oboooooooonb 12170 20010 1-22

Limiting Partial Combinatory Algebras *

Yohji Akama(7R[HE &)
Mathematical Institute, Tohoku University t

March 31 2001

Abstract

We will construct from every partial combinatory algebra (Pca, for
short) A a PCA a-lim(A) such that (1) every representable numeric func-
tion ¢(n) of a-lim(.A) is exactly of the form lim; £(t,n) with £(¢,n) being
a representable numeric function of A, and (2) A can be embedded into
a-lim(.A) which has a synchronous application operator. Here, a-lim(.A)
is A equipped with a limit structure in the sense that each element of
a-lim(A) is the limit of a countable sequence of A-elements. We will
discuss limit structures for A in terms of Barendregt’s range property.
Moreover, we will repeat the construction lim(—) transfinite times to in-
terpret infinitary A-calculi. Finally, we will attempt to interpret type-free
Au-calculus by introducing another partial applicative structure which has
an asynchronous application operator and allows a parallel limit opera-
tion.

1 Introduction

Partial combinatory algebras (PCA, for short) are partial applicative structures
axiomatized by the same axioms as combinatory algebras, except that the appli-
cation operators can be partial operators. The PCAs are important in connection
with the realizability interpretations of intuitionistic logics. The realizability in-
terpretations extract the computational content from intuitionistic logic’s proofs
as programs. Using PCAs to carry out the realizability interpretations, we can
obtain ‘realizability’ models of typed term calculi and constructive set theories
in which we can do mathematics. Cf. tripos construction(Hyland-Johnstone-
Pitts[8]).
Recently, a new realizability interpretation was introduced by Nakata-Hayashi[11]

to extract the computational content of semi-classical logic’s proofs as approxi-
mation algorithms.

*The author acknowledges Susumu Hayashi, Mariko Yasugi, Stefano Berardi, and Ken-etsu
Fujita.

P RAERE¥E KERBEHRH BFFK

They first noticed that Gold’s limiting recursive functions(7}, which was orig-
inally introduced to formulate the learning processes of machines, serve as ap-
proximation algorithms. Here, Gold’s limiting recursive function is of the form
f(z) such that

fx) =y < 3Vt > to.g(t,x) =y < ligng(t,x) =y,

where g(t,z) is called a guessing function, and t is a limit variable. Then,
they proved that some limiting recursive functions approximate a realizer of a
semi-classical principle ~—3yVz. g(z,y) = 0 — JyVz.g(z,y) = 0. Also, they
showed impressive usages of the semi-classical principle for mathematics and
for software synthesis.

In this way, Nakata-Hayashi opened up the possibility that limiting opera-
tions provide realizability interpretation of semi-classical logical systems.

They formulated the set of the limiting recursive functions as a Basic Re-
cursive Function Theory(BRFT, for short. Wagner[19] and Strong[16]). Then
Nakata-Hayashi carried out their realizability interpretation using the BRFT.

If we can formulate the set of limiting algorithms as a PCA L, then by
carrying out Nakata-Hayashi realizability interpretation using £, we may be
able to construct ‘realizability’ models of

1. semi-classical typed term calculi(e.g., typed Parigot’s Au-calculus, and
typed term calculi with control operators),

2. semi-classical constructive set theories, and
3. constructive set/type theories with limit operations.

Motivated by the above, we will introduce a construction from a given PCA
A another PCA a-lim(A). Our idea is

e limit variable ¢ is the clock of the processing element(MPU).

e guessing function g(t, z) is a generator of an infinite stream (g(0,), g(1, z), . . .).

e limiting recursive function lim; g(t, z) is the stream modulo a symmetric,
transitive relation ~.

Two streams are related with ~ if for all natural number ¢ except finite
numbers, the two t-th elements of the two streams have the same value.

In a-lim(.A), every allowed limit is exactly of the form lim;a; such that the
infinite sequence (a; € A)¢

1. is indexed by N; and
2. is generated inside the PcA A.

We will call this lim; a; an autonomous limit. Owing to the above (1,2), we will
be able to prove that every representable partial function of a-lim(.A) is exactly

a limiting recursive function guessed by some representable partial functions of
A (see Section 3).

