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Abstract

“No Trade Theorem,” presented by Milgrom and Stokey (1982), implies
that purely speculative trades are impossible. The basic idea is that, if the
participating agents are rational enough, each of them can reason that “the
trade is acceptable for all of them only if the trade is acceptable for all of
them only if $\ldots$ ,” and they will conclude that the trade is possible if and
only if all of agents are indifferent between accepting and rejecting the trade.
The rationality of the agents is usually represented by the assumption that
the acceptability of the trade is “common knowledg\"e’’ between the agents.

However, the concept of common knowledge does not exactly correspond
to the iterated reasoning above. Common knowledge is knowledge without
uncertainty while the agent who reasons iteratedly “the trade is acceptable
only if $\cdots$

” need not know whether the trade is actually acceptable or not.
In this paper, we will introduce notions of the iterated reasoning and the
acceptability of atrade instead of common knowledge, and show that our
results contain usual No Trade Theorem.

1Introduction

Milgrom and Stokey (1982) show the impossibility of the purely speculative trade.

The main assumption used to derive their result is that it is common knowledge

between the participating agents that all of them expect some gain from trading.

In this paper, we will formulate the problem in another way, and generalize “No

Trade Theorem” for the case in which it may not be common knowledge that all

the agents prefer agiven speculative trade. The basic idea is that while it is not

common knowledge that the trade is accepted by all, the iterated reasoning of the

type “if each agent still wants to trade even when he knows that Iwant to trade

数理解析研究所講究録 1215巻 2001年 182-194

182



when Iknow that he wants to trade when $\cdots$
” may make it common knowledge.

This is illustrated by the following example, which is essentially the same as one
in Milgrom and Stokey (1982).

Suppose two agents to be risk-neutral. Let $\Omega=\{\omega_{1},\omega_{2},\omega_{3}\}$ be aset of the
states of the world. Each agent gets private information, which has the following
structure:

$\phi_{1}=\{(\omega_{1}, \omega_{2}), (\omega_{3})\}$ ,
$\phi_{2}$ $=\{(\omega_{1}), (\omega_{2}, \omega_{3})\}$ .

For example, if $\omega_{2}$ is realized, then agent 1gets $\phi_{1}(\omega_{2})=(\omega_{1}, \omega_{2})$ and agent 2
$\phi_{2}(\omega_{2})=(\omega_{2}, \omega_{3})$ before the realized state is revealed. Assume that the probabil-
ity measure is uniform and that the following bet is proposed: if $\omega=\omega_{1}$ agent 2
pays one dollar to agent 1, if $\omega$ $=\omega_{3}$ agent 1pays one dollar to agent 2, and if
$\omega=\omega_{2}$ the bet is drawn. The following table illustrates this bet.

The event “the trade is profitable for agent 1” is $\{\omega_{1}, \omega_{2}\}$ , and the event “the trade
is profitable for agent 2” is $\{\omega_{2}, \omega_{3}\}$ . Therefore, the event “the trade is profitable
to both of them” is $\{\omega_{2}\}=\{\omega_{1}, \omega_{2}\}\cap\{\omega_{2}, \omega_{3}\}$ . It is, however, not common
knowledge because each agent cannot know $\{\omega_{2}\}$ from his private information:
agent 1, who gets private information $\phi_{1}(\omega_{2})=\{\omega_{1}, \omega_{2}\}$ , does not know which
state has realized. Since it is not common knowledge that the trade is profitable
to both of them, we cannot apply “No Trade Theorem” to this bet.

As long as both of the agents are rational, however, they can reason whether
the bet is profitable or not. For example, agent 1will reason as follows: “If $\omega=\omega_{1}$ ,
agent 2will refuse the bet. Therefore if my private information is $(\omega_{1},\omega_{2})$ and
agent 2accepts the bet, then the state is $\omega_{2}$ , at which Iam indifferent between
accepting and rejecting the bet.” Agent 2uses asimilar reasoning, therefore the
bet is accepted by both only at $\omega_{2}$ .

Thus, the rational reasoning reveals that atrade is not strictly profitable if
the trade is accepted. Even for amore complicated trade, the iterated reasoning
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can eliminate states at which the bet will be rejected. For example, suppose the
following bet.

