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Optimal Control Problems for Distributed Hopfield-type Neural Networks

MERXRZFEARBEHER E £F (Quan-Fang Wang)
R THEE 4 {5— (Shin-ichi Nakagiri)

1 Introduction

The stability properties of lumped Hopfield-type neural networks have been studied exten-
sively and the results as well as the application to optimization problems are reported in many
references (see the references in Vanualailai, Nakagiri and Soma [12]). In this paper we study
a model which involves spatial distributions of neural networks described by the dynamics of
n-numbers of neurons. The distributive model may be consider as an analogous model of the
Hodgkin-Huxley equation and the Fitz-Hugh-Nagumo equation which describe the nerve im-
pulse transmissions (cf. Hodgkin and Huxley [6], Fitz-Hugh [5], Nagumo [9]). The purpose of
this paper is to study the optimal control problems for the systems governed by distributed
models of Hopfield-type neural networks.

Let © be an open bounded domain of R™ and 92 = I" be the boundary of 2. Let T' > 0 and
let @ = 2x(0,7)and £ =Tx(0,7). Let y; denotes the activation potential of the i-th neurons,
which is a functions of time ¢ and the place x € £, ¢ = 1,2,...n. The distributed Hopfield-type

model of coupled n-numbers of neurons is described by

ov; :
% — d;Ay; = —a;y; + Z Cz] y] + gl n Q,

: ' 1.1
% =k; on X, (1.1)
on

yi(0,z) =94 in Q, i=12,..,n

Here in (1.1) the constants a; > 0, c;; are the same as explained in [12], d; > 0 are diffusion
constants, g; are forcing input, k are the Neumann inputs, y are initial values and F; : R =
(—00,00) = (—1,1) are nonlinear activation functions.

We consider the quadratic optimal control problem for (1.1). The control system under
consideration is given by (1.1) in which g;, k; and § are replaced by the control variables B,
B}u!l and E;w;, respectively. Here BY,B] ! and E; are distributed, boundary and initial controllers
and u?,u} and w; are respective control variables. Let UO, U} and W; be the Hilbert spaces of

control variables u?, u} and w;. We denote

n n n
= gu?, ut =ZI=11L1}, wzi:le,-
0

and ug = (ud,ud,...,ud), u; = (u};ul, ..., ul), w = (w1, ws,...,w,). We set the product Hilbert
space U = U x U x W of control variables u = (ug, u;, w) € U.
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Let y = y(u) = (y1(u),y2(u), ..., yn(u))T be the solution state of control system for a given
u € U. The quadratic cost function attached to the system is given by

n n
T) = 3 [ ) = ozt + Y [ I, T) — 2P + (Nu,wh,
=1 i=1

Yu = (ug,u;,w) € Y, (1.2)

where 20, € L?(Q) and 2}, € L?(Q),i = 1,2, ..., n are desired values, and N € L(/) is symmetric
and positive. Let U,y be an admissible subset of /. The optimal control problem is to find and
characterize an element u* = (ug, uj, w*) € U,q, called the optimal control, such that

u‘ieleid J(u) = J(u*). (1.3)

In this paper we shall solve this quadratic cost optimal control problem for the distributed
model of Hopfield-type neural networks (1.1). For the purpose we state the basic results on
the existence and uniqueness of weak solutions for the nonlinear system (1.1) in the framework
of Dautray and Lions [4]. After that we prove the existence of an optimal control for (1.2).
The main contribution is to construct the adjoint state systems and to establish the necessary
conditions of optimality for the quadratic cost (1.2). For the related works on optimal control
theory of nonlinear parabolic equations, we refer to 1], [2], [3], [13], [14].

2 Existence and Uniqueness of weak solutions

In this section we shall give the results on existence, uniqueness and regularity of solution
for the uncontrolled (free) system (1.1) based on the variational formulation of systems due ta
Dautray and Lions [4].