Based on this result, we have only to take £ as a-lim(N), in order to find
realizability models of both semi-classical constructive set/type theories and
constructive set/type theories which have limit structures.

In order to construct from the A a PCA with stronger computation power,
we will first consider the following two forms of limits limy a.

(R) (ax € A), is indexed by the whole A.
(N) (ax € A), is any countable sequence of .A-elements.

We will prove that (R) does not always strengthen the computation power of
A. However, (N) has an extreme effect on the strength of the .A. We will in-
troduce another construction from any PCA A to another PCA n-lim(.A) where
only allowed limit is of the form (N). Then, the set of representable functions in
n-lim(.A) is the set of all partial numeric functions. Moreover, it can compute
a discontinuous function from R to N. The construction n-lim(—) may be in-
teresting itself since it applies for all signature of partial algebras. See Section
4.

By using our results on limits over PCAs, we aim to interpret the following
infinite A\-calculi. Infinite A-calculi have been studied in proof- and recursion-
theoretic contexts and are now being studied in the analysis of infinite streams(for
input/output) and non-terminating recursive calls of functional programming
languages.

1. Tait’s typed calculus of infinitely long terms[17]: An infinite sequence of
type A terms is again a type A term. His motivation was proof-theoretic.
He wanted to define a large class of calculable functionals of finite types.

2. S. Feferman’s typed calculus Ty of infinitely long terms (For details, see
Schwichtenberg and Wainer [13]): An infinite sequence (Py, P, .. .) of type
A terms is again a type A term, if there is a term that calculates for each
i the code of P;,. After Feferman developed Tait’s typed A-calculus in a
proof-theoretic context, he introduced Tp and studied Tp in a recursion-
theoretic context.

3. two infinite type-free A-calculi of Kennaway-Klop-Sleep-de Vries[9] and
Berarducci-Dezani[3]: Both have terms representing infinite B6hm-, Lévy-
Longo-, or Berarducci-trees.

4. The type-free Au-calculus (Parigot [12]): The typed version corresponds
to the classical logic, and a typed/type-free version relates to a typed/type-
free functional programming language with control operators such as call/«
Type-free Au-calculus has p-variables to represent continuations. By re-
garding p-variables as infinite sequences of usual variables, we can regard
Ap-calculus as an infinite A-calculus.

The relationship between Tait’s infinite typed A-calculus and Feferman’s
typed A-calculus is comparable to the relationship between n-lim(—) and a-lim(-)

The infinite A-calculi (1,2,3) have an infinite term consisting of infinite terms,
while our constructions a-lim(.4) and n-lim(.A) introduce an element infinitely
depending on elements which are “finite” (i.e., in A). In order to interpret the
infinite A-calculi, we will repeat our constructions a-lim(—) and/or n-lim(-).
The resulting PCA allows repeated limit lim,, - - - lim;, f(¢1,...,%). See Section
5.

However, Parigot’s type-free Au-calculus is difficult to interpret with a-lim
and/or n-lim. We will introduce another construction n-LIM(—) which extends
a given PCA A to a partial applicative structure n-LIM(A) such that

o every allowed limit in n-LIM(A) is a parallel limit lim,,, . ¢, f(t1,-..,tk).
e the application operator is asynchronous.

This construction n-LIM(—) was found by trial-and-error. With the help of
concurrency theory, a branch of computer science, we will try to clarify the
parallelism hidden in the parallel limits of n-LIM(—). Then, we will interpret
the type-free Au-calculus in Section 6

Throughout this paper, the symbol “~” means “if one-side is defined, then
the other side is defined as having the same value,” while the symbol “=" means
that “both sides are defined as having the same value.” The symbol “]” means
“is defined.” So, t | is equivalent to an equation ¢t = ¢t. For any operation f,
we assume that f(a1,...,an) | implies a; |,... and a, |. The set of partial

functions from A to B is denoted by A — B. We write o\; z € A. p(z) to express
that “{z € A | —p(z) } is a finite set.”

Organization of This Paper. In the next section, we consider limiting re-
cursive functions which are guessed by partial recursive functions, while Gold’s
limiting recursive functions by total recursive functions. We calibrate the com-
putational power of our limiting recursive functions in terms of arithmetical
hierarchy of recursion theory.