Then, the sequence of eliminated states is

$\omega_{7}$
$\Rightarrow$ $\omega_{5}$ and $\omega_{6}$

$\Rightarrow$
$\omega_{4}$

$\Rightarrow$
$\omega_{3}$ ,

and $\omega_{1}$ and $\omega_{2}$ survive. As aresult, the expected profits of the trade on $(\omega_{1}, \omega_{2})$

are 0for both of the agents.
In the case of the following bet, all of the states are eliminated, and the trade

will be rejected.

Therefore, we can derive the “n0-trade” result from the iterated reasoning
even if the assumption of common knowledge is not satisfied. In this paper,
we will introduce anotion of the acceptability of atrade by using the iterated
reasoning. We also show that our result is more general than the usual No Trade
Theorem. Volij (2000) also formulates the iterated reasoning, but it assumes
unlimited communication among agents, while our definition does not need any

communication.
The paper is organized as follows. Section 2gives some basic notions, such

as common knowledge, an economy with asymmetric information, and the orig-
inal description of No Trade Theorem. Section 3gives our main result, and the

acceptability of trades is formulated.

2Common Knowledge and No Trade Theorem
-Preliminary Results

In this section, we give some basic concepts, such as information functions, knowl-

edge operators, and common knowledge. All propositions and lemmas are de
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scribed without proofs. For more detail, see Fudenberg and Tirole (1991), GeanakO-
plos (1994), or Osborne and Rubinstein (1996).

Definition 2.1 (Information Functions) :Let 0be a finite set and $X$ a ran-
dom variable on $(\Omega, 2^{\Omega})$ . $\Omega$ represents the set of states of the world, and $Xa$

private signal. An information function $\phi$ : $\Omegaarrow 2^{\Omega}$ is a map defined by

$\phi(\omega):=X^{-1}\mathrm{o}X(\omega)=\{\rho\in\Omega|X(\rho)=X(\omega)\}$ $(\omega\in\Omega)$ . (1)

An information function $\phi$ gives apartition of $\Omega$ :both

either $\phi(\omega)\cap\phi(\omega’)=\emptyset$ or $\phi(\omega)=\phi(\omega’)$ $(^{\forall}\omega,\omega’\in\Omega)$

and

$. \bigcup_{\in\Omega}\phi(\omega)=\Omega$

are always satisfied.

Definition 2.2 (Knowledge Operators) :A map $\mathrm{K}$ : $2^{\Omega}arrow 2^{\Omega}$ is a knowl-
edge opemtor defined by

$K(E):=\{\omega\in\Omega|\phi(\omega)\subset E\}$ $(E\in 2^{\Omega})$ . (2)

An agent knows event $E\in 2^{\Omega}$ at $\omega$ $\in\Omega$ if he knows that the true state
surely lies in $\mathrm{E}$ , that is, if $\phi(\omega)\subset E$ . Since any information function must satisfy
$\omega\in\phi(\omega)$ , $E$ is always true when an agent knows $E$ .

Proposition 2.3 (Basic Properties of Knowledge Operators) :For each
$A$ , $B\in 2^{\Omega}$ ,

1. $K(\Omega)=\Omega$

2. $K(A)\cap K(B)=K(A\cap B)$

$\mathit{3}$ . $A\subset B\Rightarrow K(A)\subset K(B)$

$\mathit{4}\cdot K(A)\subset A$
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5. $K\mathrm{o}K(A)=K(A)$

6. $K(A)^{\mathrm{c}}=K(K(A)^{\mathrm{c}})$ .

Definition 2.4 (Self-Evident) : $E\in 2^{\Omega}$ is self-evident if $K(E)=E$ .

It is easy to see that $E$ is self-evident if and only if

$\omega$ $\in E\Rightarrow\phi(\omega)\subset E$ (3)

is satisfied. Moreover,

Proposition 2.5 :An event $E\in 2^{\Omega}$ is self-evident if and only if $E$ satisfies

$E=. \bigcup_{\in B}\phi(\omega)$
. (4)

Definition 2.6 :Let $\mathrm{I}=\{1, \cdots, I\}$ be a set of agents. The event “everyone
knows $E$ ” is a set

$K_{\mathrm{I}}(E):=.\cdot\cap K:\in\tau(E)$ (5)

where $K_{}$ is the knowledge operator of agent $i$ , whose information function is $\emptyset:$ .
An event $E\in 2^{\Omega}$ is self-evident for every agent $i\in \mathrm{I}$ if $K(E)=E$.

