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1. SECOND ORDER EQUATIONS AND PLANAR SYSTEMS

We are interested in the problem of the existence of $T$-periodic solutions (for
some $T>0$ ) of the scalar nonlinear second-0rder ordinary differential equation

(1) $\dot{x}+F(x,\dot{x})=e(t)$ ,

where
$F$ : $R$ $\cross R$ $arrow R$ is continuous

and
$e:Inarrow R$ is continuous and T-periodic.

We recall that sometimes equation (1) can be thought like ageneralized Lienard
equation, having the form of

(2) $\dot{x}+\phi(x,\dot{x})\dot{x}+g(x)=e(t)$ .
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Indeed, if we split the term $F$ as

$F(x, y)=\phi(x, y)y+F(x, 0)$ , with $\phi(x,y)=\frac{F(x,y)-F(x,0)}{y}$ ,

and $\phi(x$ , .) can be continuously defined at y $=0$ , then, from (1) we obtain (2) for
$g(x)=F(x,$0).

We are interested in the study of atrue non-autonomous equation and hence
we assume that $e(\cdot)\neq 0$ . Moreover, possibly subtracting the value

$\overline{e}:=\frac{1}{2}(\sup e(t)-\inf e(t))$

to both the sides of (1), we can assume that $e(\cdot)$ changes sign and there is a
(minimal) constant $E>0$ , such that

$(i_{1})|e(t)|\leq E$ , for all t $\in[0,$ T].

With respect to $F(x,$y), the following condition will be assumed throughout:

$(i_{2})$ there is a constant d $>0$ such that $F(s, \mathrm{O})<-E$ for all s $\leq-d$ and
$F(s, \mathrm{O})>E$ , for all s $\geq d$ .

As aconsequence of assumptions $(i_{1})$ and (i2), we have that if we write equation
(1) like asystem of the form

(3) $\{$

$i=y$
$\dot{y}=-F(x, y)+e(t)$

in the phase-plane, then the trajectories of (3) which lie outside any rectangle of
the form $[-d,d]\cross[-r, r]$ move in the plane around the origin in the clockwise
sense.

In order to perform some phase-plane analysis on system (3), it is often conve-
nient to analyze the behavior or the trajectories of the comparison systems

(4) $\{$

$i=y$
$\dot{y}=-F(x, y)-E$

and

(5) $\{$

$\dot{x}=y$

$\dot{y}=-F(x, y)+E$ ,
respectively.

Remark 1. An observation about the direction of the vector fields associated to
the systems (3), (4) and (5) shows that the trajectories of all those systems move
from the left to the right in the open upper half-plane $(y>0)$ and from the right
to the left in the lower half-plane $(y<0)$ . Moreover, from acomparison of the
corresponding vector fields, it is possible to see that, for $y>0$ , the trajectories
of (3) are “deviated” toward the left with respect to those of (4) and to the right
with respect to those of (5), while the contrary happens for $y<0$ .
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Remark 2. Although we have confined ourselves to the study of equation (1), we
point out that all the results we are going to present are still valid for the equation

$\dot{x}+F(x,\dot{x})=e(t, x, i)$ ,

if $e(\ldots)$ is abounded function which is $T$-periodic in the t-variable.

2. GEOMETRICAL METHODS

Aclassical geometric approach for problem

(P) $\{$

$\ddot{x}+F(x,\dot{x})=e(t)$

$x(t+T)=x(t)$ , $\forall t\in \mathrm{f}\mathrm{f}$

is based on the Brouwer fixed point theorem.
In this light, assuming the uniqueness of the solutions for the associated Cauchy

problems, we can try to construct aflow-invariant region in the plane for system
(3). Usually, in the applications, such positively invariant region is acompact set
having as boundary asimple closed curve which, in turns, is made by the union
of afinite number of trajectories of some comparison equations. If this is the
case, the flow-invariant region is homeomorphic to aclosed disc and therefore it
possesses the fixed point property.