In Section 3, we extend an arbitrary PCA with a limit structure. Specif-
ically, we construct from every PCA A another PCA a-lim(A4) such that the
representable partial functions of a-lim(.A) is exactly guessed by representable
partial functions of A.

In Section 4, we examine two possible limit structures for PCAs. By using
Barendregt’s range property, we derive that the first structure turns out to be
useless. The second limit structure increases the computational power of PCAs.
Specifically, we construct from every PCA A another PCA n-lim(.A) where every
partial numeric function is representable. The construction n-lim(—) applies
every partial algebra. ‘

In Section 5, we iterate transfinite times two constructions a-lim(—) and
n-lim(—). We calibrate the set of representable partial numeric functions.

In Section 6, we construct an interpretation of type-free affine version of
Parigot’s Au-calculus. The calculus has u-variables which corresponds to con-
tinuations of a programming language Scheme. We regard u-variables as streams
of usual term variables. , ,

In Section 7 and Section 8, we review related work and we conjecture some
problems.

2 Limiting Recursion

Definition 2.1 We say a partial numeric function ¢(ni,...,nk) is guessed by
a partial numeric function £(t,n1,...,nk) as t goes to infinity, provided that
Vni,...,nx3toVt > to. p(n1, . . ., nk) = (L, N1, . . ., k). Wewrite p(ng, ..., nk) =~
lim; &(t, n1, .. .,nk). For every class F of partial numeric functions, lim(F) de-
notes the set of partial numeric functions guessed by a partial numeric function
in F.

In calibrating the computational power of lim(F), we recall the limiting
recursive functions introduced by Gold[7]. We assume the knowledge about
the arithmetical hierarchy of sets and complete sets with respect to many-one
reducibility. The standard reference is Soare’s book[14].

Proposition 2.2 (Gold[7]) 1. A total function guessed by a partial recur-
sive function can be guessed by a primitive recursive function.

2. A (partial) function guessed by a total recursive function is exactly a
(partial) recursive function in the halting set K (called a limiting recursive
function by Gold.)

We denote the set of partial recursive functions by PRF. We have lim(PRF) D
PRF, because every partial recursive function ¢(ny,...,nx) is guessed by the
partial recursive function o(7¥¥1(t,ny,...,nk),. ..,w’,ﬁi}(t,nl, ...,nk)), where
each %! returns the i-th argument. Below, we will show that lim(PRF)

strictly includes the set of Gold’s limiting recursive functions.

Proposition 2.3 (Takeshi Yamazaki, or folklore) 1. Forevery total func-
tion, it is guessed by a total recursive function if and only if the graph of
the function is in a class A9 of the arithmetical hierarchy.

2. For every partial function, if it is guessed by a partial recursive function,
then the graph and the domain are both in a class 9 of the arithmetical
hierarchy. Moreover, there is a partial function f such that f is guessed
by a partial recursive function and the graph of f and the domain of f
are both complete with respect to many-one reducibility.

Proof. (1) lim, g(t,x) = y iff Ve > to. g(t, z) = y iff VEe3t > to. g(t,z) = ¥,
because lim; g(t,z) is always defined. (2) Let {n}(—) be the unary partial
recursive function which index is n, and W, be the domain of {n}(-). It is well-
known that Cof = {n | W, is cofinite} = {n | 3sVt > s.t € W, } is £ complete.
Let the guessing function be £(t,n) = 1 if t € Wy, undefined otherwise.
Then z € Cof = dom(lign &(t,n)) iff (z,1) € graph(lim, £(¢,n)). Q.E.D.

The operation lim(—) has a good property, as Nakata-Hayashi showed. We
will review one of their result.

We recall w-basic recursive function theory with a successor function of
Strong [16] and Wagner [19]. A class of partial numeric functions is called
a w-basic recursive function theory with a successor function(w-BRFT with suc,
for short), if it has for each n the enumeration functions y,(e,zy,...,z,), the
Spt-functions, the successor, the constant functions, the projections, and the
discriminator, and is closed under the composition.

Theorem 2.4 (Nakata-Hayashi[11]) If F is an w-BRFT with suc, then so is
lim(F).