Proposition 2.7 :For all $i\in \mathrm{I}$ ,

$K_{\mathrm{I}}(E)=E$ $\Leftrightarrow$ $K\dot{.}(E)=E\Leftrightarrow$
$E=. \bigcup_{\in B}\phi.\cdot(\omega)$

.

Definition 2.8 (Common Knowledge) :Let $\{K_{\mathrm{I}}^{n}(E)\}_{n\in N}$ be a decreasing
sequence of events defined inductively by

$K_{\mathrm{I}}^{1}(E):=K_{\mathrm{I}}(E)$ , $K_{\mathrm{I}}^{n}(E):=K_{\mathrm{I}}\mathrm{o}K_{\mathrm{I}}^{n-1}(E)$ $(n=1,2,3, \cdots)$ ,

and $K_{\mathrm{I}}^{\infty}(E):= \bigcap_{n=1}^{\infty}K_{\mathrm{I}}^{n}(E)$ . An event $E\in 2^{\Omega}$ is common knowledge at $\omega$ $\in\Omega$

if
$\omega$ $\in K_{\mathrm{I}}^{\infty}(E)$ . (6)
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Note that $K_{\mathrm{I}}^{2}(E)=K_{\mathrm{I}}(K_{\mathrm{I}}(E))$ means that “everyone knows that everyone
knows $E$ ,” and $K_{\mathrm{I}}^{\infty}(E)$ is the event that “everyone knows that everyone knows
that everyone knows $\cdots$ E.”

It is important that, if $E\in 2^{\Omega}$ is common knowledge at $\omega$ $\in\Omega$ , then $\omega$ $\in E$

must hold. This means that any events which are not true cannot be common
knowledge.

Lemma 2.9 : $E\in 2^{\Omega}$ is common knowledge at $\omega\in\Omega$ if and only if there exits
an event $F\in 2^{\Omega}$ which satisfies both $K_{\mathrm{I}}(F)=F$ and $\omega$ $\in F\subset E$ .

Definition 2.10 (An Economy with Asymmetric Information) :Consider
a pure exchange economy with I agents in an uncertain environment $(\Omega, 2^{\Omega}, P)$ .
There are $l$ commodities in each state of the world. Let $L_{+}^{l}$ (or $L^{l}$) be the set of
the $R_{+}^{l}$ -valued(or $R^{l}Revalued$) random variables on $(\Omega, 2^{\Omega}, P)$ and we assuin$e$ that
the consumption set is $L_{+}^{l}$ .

A pure exchange economy with asymmetic information $\mathcal{E}^{\phi}$ is de-
scribed by

$\mathcal{E}^{\phi}=\{(E[U_{i}], e:, \phi_{i})_{i\in \mathrm{I}}, \mathcal{Y}\}$ , (7)

where

$\bullet$ $\mathcal{Y}\subset(L^{l})^{I}$ is the convex feasible set,

$\bullet$ I $=\{1,2, \cdots, I\}$ is the set of agents,

$\bullet$ $U_{i}$ : $R_{+}^{l}arrow R$ is the utility function of agent $i\in \mathrm{I}$,

$\bullet$ $e_{i}\in L_{+}^{l}$ is the initial endowment of agent $i$ , and

$\bullet$ $\phi_{i}$ : $\Omegaarrow 2^{\Omega}$ is the information function of agent $i$ .

A net trade $\mathrm{Y}=(y_{i})_{i\in \mathrm{I}}\in(L^{l})^{I}$ is feasible if $\mathrm{Y}\in \mathcal{Y}$ . Usually, the feasible set $\mathcal{Y}$ is
specified by

$\mathcal{Y}=\{\mathrm{Y}=(y_{1}, \cdots, y_{I})\in(L^{l})^{I}|\sum_{i\in \mathrm{I}}y_{i}\leq 0\}$
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The expected utility function of agent $iE[U\dot{.}(\cdot+e:)]$ : $L^{l}arrow R$ is assumed to be

increasing for all $i$ , and simply denoted by $E[U.\cdot](\cdot)$ . As a usual assumption, all

the agents have a common prior. Then, the value of $E[U\dot{.}](\cdot)$ is calculated by

$E[U_{}](y:)=. \sum_{\in\Omega}$ U.$\cdot$ $(y:(\omega)+e:(\omega))P(\omega)$ $(y:\in \mathcal{Y})$ .