For the nonlinear function Fj(s), we suppose the uniform Lipschitz continuity:

K >0: |Fj(s) - Fj(r)] < K|s—r|, 7=12,..,n. (2.1)

For the evolution equation setting of (1.1), we introduce two Hilbert spaces H = L?(Q2) and
V = H(Q) according to the Neumann boundary condition in (1.1). We endow those space with
the usual inner products and norms

N

(¥, ) = /Q Y(2)d(@)dz, || = (W, 9)} forall p,¢ € H,

9 = [ $@o@iz+ Y. [ -pla) -d@ds for all 4,6 € H(®),
i=1 L i .

respectively. Let us introduc® the product Hilbert spaces V = (H())", H = (L%(Q))" with
the inner products defined by

n

(@) = ($5,%i), &= (1,02, 0n)T, ¥ = (P1,9%2,...,9n)T € H

i=

—
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n n

(D, %)y =D (i %) + DO _(0i,%i), &= (61,02, 6n)T, ¥ = (¥1,%2, ..., %:)T €V,

=1 =1

respectively. Then the dual space of V is given by V' = (V)" and the dual pairing between V'
and V is given by

n

<¢7¢>V,V' = Z(fﬁiﬂ/’i), V¢ = (4)1’ ¢2a ey ¢n)T € V) '¢ = ("ph '()b?, "'7¢n)T € Vla
i=1 .

where (¢;,1;) denotes the dual pairing between V and V' of ¢; € V and #; € V'. The norms of

V and H are denoted by [[4|ly and |¢|y, respectively.

For the sake of simplicity of notations, we introduce the following vector and matrix repre-

sentations:
Y1 Ayl Cc11 €12 "' Cln Fi(y1)
y=|"| ay= A.y2 , C= cfl S B O = FQ(.W) » (22)
Yn Ayn Cnl Cn2 “** Cnn Fr(yn)

D= diag {dl,dg, ...,dn},A = diag {al,ag,...,an}, g = (gl,gg, ...,gn)T, k= (kl,kQ, ...,kn)T and
yo = (¥3,¥8: -, y2)T. Then the system (1.1) is rewritten simply by

0 )
—)t’—DAysz+CF(y)+g in Q,

Yk on ¥, (2.3)
on

y(0,z) =yo in Q.

Now we give the definition of a weak solution of (2.3). First we introduce the Hilbert space
W(0,T;V,V'), which will be a solution space, by

W(0,T;V,V') = {g| g € L*(0,T; V), g' € L*(0,T;V')}.

The inner product and the induced norm in W(0,T;V, V') are defined respectively by

(81, 82)w(orv vy = /OT{(&(t),gz(t))v + (81(1), 82(t))v }dt,

1
lgllworv,y) = (HgH%z(o,T;v) + ||g'”%2(o,T;v')) ’.

The space W(0,T;V,V’) can be identified with W (0,T;V,V’)", and for simplify, we denote it
by = W(0,T). Also we define the Hilbert spaces }2(T") and its dual %~3(T') by (H?(I'))" and
(H -3 (T'))™, respectively. The dual pairing between 13 (T) and o3 (T) is defined by

<¢i7¢i)l"7v¢ = (¢1, ¢2’ “'7¢’n)T € H%(F)a ¢= (¢17¢'2a '--7¢'n)T € H_%(I

1

(9,9)_ 3

n
whmwu by T 4

1
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where (¢;,%;)r denotes the dual pairing between H %(1") and H '%(F) of ¢; and ;. Since
F;: R— (-1,1),5 =1,2,...,n, we see from (2.1) that F : H — H and

F@)k = [ F@)Pde<nlal, Vo e, (2.4

and by (2.1), we have
|F(¢) - F(¥)ln < K| —9Ylu, Yo,9 €H. (25)
Definition 1 A function y is said to be a weak solution of (2.3) ify € W(0,T) and y satisfies

(¥, vivy + (DVy, Vv)y = (Ay, v)x + (CF(y), v)u + (8, V)vv + (k, vir)
forall v €V in the sense of D'(0,T),

b))

y(0) =yo € H.
(2.6)
Here in (2.6), D’(0,T) denotes the space of distributions on (0,T). Also we note that the trace
v|r of v € V on T belongs to ’H%(I‘).
For the existence and uniqueness of weak solution for (1.1), we can give the following theorem.

Theorem 1 Assume that yo € H, g € L*(0,T;V'), k € L2(0,T;’H'%(P)). Then the problem
(2.3) has a unique weak solution y in W(0,T), which belongs to C([0,T); H). Further, we have
the estimate

”)’"%x(o,T;u)a ”y”%V(O,T) < C(1+|yol3 + ”3”%2(0,7“;1;') + ||k||22(0 T-?ﬂt‘ﬁ(r‘)))’ (2.7)

where C > 0 depends only on a;, c;; and d;.