Proof. The enumeration and ST* functions of lim(F) are naturally derived
from those of . We should be careful in proving that lim(F) is closed under
the composition. If the return value of ¢p(x) ~ lim; £(¢,z) at z is undefined,
then the return value of ¢'(ip(z)) at z should be undefined for every ¢’ €
lim(F). Let ¢'(z) ~ lim; ¢'(¢,). Unfortunately, lim &’(t,£(t, z)) can be defined
in case that ¢’ is a constant function. But, ¢'(p(z)) ~ lims ifé(¢,z) = £(t +
1,z) then &'(t,£(t, z)) else £(t,z). Q.E.D.

3 Autonomous Limit

A partial combinatory algebra(PCA, for short) is A = (|A|, -, s, k) such that -
is a binary partial operator(application operator) on a set |A|, and s,k € |A| are
distinct elements subject to (k-a)-b=a,(s-a)-b],((s-a)-b)-c~(a-c)-(b-c).
Examples of PCA are the set N of natural numbers and the set of values of the
call-by-value A-calculus. A, B, ... range over PCAs.

Given a PCA, we can simulate a A\-abstraction; for a “polynomial” ¢[z], there
is a “polynomial” Az.t[z] such that (A\z.t[z]) -a ~ t[a]. \z.a =k-a, A\z.2 =
s-k-k. Az.t[z] - t'[z] ~ s- (Az. t[z]) - (\z.t'[z]). The Church numeral of a natural
number n, denoted by 7, is a polynomial AyAz.y-(----(y-z)---) with the y
successively applied n-times to z.

We say a partial numerical function ¥(t, ny, ..., nx) is represented by an ele-
ment a € A, whenever (---((a-%) - 71) - - -) g = W if and only if Y(¢, ny, ..., nk) =
m. The set of partial numerical functions representable in 4 is denoted by
RpFn(A). It is well-known that RpFn(.A) contains PRF.

Given a PCA A, we will construct a PCA a-lim(.A) such that RpFn(a-lim(A)) =
lim(RpFn(A)).

Definition 3.1 (Autonomous Limit of PCA) GivenaPCA A = (|4], +, s, k
The extension a-lim(A) of A by the autonomous limits is a PCA a-lim(A) =
(|Ja-lim(A)|, *, s, k), where

o |a-lim(A)| is a quotient set {a € | 4| | a ~ a}/ ~, where a ~ b is defined
asvteN.(a-T=b-).

o s=lk-s|,k=[k-k]~ (“s,k for any value t”, t being “time”);
e [a]~ * [b]~ = [(s - @) - b]~ (“synchronous application”).

As ~ is a symmetric, transitive relation on |A|, the quotient set |a-lim(.A)|
is well-defined. The element is an equivalence class [a]~ with a € A. When a is
undefined, so will [a]~ be undefined. The operation * is well-defined; Suppose
a~a andb~b ands-a-b-7 =~ (a-7) - (b-7) is defined for values of n
which are large enough. Then, because a -7 = @’ -7 and b-7. = b' -7, we
have s-a-b- T~ (a-7)-(b-7A) ~ (a'-7)-(b\-7) =~ s-a’-b -7 Therefore,
[a] * [b] ~ [a'] * [¥].

Theorem 3.2 a-lim(A) is a PCA such that RpFn(a-lim(A)) = lim(RpFn(A)).

Proof. Let t € N be sufficiently large.

o sx[a] * [b] % [¢] ~ [s(s(s(ks)a)b)c] while [a] * [c] * ([b] * [c]lz [s(sac)(sbc)].
An axiom for s implies s(s(s(ks)a)b)ct ~ (kst)(at)(bt)(ct). By using the
axiom for k with |, the last is ~ s(af)(bt)(ct). It is, by an axiom for s,
=~ s(sac)(sbc)t. So, s * [a] * [b] * [c] = [a] * [c] * ([6] * [c])-

e sx[a] % [b] ~ [s(s(ks)a)b]. An axiom of s implies s(s(ks)a)bt ~ kst(at)(bt).
By using the axiom of k with £ |, it is ~ s(at)(bt). It is always defined
because at |, bt | and an axiom of s. So, s * [a] * [b] |.

o k * [a] * [b] = [s(s(kk)a)b] and s(s(kk)a)bt ~ (kkt)(at)(bt). By using the
axiom of k with T |, it is = k(af)(bt). It is ~ at as bt |. So, kx*[a]*[b] = [a].