Theorem 2.11 (No Trade Theorem, Milgrom and Stokey (1982)) :At $a$

pure exchange economy with asymmetric information $\mathcal{E}^{\phi}=\{(E[U.\cdot], e:, \psi_{:}).\cdot\in \mathrm{I}, \mathcal{Y}\}$,

suppose that all the agents are weakly risk-averse (all the agents’ utility functions
are concave) and that a net trade $\hat{\mathrm{Y}}=(\hat{y}.\cdot):\in \mathrm{I}$ is ParetO-Optimal $ex$ ante.

If it is common knowledge at $\omega$
. that each agent weakly prefers a feasible net

trade $\mathrm{Y}=(y:):\epsilon\tau\in \mathcal{Y}$ to $\hat{\mathrm{Y}}$ , then every agent is indifferent between $\mathrm{Y}$ and Y.

Proof: See Milgrom and Stokey (1982) or Fudenberg and Tirole (1991).

1Q.E.D. 1

The event each agent weakly prefers afeasible net trade $\mathrm{Y}=(y:):\in \mathrm{I}\in \mathcal{Y}$ to
$\hat{\mathrm{Y}}$” is given as follows:

$\Pi=\dot{.}\bigcap_{\in \mathrm{I}}\{\omega$
$\in\Omega|E[U.\cdot|\emptyset:(\omega)](y:)\geq E[U_{}|\emptyset:(\omega)](\hat{y}.\cdot)\}$ .

The assumption that $\Pi$ is common knowledge at $\omega$
. implies $\omega$

. $\in\Pi$ , namely, all

of the agents actually prefer $\mathrm{Y}$ to $\hat{\mathrm{Y}}$ at $\omega.$ .

3Iterated Elimination -Main Results

Theorem 2.11 assumes that the weak profitability of the trade is common knowl-

edge. This assumption implies that all of the agents know the trade is actually

profitable for all. We show this assumption can be relaxed since, as mentioned

in section 1, the rational agent can reason whether the trade is acceptable or not

for him without knowing the trade is profitable for the others. To this end, we

give an formal definition of the iterated reasoning process. First, we introduce

the desirability, which is used to judge whether the trade is profitable or not
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Second, information functions and knowledge operators are extended on afam-
ily of sets. Finally, the rational-reasoning process is formulated as asequence of
iteratedly-refined knowledge operators.

Definition 3.1 (Desirability) :Suppose that agent $i$ is faced with two trades,
$\mathrm{Y}=(y_{i})_{i\in \mathrm{I}}$ and $\hat{\mathrm{Y}}=(\hat{y}\dot{.}):\in \mathrm{I}$ .

At an event $A\in 2^{\Omega}$ , $\mathrm{Y}$ is desirable for agent $i$ relative to $\hat{\mathrm{Y}}$ if

$E[U\dot{.}, A](y:)\geq E$ [U.$\cdot$ , $A$] $(\hat{y}\dot{.})$ .

A set of all events which make $\mathrm{Y}$ desirable for agent $i$ is denoted by A. $(y:, \hat{y}\dot{.})$ , that
is,

$A_{i}(y\dot{.},\hat{y}\dot{.}):=\{A\in 2^{\Omega}|E[U_{i}, A](y\dot{.})\geq E$ [U.$\cdot$ , $A$] $(\hat{y}\dot{.})\}$ . (8)

Definition 3.2 (Knowledge Operators on aFamily of Sets) :A map $\mathcal{K}_{:}$

is Agent $i’s$ knowledge operator on a family of sets defined by

$\mathcal{K}_{i}[A]$ $:=\{\omega\in\Omega|\phi_{i}(\omega)\in A\}$ $(^{\forall}A\subset 2^{\Omega})$ ,

where $\phi_{i}$ is the information function of agent $i$ .

