence @,” and Ogp is that ‘everybody believes .’ The sentence
dom;(ax) is interpreted as ‘ay is a dominant action for 7.’

3.2. System of utility maximizers. By this we mean a set of sen-
tences, denoted by L,

e containing a set of all tautologies and closed under substitution
and modus ponens;
e has the following inference rules and arioms:

(N) O.T forx =12 F
(REn) & ‘P:é 7 for x =1,2, F,
P *

(Deflp)  Opp «— Oip A Dagp;
(REgom) @, = a! A dom;(al) — dom;(a}) for i =1,2.

(RUgom) dom;(al) A dom;(a}) — ai = aj fori=1,2.



Let S be the set of all sentences in a system L, I' a subset of S and
let ¢ be a sentence. Then ¢ is L-deducible, I' - ¢, if there exists
X1, X2, " * Xm € I' such that the sentence of form x; Ax2 A+ Axm — ¢
isin I". ¢ is an L-theorem (or simply a theorem), b1 ¢, if ¢ € L.

3.3. Semantics. A model M for a system L is a tuple (V, vp, 7y,,) With
the following structures:
o V= (Q,(P)s=12E, (Ai)i=12, (Vi)i=1,2) is a game with belief such
that
(1) Ai :2{0’170'27"')0:1""} fOI"l:=1,2;
(ii) Vi(as, a—;;w) is injective on A; for eacha_; € A_; and w €

Q.
o v’ :{a,|k=1,2,.--- ,n,.--} > A; is a mapping of i’s variables
into ¢’s available actions;
o Up: Uimo{ak | £ =1,2,--- ,n} = U,_; 5 Ai is the valuation of

variables into available actions defined by
um(akiw) = v (ak;w);
e Ty, : {Pm|m=0,12,... } x Q@ — {true, false} is a truth
assignment such that, for all w € €2, '
(i) T (ak = aj,w) = true if and only if wp(a};w) =
um(ag; w);
(ii) (a) mw(dom;(a}),w) =true if and only if

Vi(vm(ag),c;w) > Va(b, c;w) for all b € A;,c € As;

(b) m(domy(a?),w) =true if and only if
Va(a,vm(a?);w) > Va(a,b;w) for alla € A}, b € A,.

3.4. Validity. Truth =M ¢ at w in M is inductively defined as follows:
i) EMP, ifandonlyif =(P,,,w) = true
for each atomic sentence P,,;

(i) BT

(iii) Mep— 1 ifandonlyif EM ¢ implies EM vy ;

(iv) | '—_-%‘42 Oip  if and only if Pi(w) C {£ € Q] EM ¢}, for

i=1,2

(v) ' Opp ifandonlyif Pg(w) o Uici,2 Pi(w) C lleel 1™,
where ||¢||™ denotes {£ € Q| =" p}. We say that ¢ is valid in M and
write =M o if ¢ is true for every w € Q.
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4. Logic oF UTILITY M AXIMIZERS

4.1. We concern with proving that a system of utility maximizers is
determined by the class of models.

Definition. The logic of utility mazimizers is the smallest system of
utility maximizers, denoted by L*™, and M.~ denotes the class of all
models for L“™.

4.2. Let ¥ be a subset of the set of all sentences S in a system L. We
say that M is a model for ¥ if every member of ¥ is true in M. Let C
be a class of models. We denote =c ¢ to mean that ¢ is valid in every
model of C. A system of utility maximizers L is sound with respect to C
if every member of C is a model for L. It is complete with respect to C if
every sentence valid in all members of C is a theorem of L. We say that
L is determined by C if L is sound and complete with respect to C. We
say a model for L to be finite if its state-space is a finite set.

4.3. Soundness and Completeness for L*™. The following theorems
are our main results:

Theorem 1. The logic of utility mazimizers is sound with respect to the
class Mj«m of all models.

Proof. immediately follows from the definition of the model. O

Theorem 2. The logic of utility mazimizers is complete with respect to
the class Mpwm of all models.

Theorem 3. The lojz'c of utility mazimizers has the finite model prop-
erty.

The proofs of the theorems will be found in the later section (4.9).

4.4. Lindenbaum’s lemma. Let ' be a set of sentences in a system
L and ¢ a sentence. A set I' is L-consistent if there exists at least one
sentence not L-deducible from I', and L-inconsistent otherwise. A set I'
is L-mazimal, MaxI' if I" is L-consistent and for each sentence ¢ either
@ € T'or = ¢ € I'. We denote by 0 the class of L-maximally consistent
sets. For a sentence ¢, |¢|; := {Max;I' € Q| ¢ € Max,I'}. For a set
A of sentences, |A| := {Max, '€ Qp | A C Max,.T'}.