Therefore, a-lim(.A) is indeed a PCA.

Before proving the latter part of the theorem, we note that a Church numeral
11 of a-lim(.A) is [k7]~ with the latter Church numeral 7 being in A.

Both of RpFn(a-lim(.A)) and lim(RpFn(.A)) have the nowhere defined partial
functions of any arity. Let ¢ be a unary partial function somewhere defined.
Then, ¢ € RpFn(a-lim(A)) iff 3a € A(a ~ a & Vn,m ([a]~ * 71 =1 iff p(n) =

o0 - o) -
m)) iff Ja € A(V t.at | & Vn,m(V t € N.sa(kR)t = (km)i) iff p(n) = m) iff
(o o} - o0 -
Ja€ A(V t.at | & Vn,m(V t € N.afn =) iff p(n) =m) (1)
On the other hand, ¢ € lim(RpFn(A)) is equivalent to

3¢ € RpFn(A)Vn, m(lign £(t,n) = m iff p(n) = m) (2)

As ¢ is somewhere defined, we have ¢(l) | for some I. Therefore, v t. £(t,10) |.

So, every a € A representing & satisfies ?v'o t.at |. Thus, (1) if and only if (2).
Therefore, ¢ € RpFn(a-lim(.A)) if and only if ¢ € lim(RpFn(.A)). For ¢ with
the arity being greater than 1, it is similarly proved. Q.E.D.

Definition 3.3 (homomorphism) A function f from a PCA A to a PCA B is
a homomorphism, if f preserves the operators as relations. That is, f(s) = s,
f(k) =k, and ab = c implies f(a)f(b) = f(c).

We denote by PCA the category of PCAs and homomorphisms between them.
An injective, surjective homomorphism is called an isomorphism. We abbreviate
a homomorphism by homo.

Theorem 3.4 Define the function ¢4 by ¢t4 : A — alim(A); ¢ — [k-a]. .
Then,

1. 14 is an injective, non-surjective homo.
2 [a]n=ta(b) «=>VteNa-i=b (= “lima-I=?")

3.a-a=b <= ta(a)*ca(a) = ca(d).

Proof. (1) v is clearly an injective homo. If [skk]. = ¢4(b), then Y t. skkf ~

kbt, which is ¥ t.T ~ b. Contradiction. So, ¢4 is not surjective. (2) and (3) are
trivial. Q.E.D.

4 Possible Limit Structures

Each element of the PCA a-lim(A) is of the form lim; a;, where the
1. parameter ¢ can be any natural number; and

2. the sequence (a:); is of the form (a -); for some a € A. In this case, the
sequence is “autonomously tracked” by an .4-element a.

To justify the necessity of the two conditions, we will discuss following alterna-
tive lim; a; for A: (R) ¢ of lim, a; can be any element of A (See Subsection 4.1);
or (N) the sequence (a;); is any countable sequence.(See Subsection 4.2)

4.1 Range property and limit.
We consider the following semantics of lim operation:
lim f(Z,0) =y «<=>Va€ |4 y=f(& a). (3)

Although this limit is useful in a PCA N, it is not the case for the set M of closed
A-terms modulo B-equality. M is called a closed term model of A\B-calculus.

Even though we can construct from M another PCA A(M) with the limit be-
ing (3), we have PRF = RpFn(A(M)) = RpFn(M) # lim(RpFn(M)) =
lim(PRF). This is because of the range property studied by Barendregt([1,
p.517]): In M, the range of any combinator is either a singleton or an infinite
set.

Indeed, for any definable function f : M x M — M, so is the function
F.(a) = f(z,a). When lim, f(z,a) in the above sense has a value, F; has the
finite range {Fy(a) | a € M}. However, it must be a singleton because of the
range property. Therefore, the lim of (3) will be useless.

4.2 Limit along all the countable sequences.

Theorem 4.1 Let M be a partial algebra of a signature (f;,...; u1 =u},...; v1 ~
v},...). Here fi,... are (partial) operators, and u; = u},...;v1 =~ vj,... are
axioms. Each u;, u}, vs, v} is built up from the variables and the operators f,.. ..