Proposition 3.3 :At $\omega^{*}\in\Omega$ , agent $i$ weakly prefers $\mathrm{Y}$ to $\hat{\mathrm{Y}}$ if and only if
$\omega^{*}\in \mathcal{K}_{i}[A_{\mathrm{i}}(y_{i},\hat{y}_{i})]$ .

Proof$\cdot$.

$\omega^{*}\in \mathcal{K}_{i}[A.(y:,\hat{y}_{i})]$ $\Leftrightarrow$ $i $(\omega^{*})\in \mathrm{A}(y_{i},\hat{y}_{\mathrm{i}})$

$\Leftrightarrow$ $E$ [U.$\cdot$ , $\phi_{:}(\omega^{*})$ ] $(y:)\geq E[U\dot{.}, \phi_{i}(\omega^{*})](\hat{y}_{i})$ .

(Q.E.D. ]

Suppose that an event $\Sigma\in 2^{\Omega}$ is revealed to all the agents. Then, each agent can
refine his private information. The refined information of agent $i$ is defined by the
cap product of his private information $\phi.\cdot(\cdot)$ and the revealed information $\Sigma$ , that
is, $\phi_{i}(\cdot)\cap \mathrm{C}$ .
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Definition 3.4 (Refinement of Knowledge Operators) :A knowledge op-

erator refined by an event I $\in 2^{\Omega}$ is the restriction of $\kappa_{:}$ on $\Sigma$ , and denoted

by $\kappa_{:}|_{2}$ , that is,

$\kappa_{:}|_{\mathrm{B}}[A]:=\{\omega\in\Sigma|\phi\dot{.}(\omega)\cap\Sigma\in A\}$ $(^{\forall}A\subset 2^{\Omega})$ .

Note that $\kappa_{:}|_{f}[A]$ is empty for any $A\subset 2^{\Omega}$ by the definition.

Definition 3.5 (Iterated Elimination) :A sequence of sets $\{\Omega^{n}\}_{n\in N}$ is the

iterated-eliminating sequence if $\Omega^{n}$ is recursively defined as follows:

$\{$

$\Omega^{0}:=\Omega$

$\Omega^{n+1}:=\mathrm{n}_{:\in 1}\kappa_{:}|_{\Omega^{n}}$ [A $(y.\cdot,\hat{y}.\cdot)$ ] $(n=0,1,2, \cdots)$ . (9)

By Proposition 3.3, the event $\Omega^{1}$ equals to the event “
$\mathrm{Y}$ is desirable for all the

agents relative to $\mathrm{Y}\wedge.$”The event $\Omega^{2}$ means “
$\mathrm{Y}$ is desirable for all the agents even

after their refining of their information functions by $\Omega^{1},$”and so on. The states

eliminated at each step of reasoning are $\Omega\backslash \Omega^{1}$ , $\Omega^{1}\backslash \Omega^{2}$ , $\Omega^{2}\backslash \Omega^{3}$ , $\cdots$ .
It is important that Definition 3.5 needs no communication between the par-

ticipating agents. Each agent can refine hypothetically his information function,

and decide whether he accepts the trade or not.

Definition 3.6 (Acceptability) :At a state $\omega$ $\in\Omega$ , a trade $\mathrm{Y}=(y:):\in \mathrm{I}$ is

acceptable for agent $i$ relative to $\hat{\mathrm{Y}}=(\hat{y}.\cdot):\in \mathrm{I}$ if

$\omega$ $\in\kappa_{:}|_{\Omega^{\mathrm{n}}}[A:(y:,\hat{y}.\cdot)]$ $(n=0,1,2, \cdots)$ . (10)

If (10) holds for all $i\in \mathrm{I}$ , that is,

$\omega\in.\cdot\bigcap_{\in \mathrm{I}}\mathcal{K}:|_{\Omega^{n}}[A_{*}\cdot(y:,\hat{y}\dot{.})](=\Omega^{n+1})$
$(n=0,1,2, \cdots)$ , (11)

then $\mathrm{Y}$ is acceptable for all the agents relative to $\hat{\mathrm{Y}}$ at $\omega$ .