To prove the theorem we need the following result, which proof can be
found in [4].

Lemma 1. Let L be a system of utility mazimazers.

(i) Bvery L-consistent set of sentences has an L-mazimal extension;
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(i) Tk ¢ i and only if T, C |l

We record the immediate consequences of the lemma as follows:

Remark. (i) A sentence in L is deducible from a set of sentences I'
if and only if it belongs to every L-maximally consistent set of
1".

(ii) A sentence is a theorem of L if and only if it is a member of
every L-maximally consistent set of sentences.
(iii) A sentence of form ¢ — % is a theorem of L if and only if

ol & [l

4.5. Canonical Model. Let L be a system of utility maximizers. The
canonical model My, for L is the tuple (Vp,vp,,,) for L with the game
with belief Vi, = (Qr, (PF)iz1.2, (AF)iz1,2, (ViF)iz1,2), which consists of:

e 0 is the set of all the L-maximally consistent sets of sentences;

e Plw) ={¢€eQ |Dp€w=peg}forwe N and
*x=12F.

o ((AF)iz1,2,(Vi)iz1,2) is defined by Table 3:

TABLE 3
Player 2
V(5 w), Vi sw) | dd | &
Player 1 aj 1,1(1,0
a; 0,1{0,0

for every w € Q.
o vi:{al|k=12---,n,---}xQ = A; is the mapping defined
by
v (ks w) = {aé if domi.(a}c) € w:
a3 otherwise;
o v Uimo{ak | K =1,2,-- ,n, - } x Qp = Uy 5 Ai s defined
by the same way as above.
o, {Pm|m=0,1,2... } x Qp —> {true, false} is the truth
assignment such that

(i) 7 (a} = aj,w) =true ifandonlyif wvi(a};w)=v.(a};w);
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(ii) (a) 7z(domi(a}),w) = true if and only if
Vi(vy(al),b;w) > Vii(a,b;w) for all @ € Ay, b € Ag;

(b) 71 (doms(a?),w) = true if and only if
Vi(a,vr(al);w) > Vi(a,b;w) for alla € Ay, b€ As.

Proposition 1. The canonical model is actually a model for a system of
utility mazimizers.

Proof. immediately follows from the definition of the canonical model.
a

4.6. The important result about the canonical model is the following:

Basic theorem. Let M be the canonical model for a system L of utility
mazimizers. Then for every sentence @,

EMr o ifand onlyif Fre.
In other words,

e =

] ol -

Proof. By induction on the complexity of ¢. We treat only the case
¢ = 0,1. As an inductive hypothesis we assume that ||||ME = [¥|my-
Then for every w € €1z,

E=Me 0,4 if and only if PL(w) C |ly||M=,
by the definition of canonical model ;
if and only if PL(w) C |¥L,
by the inductive hypothesis as above;
if and only if L.
O

A7 Filtration. Let I be a set of sentences with the following properties:

(1) T is closed under subsentences: _
(72) Both dom;(a}) and dom;(aj) belong in I' whenever aj = aj.
We define the equivalence relation =p on 1 by

w=rp & if and only if for every sentence ¢ of T,
ey e R

We denote by [w] the equivalence class of w and denote by [X] the set of
equivalence classes [w] for all w of X whenever X is a subset of .
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Definition. By the I-filtration MY (or the filtration of My through T'),
we mean a structure for L

(Q (PL l.‘)-'-—1 2,E, (A )1—1 2, (V )1—1 2,'U£, QI:L)
consists of the following structures: For each *x = 1,2, F,
® QP = [QL] '

e Forevery w,£ in (),
(i) if £ € PP(w), then [€] € PPT([w]);
(ii) if [¢] € PET([w]), then for every sentence ¢ € T,

ML 0,0 implies |=?4" 7

for x =1,2, F.
o AiL’P = Af, and ViL’F(al,a.g; [w]) := VI(a1,a;w) fori =1,2;
e vl':{al |k =12-,n,-} xQF = A is the mapping
defined by

if dom;(a}) € wNT:
otherwise;

vr (aki [w]) = { g

vp :Uicro{ak |k =1,2,--+ ,m, - } x QF = Uy, As is defined
by the same way in Subsection (3.3);

o the truth assignment 7} : {P,, | m =0,1,2,... } x O —
{ true, false} is defined by the same way in Subsection(3).!

Remark. We note that v}*(-; [w]) and #L(-; [w]) are independent of the
choices of representatives in the I'-equivalence of each w, because of
(REdom), (RUdom) and the definition of I™-equivalence.

Proposition 2. The canonical model MY is actually a member of the
class of the models My for a system of utility mazimizers L with the
property that

11 (Pm; [W]) = 71 (Prn; w)
for each P,, € I'.