The extension n-lim(M) of M by the non-constructive limits is (|n-lim(M)|, £,...)
such that

1. |n-limM)] = {a : N = M | a ~ a }/ ~, where a ~ b is defined as
¥ ke N.a(k) = b(k).
2. For ¢® = [¢® | € |n-lim(M)|, define f(cV), cV),...) ~ [¢]~ with
(i) = f((), (), ...).
Then n-lim(M) is a partial algebra of the same signature.

As we defined homomorphisms for PCAs, we will define a homomorphism for
partial algebras as a function which preserves the operators as relations.

Theorem 4.2 Define the function tpq : M — n-lim(M); b — [a]., wherea(t) =
b. Then, '

1. tpm is an injective homo. If M has at least two elements, it is non-
surjective.

2. [dn = wm(b) <= (VteN. alt)=b) (<= “lim a(t) =b")

3. £(b,..) =bin M < tam(E)eam(d),...) = ea(t)) in n-lim(M).

Proof. Assume tpq is surjective. Then, let a : N — M such that a(t) =

bt mod 2 With distinct bg, b; € M. We have 3b 0\;’> t € N(a(t) = b). Contradiction.
The other claims are clear. Q.E.D.

In computer science, partial algebras appear as algebraic specification of
software. For instance, stacks. It is indeed partial, because pop(nil) can be
undefined. The signature of stacks is (pop, push, nil, 1; pop(push(x,y)) = x).
By taking M of above theorems as PCAs, we will have the following:

Theorem 4.3 If A is a PCA, n-lim(A) is a PCA such that RpFn(n-lim(A)) is
the set of all partial numeric functions.

Proof. We will prove only the second part. Since any partial numeric function
of finite domain is representable in any PCA, every partial numeric m-ary func-
tion ¢ is represented by [f]~ such that f(t) represents ¢ [{0,1,...,t — 1,¢}™
in A. Q.E.D.

Remark 4.4 There are other PCAs where every partial numeric function is rep-
resentable. For instance, Do, introduced by Scott and the partial continuous
operations (PCO, for short. See [18, Ch.9, Sect.4]) introduced by Kleene. How-
ever, no n-lim(A) is isomorphic to them. This fact is explained by comparing
the three extensional collapses[18] of n-lim(.A), D, and PCO.

On the one hand, the extensional collapses of both D, and PCO are the same;
a type structure consisting of all total Kleene-Kreisel continuous functionals over
N. By a Kleene-Kreisel continuous functional, we mean that the output of the
functional depends only on finite subinformation of the input functionals.

On the other hand, the extensional collapse of n-lim(.A) contains a discon-
tinuous functional over N. One such example is the Gauss function, a function
given a real number z returning the smallest integer not greater than x. The
Gauss function is actually a functional over N; every real number may be re-
garded as a converging sequence of rational numbers, and thus as a function
from N to Q. Because Q is encoded to N, every real number is a function from
N to N. The Gauss function is not Kleene-Kreisel continuous, because the out-
put needs infinite precision on the input real number to determine whether the
input is an integer or not. As Gauss function is rewritten as the limit according
to Yasugi-Brattka-Washihara[20], it is in the extensional collapse of n-lim(.A4).

So, n-lim(.A) is isomorphic to neither D, nor PCO.

5 Repeating Limits

In functional programming, we use infinite lists as streams(for input/output)
and non-terminating recursive calls. These objects are usually the unwind-
ing(“limit”) of finite objects. To analyze such infinite objects, of interest are
infinite M-calculi which were introduced by Kennaway-Klop-Sleep-de Vries[9]
and Berarducci-Dezani[3]. Both calculi admit a term like Az.y“z, Az. y*(z*),
and have terms with the limit operation (—)“ being nested.

Interpretations of these infinite A-calculi may be constructed by our con-
structions a-lim(—) and n-lim(-) of PCAs. In such cases, it is necessary to
repeat the limit constructions w-times.