The existence of a $T$-periodic solution is thus proved by obtaining afixed
point for the associated Poincare’ map $w\mapsto z(\cdot;0, w)$ , where $z(\cdot;t_{0}, w)=z(t)=$

$(x(t), y(t))$ denotes the solution of (3) with $z(t_{0})=w$ .

Afirst kind of result in order to apply this approach is that of viewing system
(3) like aperturbation of an autonomous equation which describes aglobal center
in the phase-plane (see [28] and the references therein).

As pointed out in Remark 1, acomparison of the respective slopes shows that
trajectories of system (3) are “guided” by those of the autonomous systems (5)
and (4) in the upper $(y>0)$ , respectively lower $(y<0)$ , half-plane. Hence, in
order to produce the desired positively invariant region, we need some appropriate
geometrical behavior of the trajectories of the associated autonomous systems.
Usually, at least for large orbits, the qualitative properties of the autonomous
comparison systems are the same like those of system

(6) $\{$

$\dot{x}=y$

$\dot{y}=-F(x, y)$ .

With this respect, the following definition, which was stated in [3], plays a
crucial r\^ole.

Definition. System (6) has property (B) if there is a point $P(x_{0}, y_{0})$ with $y_{0}\neq 0$ ,
such that the positive semi-trajector$ry\gamma^{+}(P)$ passing through $P$ intersects the x-
cvxis, while the negative one $\gamma^{-}(P)$ does not.

The following result was proved in the above mentioned paper
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Proposition 2.1. System (6) has property (B) in the upper half-plane, if and
only if there exists a differentiate function $\varphi(x)$ and some $\overline{x}>0$ such that $\varphi(x)$

$>0$ for $x<\overline{x},$ $\varphi(\overline{x})=0$ , $and-F(x, \varphi(x))\leq\varphi’(x)\varphi(x)$ for ever$ryx<\overline{x}$ .

Clearly, this result may be proved in asimilar way in the lower half-plane.
The desired flow-invariant region may be easily constructed if both systems (4)

and (5) have property (B), or if one has property (B) for one of the systems and
we can prove that trajectories of the other one intersect the $x$ -axis for $x$ large
enough.

However, we observe that, in order to apply the previous result, it is crucial to
produce asuitable function $\varphi(x)$ . In general, this is not easy, and, for this reason,
sometimes one may use adifferent approach, based on acomparison method. For
instance, if we can split $F$ as $F(x, y)=\psi(x, y)y+g(x)$ (similarly like in (2)) and
$\psi(x, y)\geq h(x)$ for $y>0$ , then we can have the property (B) satisfied for system
(6), if we have an appropriate trajectory $y=\varphi(x)$ for the Li\’enard system

$\{$

$i=y$
$\dot{y}=-h(x)y-g(x)$ .

See [3] for amore complete discussion in this direction.
We also observe that, in order to apply this kind of approach, one needs to have

available some auxiliary results guaranteeing that the solutions of an autonomous
system intersect (or do not intersect) the $x$-axis(which is the vertical isocline for
(6) $)$ . In this connection, we recall that for the Li\’enard systems, classical results
about the $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{n}\mathrm{o}\mathrm{n}$-intersection property with the vertical isocline were
obtained in the fifties and sixties by Filippov and Opial. More recent ones can be
found in [7], [8], [9], [27], [29] and the references therein.

3. TOpOLOGICAL METHODS

Various approaches based on the use of topological degree and its applications
to the periodic boundary value problems for ODEs have been developed in the
past years and can be found in the literature. Here, we just sketch afew of them
which can find useful applications in the study of planar (or higher dimensional
systems).

Keeping the notation of the previous section, we set

$z(t;w):=z(t;t_{0}, w)$ ,

for some $t_{0}\in[0,$ $T$ [ fixed in advance (the most common choice is usually $t_{0}=0$).
Even if with this position we implicitly assume the uniqueness of the solutions to
the initial value problems associated to (3), we note that this assumption is not
needed in the results below (to do this, use mollifiers to approximate the given
vector field with some smooth vector fields which are arbitrarily close to the given
one).