Il (P | m=0,1,2,... } x Q — {true, false} is the assignment such that
(i) nf(al =al,[w]) =true ifand only if vf(al;w]) = vE(ai;(w]);
(i) (a) 7} (dom;(a}),[w]) =true if and only if
VlL'r(vE(a}c),b; (w]) > VIL‘r(a,b; [w]) for all a € A,b€ Ay;
(b) 7L (domy(a?), [w] =true if and only if
Vit (a, vL( 2): (w]) > V& (a,b; [w]) for all a € A;,b € As.



4.8. By induction on the complexity of a sentence ¢ we can verify that

Proposition 3. Let My be the canonical model for a system L and ME
a I'-filtration. Then the following two properties are true:

(i) For every sentence ¢ in I,

=ML o if and only if ML
(ii) The model MY is finite if so is T
O

4.9. Proof of Theorems 2 and 3. Let us consider the case L = L*™.
It is noted that the canonical model M.m belongs to the class Mypum.

4.9.1. Proof of Theorem 2. If a sentence ¢ is valid in My.m then ¢ is
true in Mp.m, and hence ¢ is a theorem in L*™ by the basic theorem in
Section (4.6).

4.9.2. Proof of Theorem 3. Let M «m pyn denote the subclass of all finite
models in Myun. If by ¢ then Em,um @, and SO EMpumpy @ SiDce
M umprny € M. The converse will be shown by contrapositive argument
as follows: Suppose that not k1 ¢, so that not Mz*™ ¢ by the basic
theorem in in Section (4.6). Let I' be the least set of subsentences of
¢ such that dom;(a) and dom;(al) € I' whenever a; = aj € I'. By
Proposition 3 we conclude that not }ZME""‘ v and ME..,., € Mpump;y OD
noting that I is a finite set, so the contradiction follows. 0

5. AGREEMENT THEOREM OF DOMINANT ACTIONS

5.1. Let L be a system of utility maximizers. A model M = (.., (V4)i=1,2, --

in M_is called symmetric if A, = Ay and Vj(a,b;w) = Va(b,a;w) for all
Cl,,b € A= ‘41 = Ag.

We denote by M7™ the class of all symmetric models for L, and write
=mevm ¢ to mean that EM o for all M € MP™ and for all w € M.

5.2.  We will show the agreement theorem on dominant actions:

Proposition 4. For a system of utility mazimizers L we obtain that

i Og(dom; (ak) A domy(a?)) — a; = aj.

That is: If all players believe that each takes his dominant action then
they cannot agree to disagree.
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Proof. Let M € M*¥™, Set d; : 2% — 24 by
di(E) = {viu(a}) € A | E C ||dom;(a})|*'}.
We can plainly verify the three properties:

(1) di(E) Cdi(F) if EDF. (by definition of d;)
(2) |di(E)| <1if E#0, (because V;(,-;w) is injective.)
(3) di(E) = d2(E), (because M is symmetric.)

Suppose =M Og(dom, (a}) A domz(a?)). Then we obtain
=M O,domy(al,) for m =k, L
It follows from the properties (1), (2), (3) that

(@D} 5 a(AE) =, d(Psw)

5 d2(Pg(w)) @ dz(P2(w)) (‘T“){Ulzu (a})}-

Thus we obtain that v},(a}) =v3,(a?), and so =}" a} = a}.
O

5.3. Remarks.

(i) In view of Example 2 it can be observed that a model M is not a
model of knowledge but a model of belief because it does not satisfy the
axiom:

T B;(F) C F.
(ii) There is no role of common-belief in Proposition 4.
(iii) It is not true that
FEmzem Chidom, (ai) A Ozdomgy(a?) — a; = a?.

In fact, we can plainly observe that Example 2 gives its counter example.

6. LOGIC OF AGREEMENT OF DOMINANT ACTIONS

6.1. By this we mean the least extension of L*™, denoted by L% that
contains the axiom

(ADA) Og(dom(a}) A dom,(a?)) — a} = a?.
It immediately follows from Proposition 4 that

Theorem 4. The logic L®* is sound with respect to Mfff:,,: i.e.,

I—Lada. (p — #Msynt SO‘

Laeda
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6.2. Completeness for L*%**. By the similar argument in Section (4.9)
we can prove that:

Theorem 5. The system L°% is complete with respect to ML ie.,

F Leda P |=M11‘1::a .

O
6.3. Finite model property. We can also prove that:
Theorem 6. The system L°3 has finite model property; i.e.,
F Leda = F:M;,!:::“FIN p.
O

We will give the detail proofs in the future paper (Matsuhisa and Hirase
[7]) with further discussions.
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