3 Optimal control problems

In this section we study the quadratic optimal control problem for (1.1) by means of distribu-
tive, boundary and initial controls. Let BY € £(U?, L%(0,T; V")), B} € LU}, L*(0,T; H %(F))
and E; € L(W;,H) for i =1,2,...,n. We denote

B = diag {B?, B, ..., BY}, B! = diag {B},B},...,BL}, E = diag {E\,Es,...,E,}, (3.1

respectively. Then B?,B! and E are operators satisfying B® € £(U°, L%(0,T;)")), B! ¢
LU?, L?(0, T;’H%(F))) and E € L(W,H), which are called the controllers. We consider the
following control system described by

9y _ DAy = Ay + CF(y) + B%uy in Q,

%

=~ =Blu; on I, (3.2)
on

y(0,z) = Ew in Q.

For any u = (ug, u;, w) € U, by virtue of Theorem 1, we have a unique weak solution y = y(u)
of (3.2) in W(0,T). Hence we can define the solution map u — y(u) of U into W(0,7"). We
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shall call y(u) the state of the control system-(3.2). The quadratic cost.function associated with
the control system (3.2) is given by (1.2), and is written in compact form

J(w) = [ly(w) = 23lI2(gyyn + Iy, T) = 2gllfr2(y)n + (N, l})u, Vu = (ug,uy,w) €U, (3.3)

where 24 = (29,29, ..., 29)T € (L2(Q))", 2z} = (214, 23, :;.,z}‘d)T € (Lz(Qj))”;alfe desired values
and N = (N° N! N?) € L(U) = LU°) x LU') x L(W). We suppose that each N7 (5 =0, 1,2)
is symmetirc and positive. Since y € W(0,T) C L?(0,T;H) = (L*(Q))" and y(u,T) € H =
(L?(22))™ by Theorem 1, the cost (3.3) is meaningful for any u € Y.

Let U,q be a closed convex subset of I/, which is called the admissible set. We shall solve
the following two fundamental problems for the control system (3.2) attached the quadratic cost
(3.3):

(i) Existence problem of an element u* = (ug, uj, w*) € U,q such that

Jof J(u) = J(u’);

(ii) Characterization problem of such u*.
Such a u* in (i) is called the optimal control for the system (3.2) with the cost (3.3).

3.1 Existence of optimal control
First we solve the existence problem (i) in the following theorem.

Theorem 2 Assume that Uyg is a non-empty bounded closed convex set of U. Then there exists

at least one optimal control u* for the control problem (3.2) with the cost (3.3).

Proof: Set J = lerlle J(u). Since U,q is non-empty, there is a sequence {u,} in U,q such that
u ad

inf J(u) = lim J(u,)=J.

UEUad n—00

Obviously, {J(uy,)} is bounded in R*. Since U,4 is bounded closed and convex, we can choose

a subsequence {uy,} = {ul,ul  wy} of {u,} and find a u* = (u§, uj, w*) € U,q such that

u, — u* weakly in U as m — co. (3.4)
By the estimate (2.7) in Theorem 1, we have for y = y(u) that
). (3.5)

Since Uy,q is bounded, we see from (3.5) that {y(um)} is bounded in W(0,T). Hence we can
choose a subsequence {y(umk)} of {y(um)} and find a z € W(0,T') such that

Y0200 110,y < CUL+ [Ewl3 + 1B uoll72 (o oy + I|B1u1[|2L2(0 VL o

y(umk) = z weakly in W(0,T). (3.6)

For simplicity let us denote ymk = y(umk). By the compactness of embedding V — H, the
embedding V — H is compact too. Thus, by the compactness embedding theorem due to the

Aubin-Lions-Temam (cf. Temam [11, p.274]). we can suppose

Ymk — z strongly in L%(0,T;H). (3.7)
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By the uniformly Lipschitz continuity (2.5), it follows from (3.7) that
F(ymk) = F(z) strongly in L%(0,T;H). (3.8)

By (3.6), we see that y, , — 2z’ weakly in L?(0,T;V') and Vyx = Vz weakly in L?(0,T;H).
Hence by the definition of weak solutions, we have

T
/0 {(ymk', &)y v + (DVymk, V@) }dt

T
= /0 {(Aymi; )# + (CF(ymk), #)u + (Buige, @)vr,y + (Blugue, @lr), -y oy 1 4}ty

V¢ € L2(0,T;V). (3.9)

Therefore, by taking kK — oo in (3.9) and using (3.4) and (3.8), we can deduce

/(;T{<z’, ¢)V,V’ + (DVz, Vd))y}dt

T
= [ {(Az @) + (CF(@), o) + (B up, dhv» + (Blui, #lr) }at,

n-4 () udm)
V¢ € L?(0,T;V).(3.10)