First, as an application of the Poincar\’e - Bohl theorem, we state the following
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Lemma 3.1. Let $A\subset R^{2}$ be an open bounded set containing the origin $0=(0,0)$

and such that all the solutions of (3) with initial value in $\overline{A}$ are defined for all
$t\in[t_{0}, t_{0}+T]$ . Suppose also that

$z(t_{0}+T;w)\neq\mu w$ , $\forall w\in\partial A$ , $\forall\mu>1$ .
Then, equation (1) has at least one $T$-periodic solution with $(x(t_{0}),\dot{x}(t_{0}))\in\overline{A}$.

In the applications, one usually is led to pass to the polar coordinates and
therefore we define by $\theta(t;w)$ the angular component of asolution starting ffom
the initial point $w$ at the time $t=t_{0}$ . In this case, the main assumption of this
result is satisfied if $(\theta(t_{0}+T;w)-\theta(t_{0};w))/2\pi$ is not an integer, for all $w\in\partial A$ .
Various examples where this approach is applied to second order scalar equations
can be found in [33].

The next result that we recall here is due to $\mathrm{M}.\mathrm{A}$ . $\mathrm{K}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{n}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{l}’ \mathrm{s}\mathrm{k}\mathrm{i}\dot{1}[11]$ and uses a
different condition on the boundary. It also requires the verification of asuitable
condition on the Brouwer degree for the vector field of the differential system
for $t=t_{0}$ (which corresponds to the non-vanishing of the index [12] of the field
along the boundary of $A$). By $(i_{1})$ and $(i_{2})$ , such acondition is always satisfied
(and therefore, we don’t need to mention it anymore) if $A$ contains the segment
$[-d, d]\cross\{0\}$ .
Lemma 3.2. Let $A\subset R^{2}$ be an open bounded set containing the segment $[-d, d]\cross$

$\{0\}$ and such that all the solutions of (3) with initial value in $\overline{A}$ are defined for all
$t\in[t_{0}, t_{0}+T]$ . Suppose also that

$z(t;w)\neq w$ , $\forall w\in\partial A$ , $\forall t\in]t_{0}$ , $t_{0}+T[$ .

Then, equation (1) has at least one $T$-periodic solution with $(x(t_{0}),\dot{x}(t_{0}))\in\overline{A}$.

Another classical result that we would like to recall here is aconsequence
of acontinuation theorem due to Mawhin (see, e.g., [18]), which is based on a
functional-analytic approach and therefore it avoids the requirement of continu-
ability of the solutions along the interval $[t_{0}, t_{0}+T]$ . The main assumptions for
this result require asuitable “transversality” condition on the boundary of $A$ and
adegree condition on the averaged vector field of (3). Fortunately, like in Lemma
3.2, we don’t need to recall explicitly the hypothesis on the degree, as it is always
satisfied when $(i_{1})$ and $(i_{2})$ hold and the set $A$ contains the segment $[-d, d]\cross\{0\}$ .
Lemma 3.3. Let $A\subset R^{2}$ be an open bounded set containing the segment $[-d, d]\cross$

$\{0\}$ and suppose that there is no $T$-periodic solution $z(t)=(x(t), y(t))$ of the
system

(7) $\{$

$x’=\lambda y$

$y’=-\lambda(F(x, y)+e(t))$ ,

(for some $\mathrm{A}\in]\mathrm{O}$ , $1[$ ), such that $z(t)\in\overline{A}$ for all $t\in R$ and $z(t)$ $\in\partial A$ for some
$\hat{t}\in R$. Then, equation (1) has at least one $T$-periodic solution with $(x(t),\dot{x}(t))\in$

$\overline{A}$ , for all $t\in R$ .
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Various applications of this and related continuation theorems (even for higher
order systems) can be found in [18] and [19]. Applications to some classes of plane
systems related to the Li\’enard equation are given in [21] and [22], as well.