Definition 5.1 (a-times repeated limits) For every PCA A and every ordi-
nal number a, let us define a PCA lim*(.A) and the canonical injective homo.
R lim?(A) — lim®(A) for each 0 < 8 < a.

e a-lim®(A) = A4, and Lg is the identity for each ordinal number §.

e a-lim?*t!(4) = alim (au—lim‘6 (A)), and B+ = sy 0if.

10

e When « is a limit ordinal number,

a-lim*(A) is an inductive limit of (t2)o<y<s<a, and each +f is a natural
injection of the inductive limit.

We similarly define n-lim®(.A).
Theorem 5.2 For each ordinal number a > 0,

1. a-lim*(A) is indeed a PCA, and . is an injective, non-surjective homo.
for < a;

2. RpFn(a-lim®(A)) is lim*(RpFn(A)) for a finite, and is gy lim? (RpFn(A))
otherwise.

Proof. The first part will proved by transfinite induction on a. In proving the
second part of the theorem, note that RpFn(a-lim*(A4)) is Uz, RpFn(a-lim? (A)).
In view of Theorem 3.2, it is already proved for finite . For a = w + 1,

11

RpFn(a-lim“*!(A)) is lim (UB <N RpFn(a-lim” (.A))) , which is lim (U <N lim? (RpFn(.A))) .

Therefore, p(—) € RpFn(lim“**(A4)) iff 38 < w3 € lim? (RpFn(A))Vn. 3tpVte >
th p(n) ~ &(to, n). Hence, o(—) € RpFn(lim“*(A)) iff 38 < w3¢’ € RpFn(A) 3tyVto >
to - - - ItpVtg >t p(n) ~ & (to,- - -, tp, n) Thus, RpFn(lim“*'(A)) is RpFn(lim“ (A)).
In this way, we can prove the second part of the theorem. Q.E.D.

Theorem similar to Theorem 3.4 also holds

We do not know whether there is an ordinal number o such that a-lim®(.A) is
isomorphic to a-lim (a-lim*(.A)). t2*1 cannot be such an isomorphism, according
to above Theorem. Although the construction a-lim(—) is an endofunctor of a
category PCA, it is difficult to employ a category-theoretic version of Tarski’s

fixpoint theorem arguments; because two homo’s a-lim A1y and 22 are not
g B B+1

equal but their equalizer can be proved to be Lg+1.

Lemma 5.3 1. a-lim(-) will be an endofunctor on PCA by defining a-lim(f)([a]~) =
[f(a)]~. The functor a-lim preserves injective homomorphisms.

2. Lg+1 is an equalizer of Lgﬁ and a-lim(Lg“).

In other words,

Vz € alimPt1(A4) (Lgﬁ (z) = lim(Lg"'l)(a:) < Jye€alim® (A)(z = Lﬁ“(y))).

Proof.

1. a-lim(f) is well-defined as a function, that is, if a ~ b then f(a) ~ f(b).
Indeed, As f is a homomorphism, we have f(a) 7 ~ f(a)- f(7) =~ f(a-7),
and similarly f(b) -7 ~ f(b-7). If a ~ b, then Vone N, we have that
a-T~b-m and that f(a) -7 ~ f(a-7) =~ f(b-7) ~ f(b) -%. As for
the homomorphic property of a-lim(f), we only show that f preserves an

intrinsic constant k: we have a-lim(f)(k) Def31 a-lim(f)([k - k]) thedef

h .3.
[f(k - k)] T hgme [k - k] Pl 1is easy to see that a-lim preserves the

composition operation and the identity.

2. z = [a]~ for some a. By (1), we have a-lim(Lg"'l)(x) = [Lg"'l(a)]N =
[l -]~ and 511(2) = [k [a]~]~ = [k - k]~ - [a]~]o = [[s- (k- k) - al<]~.