This implies, by the standard manupulation as in Dautray and Lions [4], that z satisfies

(', v)yy + (DVz,Vv)y

= (Az,v)y + (CF(z),v)n + (B%ug, v)yy + (Bluj, v|r) ey,

#- (o), md (ry
in D(0,T). It is not difficult to verified that (ymk(0), V)% = (EWmk, V)3 — (2(0),v)y =
(Ew*,v)y for any v € V. So that z(0) = Ew* .
Hence from the uniqueness of weak solution for the system (3.2), we have z = y(u*). Then
from (3.6) and (3.7) we see
¥(umi) — y(u*) strongly in L*(0,T; H) = (L*(Q))", (3.11)
Y(umk, T) — y(u*,T) weakly in H = (L*(Q))". (3.12)

By (3.11) and (3.12), we have
Tim ||y (umk) — 2{llz2(q)» = ly(u*) = 23/l L2(q)) (3.13)

Since the norm || - [|(z2(q))~ is lower semi-continuous in the weak topology of H = (L*(Q))", we
have
lim inf [y (umk, T) — zgllz2@y» 2 Ily(w*, T) = 2§l z2ay)-- (3.14)

On the other hand, the weak convergence (3.4) and boundedness of N imply
lim inf (Numk, umk)y > (Nu*, u*). (3.15)

Therefore J = lirrlri} g}f J(umk) > J(u*), and hence J(u*) = ulerblli; ) J(u). This proves that u* is

an optimal control for the cost (3.3). This completes the proof of Theorem 2.
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3.2 Necessary optimality conditions

In this subsection we consider the problem (ii). It is well known (cf. Lions [7]) that the optimality

condition for u* is given by the variational inequality
J'(u*)(u—u*) >0 forall u€ Uy, - (3.16)

where J/(u*) denotes the Gateaux derivative of J(u) in (3.3) at u*. The objective of this
subsection is to write down the optimality condition (3.16) in terms of proper adjoint state
systems. So we need to calculate the Gateaux derivative of y(u) at u = u*. For the purpose we

have to prepare the following propositions:

Proposition 1 Let y; and ys be two weak solutions of (3.2) with control variables u; =

(ud,ul, w!) and uy = (ud, u?, w?), respectively. Then z =y, —y3 satisfies the following equality

for all t € [0,T):

1 t
51z(t)|${+/ |VDVz|3,dt
0
t t
= SBw —Bw+ [ (Azz)udt+ [ (CF(y1) - CF(ya), 2)udt
0 0

H—% (I‘),’H% ) dt. (3.17)

t t
+/ (Bug — Boug,z)v',vdt+/ (B'uj — B'uj, z[r)
0 0
This proposition follows from the energy equalities for y; and y».

Proposition 2 Let vg € U be fized. Then
y(u+ Avg) = y(u) strongly in C([0,T);H) and L*(0,T;V) as X 0. (3.18)

Proof: For A € (0,1], let y(u + Avg) and y(u) be the weak solutions of (3.2) for u and vo =

(ud,u?, wP?) in Y. Set y) = y(u+ Avg) — y(u). Then y, is a weak solution of

y_; — DAy, = Ay, + C(F(y(u + Avg)) — CF(y(u)) + AB%ud in Q,

A =AB'u} on %, (3.19)
on .

yva(0,z) = AEw? in Q.

Since the nonlinear term satisfies the Lipschitz continuity (2.5), we have

|(CF(y(u + Avo) — CE(y(w), y)#]
< ICI [F(y(a + Avo) — F(y(u))la lyaln < KICI lyalk (3.20)

Using (3.20), we can deduce by Proposition 1 that
2 2 042 0,,0(12 1,.0/12
1¥allZ2007,) 1¥ANZoo(o7i20) £ CAIEW |3 + B ugll 720,70y + IB ul“L?(o,T;u-%(r)))' (3.21)

This means that

yy = 0 strongly in L®(0,T;H) N L%(0,T;V)
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as A — 0. Now it is obviously by the inclusion C([0,T]; H) C W(0,T) that
yx— 0 strongly in C([0,T); H)

as A — 0. This proves Proposition 2.

In this subsection we further assume that F; € C}(R) and
3K >0: |Fj(s)| <K, j=1,2,..,n (3.22)

Then for any y € H, F is Gateaux differentiable and the derivative 9, F(y) € L(H) is given by

OyF(y)z = : , Yz =(21,22,...,20)7 € H, (3.23)
F,’,(yn)zn

where y = (y1,%2,...,¥n)? € H and the multiplication operators F;(yj) : H - H are bounded
for all j = 1,2,...,n. We remark that (3.22) is stronger than (2.5) and ||0yF(y)|lc(x) < K.