Although the existence of apriori bounds for the solutions is not required, the
topological lemmas recalled here can find useful application in problems where the
apriori bounds for the solutions are available. In recent years, other approaches
have been considered, in order to deal with some situations where the possibility
of asequence of unbounded solutions cannot be avoided. Due to the lack of space,
we can only briefly recall here some other directions which were pursued and quote
the corresponding results in [4], [13], [14], [15] and [23].

4. ADIFFERENT APPROACH

We present now adifferent approach which combines the topological methods
with some geometrical features of the trajectories of some associated autonomous
differential system. We focus our attention on those autonomous systems which
possess aseparatrix which lies in the lower half-plane. Some preliminary results
in this direction have been recently proposed in [30]. Therein, it is possible to
find various applications to the periodic boundary value problem for the Lienard
equation

(8) $\dot{x}+f(x)i+\mathrm{g}\{\mathrm{x})=e(t)$ .
In arecent forthcoming article [31], dealing with equations (1) and (2), we obtain
further developments in this direction. In fact, we exploit some time-mapping
properties of the solutions “near” the separatrix in order to produce suitable a
priori bounds and hence the existence of $T$-periodic solutions using adegree-
theoretic method.

Our main tool is the following lemma which follows from [5, Corollary 6] (the
details will be given in [31] $)$ .
Lemma 4.1. Assume that there is a constant $R>0$ such that

(9) $F(s, \mathrm{O})s>0$ , $\forall s\in R$, with $|s|\geq R$

and that the a priori bounds

(10) $||x||_{\infty}<R$ and $||x’||_{\infty}<R$ ,

hold for each $x(\cdot)$ , which is a $T$-periodic solution of
(11) $i$

.
$+F(x,i)=\lambda e(t)$ ,

for some $\mathrm{A}\in$ ] $0$ , 1[. Then, (1) has at least one $T$-periodic solution.

Observe that $(i_{2})$ makes (9) always satisfied (at least for $R$ sufficiently large,
say $R\geq d$). Hence, we can concentrate ourselves on the search of the apriori
bounds for the $T$-periodic solutions of (11)
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We shall also make suitable comparison between the trajectories of system

(12) $\{$

$x’=y$
$y’=-F(x, y)+\lambda e(t)$

with $\lambda\in$ ] $0,1$ [ and those of systems (5) and (4), respectively.

Condition $(A’)$ .We say that system (5) satisfies property $(A’)$ if there is a sepa-
rat$xr$. $\Gamma$ for (5), with $\Gamma$ contained in the open third quadrant $(x<0, y<0)$ and
such that the projection of $\Gamma$ into the $x$ -axis is an unbounded interval.

Condition $(B’)$ .We say that system (5) satisfies property $(B’)$ if ever$ry$ trajectory
of (5) departing from the $x$ -axis at a point $(x_{0},0)$ with $x_{0}<0$ and $|x_{0}|$ large
enough, intersects again the $x$ -axis at some point $(x_{1},0)$ for some positive $x_{1}$ .
Condition $(B’)$ avoids the existence of aseparatrix $\Gamma$ which is contained in the
upper half-plane and crosses the negative $x$-axis. If we have aseparatrix in the
region $y>0$ which has the same property like $(A’)$ , then we could manage this
case as well, just arguing in asymmetric manner with respect to what will be
done below, or adapting the argument from [3], previously discussed in Section 2.

The next results are auxiliary lemmas (some of them, just stated without proof)
which allow to simplify the search of the apriori bounds for the solutions of (11),
provided that we axe able to bound only apart of the solutions. All the missing
details will be given in [31].

Accordingly, from now on, and in order to avoid unnecessary repetitions, we
suppose in the rest of this section that $u(\cdot)$ is a $T$-periodic solutions of (11), for
some A $\in$ ] $0$ , 1 $[$ .

Afirst consequence of $(i_{1})$ and $(i_{2})$ is the following:

Lemma 4.2. Under $(i_{1})$ and $(i_{2})$ , there is some $t\wedge\in[0, T]$ such that $|u(t)|<d$ .