The acceptability means that “all the agents don’t refuse $\mathrm{Y}$ even though each

knows that all the agents don’t refuse $\mathrm{Y}$ even though each knows that all the agents
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don’$\mathrm{t}$ refuse $\mathrm{Y}\cdots$ .” By the definition, it is clear that the sequence $\{\Omega^{n}\}_{*\in N}$,is
decreasing. Therefore (11) equals to $\omega$ $\in\Omega^{\infty}(=\bigcap_{n=0}^{\infty}\Omega^{n})$ .

Note that agent $i$ needs only his private information $\phi_{:}(\omega^{*})$ in order to see that
the trade $\mathrm{Y}$ is acceptable at $\omega.$ . In other words, he cannot predict that the trade
$\mathrm{Y}$ will be really accepted even when he knows the trade is acceptable.

Theorem 3.7 (No Trade Theorem under Acceptability) :At a pure ex-
change economy with asymmetric information $\mathcal{E}^{\phi}=\{(E[U_{}], e:, \psi_{:}):\in \mathrm{I}\mathcal{Y}\}$ , $\sup-$

pose that all the agents are weakly risk-averse and that a net trade $\hat{\mathrm{Y}}=(\hat{y}\dot{.}):\in \mathrm{I}$ is
ParetO-Optimal $ex$ ante.

If $\mathrm{Y}$ is acceptable for all the agents relative to $\hat{\mathrm{Y}}$ at $\omega^{*}$ , then every agent is

indifferent be tween $\mathrm{Y}$ and Y.

Proof: Since $\mathrm{Y}$ is acceptable, $\omega^{*}\in\Omega^{n}$ holds for all $n\in N$ . It is clear that
$\Omega=\Omega^{0}\supset\Omega^{1}\supset\Omega^{2}\supset\cdots\cdots\ni\omega^{*}$ . Since 0is finite, there is $\overline{n}\in N$ for which

$\Omega^{\overline{n}}=\Omega^{\overline{n}+1}=\Omega^{\overline{n}+2}=\cdots\ni\omega^{*}$ . (12)

Let $\Omega^{*}:=\Omega^{\overline{n}}$ and $\phi_{i}^{*}:=\phi;\cap\Omega^{*}$ . Then $\Omega^{*}$ satisfies

$\Omega’=\bigcap_{i\in \mathrm{I}}\mathcal{K}_{i}|_{\Omega^{\mathrm{s}}}[A:(y_{i},\hat{y}\dot{.})]=.\cdot\bigcap_{\in \mathrm{I}}\{\omega\in\Omega^{*}|\phi_{i}^{*}(\omega)\in \mathrm{A}.(y:,\hat{y}\dot{.})\}$ . (13)

By Proposition 3.3,

$E[U\dot{.}(y_{i}), \phi^{*}.\cdot(\omega)]\geq E[U_{i}(\hat{y}_{i}), \phi_{i}^{*}(\omega)]$ (14)

for all $\omega\in\Omega^{*}$ and $i\in \mathrm{I}$ .
Suppose that the inequality in (14) is strict for agent $j$ at $\omega^{*}.\in\Omega^{*}$ . Since $\Omega^{*}$

satisfies
$\Omega’=.\bigcup_{\in\Omega}$ . $\phi_{i}^{*}(\omega)$ $(i\in \mathrm{I})$

by Proposition 2.5,

$E$ $[U.\cdot(y:), \Omega^{*}]$ $=$ $E[U_{i}(y:),. \bigcup_{\Omega}\in.$ $\phi_{}^{*}(\omega)]$

$=$
$. \cdot\sum_{\phi^{2}(\cdot)}E[U_{i}(y:), \phi^{*}.\cdot(\omega)]$
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holds for any $i$ , and the inequality is strict for $j$ .
Consider a new trade $\mathrm{Y}^{\cdot}=(y_{}^{*}):\in\tau$ defined by

$y_{\dot{1}}.=y:1_{\Omega}\cdot+\hat{y}.\cdot 1_{(\Omega)^{e}}$. $(i\in \mathrm{I})$ , (16)

$w/iere$ $1_{\Omega}$. is the indicofor function, that is,

$1_{\Omega}\cdot(\omega)=\{$
1if $\omega\in\Omega^{5}$

0if $\omega\not\in\Omega’$ .