Theorem 3 Assume (3.22). Then the map u — y(u) of U into W(0,T) is weakly Gateauz
differentiable at u* = (ug, u}, w*) and such the Gateaux derivative of y(u) at u* in the direction
u—u* € U, say z = Dy(u*)(u—u*) € W(0,T), is a unique weak solution of the following

equation .
3_: -~ DAz = Az + Co;F(y(u))z + B(up — u})) in Q,
9% _ Bl(us —u* (3.24)
an B'(u; —uj) on X,

z(0,z) = E(w —w*) in Q.

Proof: Let u = (ug, uz, w),u* = (u,u},w*) and vo = u — u* = (ul, ud, w?). Let y(u* + Avo)
and y(u*) be the solution of (3.1) corresponding to u* + Avg and u* in U,q, respectively. Set
ya =y(u* + Avp) —y(u*) and z) = %, then z) satisfies

Z%ﬂ — DAz, = Azy + CAT (F(y(u* + Avo)) - F(y(u*))) + B%ug in Q,
Z
3—7;\ = Blu(l) on E, (325)

z)(0) = Ew® in Q

in the weak sense. By substituting v = z, in the weak form of (3.25) and integrating it over
[0,T], we have

/0 T<Z')\, z))y,y + (DVzy, Vz)y)ydt
= [ Mozt + [ (@ (E(at + duo) - Fly(a')), s

T T
+/ (Boug,z)‘)dt+/ (Blu(l),zAhﬂ) (3.26)
0 0

Wb
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From (2.5), we have the estimate

(CATH(F(y(u” + Avo)) — F(y(u"))), zx)ul < KICH lzals. (3.27)

By (3.26) and (3.27), we can verify the boundedness of {z} in. W(0,T). Hence by the com-
pactness theorem there exists a z € W(0,T) and a subsequence {z), } of {zx} such that

z), — 2z weakly in W(0,T), (3.28)
zy, — z strongly in L*(0,T;H) (3.29)

as Ay — 0. Since L2(0,T;H) = (L*(Q))", it follows from (3.29) that, if necessary by taking
subsequence of {\;},

zZ), >z a.e inQ ‘ (3.30)

as Ay — oo. For any ¢ € L2(0,T;V) C L?(0,T; H), z,, satisfies
T ,
|| @5, + Dz, (), $(E)vr vt

= [ Ao, gl + [ (L AD ZFOWD o4,

+/ 04, (1) v,,vdt+/ (B, ¢O)Ir) 1. 1 dt. (3.31)

HT2(T),HZ(T)
Now we shall prove that
)\ik{F(y(u* + Xevo)) — F(y(u*))} = 8,F(y(u))z strongly in L*(0,T;H). (3.32)
By the mean value theorem, there exist 61,0, ..., 6, € [0,1] such that
SAP(v{a® + Mevoit,2) — Fly(u'st,2))} = (e, (62))2a, (1,9 (3.33)

where Yo, (ta CL‘) = (9191(11*; t, 1") + (1 - el)yl(U* + Ak:V(); t $)7 TS gnyn(U*; t, 32) + (1 - en)yn(u* +
Mevost,z))T. By (3.30), we can see easily that :
ve, (t,z) > y(u*;t,z) a.e. in Q. (3.34)

Since F} are continuously differentiable for all j = 1,2, ...,n, we have by (3.30), (3.33) and (3.34)
that )
)\—k{F(y(u* + Mvo) — F(y(u*))} = OyF(y(u*)z ae. in Q. (3.35)

It is verified by |3y F(ys,)llc(20, 1y F(y(u)lcy < K that
10y F (¥0,)22, — Oy F(y ()2 < 2K2 (|2, 5, + 2f3). (3.36)

Hence by applying the Lebesgue dominated convergence theorem, we deduce from (3.35) and
(3.36) that

T
Jim [ [ 10yF(v0, )2 — 8, Fly(u")aldodt

= Q)‘11§0|8yF(YBk z) — OyF(y(u*)z|’dzdt = (3.37)
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This completes the proof of (3.32). Then we have the convergence