In order to obtain property $(B’)$ , we could take advantage of some more or less
standard results which can be found in the literature or that can be adapted from
know facts about second order scalar equations having asimpler form than (1).
For instance, we can have:

Lemma 4.3. Assume that
(13) $F(x, y)\geq F(x, 0)$ , $\forall x\in R$ and $y\geq 0$ .
Then, property $(B’)$ holds.

Or, more generally,

Lemma 4.4. Assume that

(14) $F(x, y)-F(x, \mathrm{O})\geq-|M(x)|y$ , $\forall x\leq 0$ and $y\geq 0$

and
(15) $F(x, y)-F(x, \mathrm{O})\geq\phi(x)y$ , $\forall x\geq 0$ and $y\geq 0$ ,

where $\phi$ satisfies assumptions on the line of [29]. Then, property $(B’)$ holds.
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Let $\mathit{4}\in R$ be agiven real number. Let us denote by $\prec^{u}$ the minimum of the
intersections of $(u(t),\dot{u}(t))$ with the line $x=\xi$ . In particular, $\underline{u}_{0}$ will denote the
minimum of the intersections of $(u(t),\dot{u}(t))$ with the y-axis.

Lemma 4.5. Assume that system (5) has a sepa ratrix $\Gamma$ which lies in the third
quadrant and crosses the negative $y$ -axis. If the time along the separatrix from
$x=0$ to the point at infinity is larger than $T$, then there is $R>0$ such that

$\min u(t)>-R$ , a $>-R$ .
$Pn)of$. (sketched) Consider the separatrix $\Gamma$ for system (5). By the assumptions,
$\Gamma$ is the graph of acontinuously differentiate function $y=-\mathrm{a}(0)$ , with $a$ :
$(-\infty, 0]arrow]0,$ $+\infty)$ .

Acomparison between the slopes of the trajectories of systems (12) with those
of (5) shows that those of the former system are directed outward with respect to
those of the second one. In particular, if $u(t_{0})\leq-a(0)<0$ , then $\dot{u}(t)\leq-a(u(t))$ ,
for all $t\geq t_{0}$ , that is, if asolution of (12) crosses the negative $y$-axis below the
separatrix, then it must stay below it for all the future time. Hence, we have that
since $u(\cdot)$ is aperiodic function and therefore, the associated trajectory $(u,\dot{u})$ must
intersects the $y$-axis at some point $(0, \dot{u}(t_{0}))$ , we see that it must be $\dot{u}(t_{0})>-a(0)$ .

Now, let $t_{1}$ be such that $u(t_{1})=0$ and $\dot{u}(t_{1})<0$ . By the above observation,
we have that $-a(0)<u(t_{1})<0$ . Let $t_{2}>t_{1}$ be the first time after $t_{1}$ when
the trajectory $(u(t),\dot{u}(t))$ meets the negative $x$-axis and note also that $\dot{u}(t)>$

$-a(u(t))$ , for all $t\in[t_{1}, t_{2}]$ . Then, dividing by $-a(u(t))$ , we can write

$1> \frac{\dot{u}(t)}{-a(u(t))}$

and integrating between $t_{1}$ and $t_{2}$ , we have

$T$ $>$ $t_{2}-t_{1}> \int_{t_{1}}^{t_{2}}\frac{\dot{u}(t)}{-a(u(t))}dt$

$=$ $\int_{u(t_{2})}^{u(t_{1})}\frac{du}{a(u)}=\int_{u(t_{2})}^{0}\frac{du}{a(u)}$

$= \int_{-K}^{0}\frac{du}{a(u)}$ , where we have set $u(t_{2}):=-K$ .

The last integral turns out to be the time $\Delta t$ along the separatrix $\Gamma$ for the orbit
path between $(\mathrm{O}, -a(0))$ and $\{-\mathrm{K},$ $-a(-K))$ .