Then, for any $i$ ,

$E$ $[U.\cdot(y.\cdot.)]$ $=$ $E[U_{}(y:), \Omega^{\cdot}]+E[U.\cdot(\hat{y}.\cdot), (\Omega^{\cdot})^{\mathrm{c}}]$

$\geq$ $E[U_{}(\hat{y}.\cdot),\Omega^{\cdot}]+E[U_{}(\hat{y}.\cdot), (\Omega^{\cdot})^{\mathrm{c}}]=E[U.\cdot(\hat{y}_{})]$ (17)

follows from (15), and the inequality is strict for $j$ . This contradicts to our hy-

pothesis about the $ex$ ante Pareto optimality of Y.

1 $Q.E$.D. 1

In Theorem 3.8, we will show that acceptability is aweaker condition than

common knowledge. Therefore, our result Theorem 3.7 is ageneralization of the

usual No Trade Theorem.

Theorem 3.8 :If it is common knowledge at $\omega.$

, that each agent weakly prefers
$\mathrm{Y}$ to $\hat{\mathrm{Y}}$ , then $\mathrm{Y}$ is acceptable for all the agents relative to $\hat{\mathrm{Y}}$ .

Proof: Observe first that the event $\alpha$ each agent weakly prefers $\mathrm{Y}$ to $\hat{\mathrm{Y}}$ \prime\prime is equiv-
alent to

$\Omega^{1}=\bigcap_{\in \mathrm{I}}\mathcal{K}:|_{\Omega^{0}}[A:(y:,\hat{y}.\cdot)]$ . (18)

By Proposition 3. 3, $\phi.\cdot(\rho)\in \mathrm{A}.(y:,\hat{y}_{i})$ holds for any $\rho\in\Omega^{1}$ and $i\in \mathrm{I}$ .
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By Lemma 2.9, there is a set $F$ which satisfies $\omega^{*}\in F\subset\Omega^{1}$ and $K_{\mathrm{I}}(F)=F$

since (18) is common knowledge at $\omega^{*}$ . Since $F$ is self-evident, $\rho\in F\Rightarrow\emptyset:(\rho)\subset$

$F\subset\Omega^{1}$ for any $i\in \mathrm{I}$ . Thus,

$\emptyset:(\rho)\cap\Omega^{1}=\psi_{:}(\rho)\in \mathrm{A}(y_{},\hat{y}.\cdot)$

holds for any $i\in \mathrm{I}$ and $\rho\in F$ . Moreover,

$\rho\in\kappa_{:}|_{\Omega^{1}}[\mathrm{A}.(y_{*}. ,\hat{y}.\cdot)]=\{\omega\in\Omega^{1}|\emptyset:(\omega)\cap\Omega^{1}\in A\}$ . (19)

By Definition 3.5,

$\omega^{*}\in F\subset\Omega^{2}=.\cdot\cap \mathcal{K}_{i}|_{\Omega^{1}}[\lambda.(y:,\hat{y}_{})]\in \mathrm{I}$ ’ (20)

which means that $\Omega^{2}$ is also common knowledge at $\omega^{*}$ .
Thus, $\omega^{*}\in F\subset\Omega^{n}$ holds for any $n\in N$ . By definition, $\mathrm{Y}$ is acceptable for

all the agents.

1 $Q.E.D$ ]

4Conclusion

In this paper, we formulate the iterated-eliminating reasoning and generalize No
Trade Theorem. We have shown that the agent can judge whether the newly pr0-

posed trade is acceptable or not even when the assumption of common knowledge
is not satisfied, and that the trade is accepted by all agents if and only if they are
indifferent between trading and not trading.

In order to represent the rationality of the agents, the concept of common
knowledge seems to be misleading and confusing. Common knowledge means
exact mutual understanding. In betting or the other games with asymmetric in-
formation, however, every agent does not have any incentives to communicate and
reveal his private information. In such cases, only from his private information,
he will reason on his expected gain. The definition of the iterated-eliminating
reasoning given in this paper is alittle more complicated, but seems to be more
straightforward and appropriate than common knowledge
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