T u* vo) — u*
/ (CF(Y( +)\k/\0) F(y( ))’¢(t))udt_,/T(CayF(y(u*))z,¢(t))Hdt (3.38)
0 k 0

as A, — 0 for any ¢ € L?(0,T;H). Next we show that z is weak solution of (3.24). By taking
Ax — 0 in (3.31), we deduce from (3.28) and (3.38) that

T T
[ @@, etvpdr+ [ OV Voe)ud:

- / (Az, ¢(8))pdt + / (COyF(y(u))z, ¢(t))ndt

0 1
+/ (B%u, (1)) vdt+/ (Bud, S} ry b oy 2 (3.39)
Hence we can conclude from (3.39) that z satisfies the equation
(Z'(t), v)yy + (DVz, Vv)
— * 0,,0 1,,0
= (Az, V) + (COF(y ()2, vu+ (B, Vivy + (B g, vIr) g oo WV EV

in the sense of D'(0,T), Using integration by parts in (3.39) for ¢ € C'([0,T}; V) we can show
z(0) = Ew®. Therefore z is the weak solution of (3.24). This proves Theorem 3.

By Theorem 3, the cost J(u) is weakly Gateaux differentiable at u in the direction u — u*
and the optimality condition (3.16) is rewritten by

J'(u*)(u—u)
= (y(u*) -2, Dy(u*)(u - u"))(12(q)~ + (y(u*,T) — zg, Dy(u’ T)(u —u*))(z2(q))n
+(Nu*,u — u*)y, Yu = (ug, w1, w) € Ugq. (3.40)
Now we can give the necessary condition of optimality for the distributed Hopfield-type neural

networks. The condition is represented in terms of the state and adjoint systems and the
variational inequality.

Theorem 4 Assume that all assumptions in Section 3 hold. Then the optimal control u* € Uy
for (3.3) is chamcte'rized by the following system of equations and inequality:

,

—~ DAy = Ay + CF(y) +B%} in Q,

T gy Blu* on X, : (3.41)
{ y(O,x) =Ew* in Q.
( a * * * %* .
%P DAp = Ap + 8,F(y(u*))’C'p +y(u") — 2§ in Q,
{%_ 4o s (3.42)
on :

| p(u*,T,2) =y(u*,T) -z} in Q.
T
(p(u",0), B(w = w))sc + [ (p(u"), B (0 — u))vrvel

+/ u*)|p, Bl (u; — ui))ﬁ‘k(r‘j,u"f(r)dt + (Nu*,u—u*) >0, Yu € Uyq. (3.43)
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3.3 Bang-Bang property

In this subsection, we consider the special case where n = 1, i = L2(Q) x L2(S) x L2(€) and

Upg = Uy x Uy x Wag = {ug | ud <u0<ub, a.e. on Q}

x{u1 | ug <ui <up, ae on T} x{w|w, <w< wp, ae. onQ}, (3.44)

with ul, uf € I°(Q), ub, v} € I®(S), wa, wy € L(R). Assume that N = 0,E = B® =
B! = I. Since U,y is closed and convex in I, then from the necessary condition (3.43), we have

(p(u*,0), w —w*)2(q) +/ ), uo — ug) L2 Q)dt+/ (p(u®)|r, u1 — u)2(rydt > 0,
Yu = (ug, u1,w) € Upg, (3.45)
where u* = (uy, u}, w*) € Uyq. By setting (uf, uj, w) € Uypq in (3.45),we get
(p(u*,0),w — w*)p2(q) > 0, Vw € Weq. (3.46)
Similarly by the Lebesgue convergence theorem, we have from (3.45) |

(p(u*,t),u0 — ug)r2@) = 0, ae. t€0,T], Yug €Uy,
(p(u*, t)|r,u1 — UI)L2(I‘) >0 ae. te€E [O,T], Yu; € u;d.

Then we can deduce the following property of u*:

i) if p(u*,0,z) >0, z€Q, then w*(z) = wq(z);
if p(u*,0,z) <0, z€Q, then w*(z) = wy(x).
i) if p(u*,t,z) >0, (t;z)€ Q, then u}(t,z) = ul(t,x); (3.47)
if p(u*,t,z) <0, (t,z)€Q, then u}(t,z)=ud(t,x). )
ii) if p(u*,t,€) <0, (t,€) €, then ui(t,€) =ul(t,§);
if p(u*,t,6) <0, (t,€)€X, then wi(t,&) =uk(t,¢)

This fact (3.47) is well known as the Bang-Bang property of optimal control u*. In the case of
n > 2, we can obtain the similar Bang-Bang property for u* with respect to each component of

u* = (uj,u3, w*).
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