Now, by the assumption on the time along the separatrix, we know there is
$R>0$ , such that the time along the separatrix from $x=0$ to $x=-R$ is larger
than $T$ and ffom this, we we can easily conclude that $\mathrm{m}\mathrm{m}\mathrm{u}(\mathrm{t})=\mathrm{u}(\mathrm{t}2)>-R.$ $\square$

We remark that the choice of the $y$-axis here is merely conventional. The following
variant is obviously true
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Lemma 4.6. Assume that system (5) has a separatrix $\Gamma$ which lies in the third
quadrant and crosses the line $x=\xi$ at a negative point. If the time along the
separatrix from $x=\xi$ to the point at infinity is larger than $T$, then there is $R>0$
such that

$\min u(t)>-R$ , $\prec^{u>-R}$.

At this point, we have found conditions in order to bound the minimum of $u(t)$ ,
the maximum of $\dot{u}(t)$ and the maximum of $u(t)$ . It remains to prove abound for
$\min\dot{u}(t)$ , provided that $|u(t)|$ and maxi(t) are (a priori) bounded.

Here, for instance, we could invoke some already known assumptions which, for
asecond order equation, provide abound for $|\dot{x}|$ , whenever abound for $|x|$ is given.
It was M. Nagumo in 1942 [20] who obtained aclassical result in this direction.
It was proved in [20] (see also [10] ), that if $|F(x, y)|$ (when $|x|$ bounded) grows
less than $\omega(|y|)$ , with $\int^{+\infty}\frac{s}{\omega(s)}ds=+\infty$ , then the existence of auniform bound
for $x$ implies the existence of auniform bound for $\dot{x}$ . Conditions of this kind are
named as Bernstein-Nagumo conditions, with reference to the pioneering work of
S. Bernstein [1], [2], as well.

Aspecial, but interesting case in which the Nagumo condition is satisfied, is
given by the Lienard equations of the type (8). Indeed, here the nonlinear function
$F(x, y)=f(x)y+g(x)$ has linear growth in $y$ and therefore, if we bound $x$ , we
obtain abound for $\dot{x}$ as well.

In [16] J. Mawhin, extended this concept, to awider class of equations, by
introducing the definition of aNagumo equation (with respect to the periodic
boundary value problem), as that of asecond order equation where if we have a
priori bounds for the $T$-periodic solutions in the $||\cdot||_{\infty}$-norm then we can find
bounds for their derivatives. The fact that we can restrict (according to Mawhin
[16] $)$ our consideration only to the $T$-periodic solutions, slows us to extend the
class of equations for which this argument can be applied. In particular, for some
equations, like the Rayleigh equation

$\dot{x}+f(\dot{x})+g(x)=e(t)$ ,

this generalized form of the Nagumo condition is always valid, without any need
of agrowth condition in $f(y)$ . For ageneral discussion about this topic, also with
respect to different boundary conditions, see also [17].

Here, modifying the definition in [16], we could introduce the following

Definition. We say that (1) is ageneralized Nagumo equation with respect to the
$T$-periodic problem, if for any $r>0$ , there is $\eta(r)>0$ such that if $u(\cdot)$ is any
$T$-periodic solution of (11), for some A $\in$ ] $0$ , 1 [, such that

$|u(t)|\leq r$ and $\dot{u}(t)\leq r$, $\forall t\in[0, T]$ ,

then
$u(t)\geq-\eta(r)$ , $\forall t\in[0, T]$ .

Now, we are in position to give our main result for equation (1)
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Theorem 4.1. Suppose that (1) is a gene ralized Nagumo equation with respect
to the $T$-periodic problem with $e(t)$ and $F(x, y)$ satisfying $(i_{1})$ and $(i_{2})$ . Assume,
moreover, that (5) satisfies conditions $(A’)$ and $(B’)$ .

If the time along the separatrix $fmm$ a point $P\in\Gamma$ to infinity is larger than $T$,
then (1) has at least one $T$-periodic solution.

If we apply Theorem 4.1 to the Lienard equation (8), we can $\mathrm{r}\mathrm{e}$-estabilish various
results recently obtained in [30]. On the other hand, our theorem also allows a
wide range of applications to some generalized Lienard equations in the form of
(2), as well as to other significant classes of second order ODEs. It will be possible
to find the corresponding results and applications in the forthcoming paper [31].
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