Therefore \ .
thy1(@) = erlim(5 ") () (4)
is equivalent to [k-a]~ ~ [s-(k-k)-a]~ in a-lim#*1(A). This is equivalent
to that oo
VneN(k-a. -n~[s-(k-k)-a]~-7.) (5)

We have the left-hand side of (5) ~ [s- (k- a)- (k-7)]~, and the right-hand
side ~ [s- (s- (k- k)-a)- (k-7)]~. Therefore (5) is equivalent to that

Y¥neN,VYmeN(s-(k-a) (k-7)-m~s (s (k-k)-a)- (k-7)-m) (6)
Because the left-hand side of (6) ~ a -7 and the right-hand side ~ (s- (k-
k)-a-m)-n~k-(a M) Nx~a-m,(6)is equivalent to that

(o o] o0
VvneNVmeNa-"~a-m (7

This means that a sequence (a - T), converges to some y. So, (6) is

equivalent to that Jy C‘:/o n € N.a-~y. Thatis, a ~ k-y. Therefore,
z = [a]~ = [k-y]~ = ¢(y). Therefore, (4) is equivalent to Jy. z = Lg"'l(y).

(2) Let f be an injective homomorphism and let a-lim(f)([z]~) = a-lim(f)([y]~)-

By the definition, f(z) ~ f(y) Thus VneN. f(x) -~ fly)-m As f
is a homomorphism, 0\7 n €N f(z-7) ~ fly-n). As f is injective,
VneNz mo y - . Therefore z ~ y, which is [z]. = [y]~. Q.E.D.

Theorem 5.4 For each ordinal number a > 0,

1. n-lim*(A) is indeed a PCA, and (5 is an injective, non-surjective homo.
forf<a;

2. RpFn(n-lim*(A)) is the set of partial numeric functions.

An infinitely long term (Pj, P,,...) of Tait’s and Feferman’s A-calculi re-
spectively can be interpreted with n-lim®*!(.A) and a-lim***(.A) respectively
as follows:

(alaa2) asgy. . '1) = [t = (als az2,a3,. .. 1at>t]~7

where a; is an interpretation of the term P; in a-lim*(.A) and n-lim*(A) re-
spectively, and the ordinal number o depends on the complexity of P;’s. Here,
(a1,a2, a3, ...,at) is the abbreviation of cons a; (- - -(cons a; i) - - -), for a pair-
ing car (cons a b) = a, and cdr (cons a b) = b. For example, we can define

cons = \ryz.zyz, car=)z.zk, cdr = Az.z(ki). (8)

12

Remark 5.5 All the morphisms which appear so far are happensto be discrete,
projective, decidable applicative morphisms of Longley [10]. According to (10,
Chapter 8], they all induce functors between realizability toposes and they all
preserve discrete objects; projectives; and finite colimits, NNO.

6 An Interpretation of Type-free \u-calculus

In [12], Parigot introduced the typed Ap-calculus which corresponds to classical
propositional logic via Curry-Howard isomorphism. By forgetting the types
in the Ap-calculus, we obtain a type-free Au-calculus. Both calculi are related
to type-free/typed programming languages with control operators (call/cc, C
introduced by M. Felleisen and D. Friedman in [4], raise-handle, ...).

Since Nakata-Hayashi interpret a weak classical logic by a limiting realizabil-
ity interpretation, it is natural to ask whether we can interpret a Ap-calculus
by a A-model which has a limit structure. We will concentrate on the type-free
version of Au-calculus.

Type-free Apu-calculus is specified by defining Au-terms, and the reduction
rules (the S-reduction rule and the p-reduction rule).

Au-Terms are generated by M =:=c |z | MM | Az. M | [a]M | pa. M. An
occurrence of a in pa. --- will be called a bound occurrence of @. An occur-
rence of a which is not bound is called free. A Au-term [a]M is regarded as
application of M to the continuation bound to a. po. M is regarded as func-
tional abstraction over the continuation variable a on the level of continuation
semantics. Here, z,9,2,... range over term-variables. «,p,7,... range over
p-variables which are distinguished from the term-variables.

Mixed substitution. A context is generated by the above grammar with a
special constant (). By replacing the occurrences of () of a context C() with
a Au-term M, we obtain a Au-term C(M).

For any context C() and a Au-term N, we define a mized substitution
¥ = [[e]() := C()] as follows; If N is a Apu-term, so is a N9. If N does not have
a free p-variable , then N9 is N. So, if N is a variable or pa. M, then N9 = N.
The mixed substitution commutes with a A-abstraction and an application. The
mixed substitution 9 = [[a]() := C()] satisfies ([5]M)9 = [B](M9) and
(uB. M)9 = pp.(M9Y), provided 8 # a. Finally, ([0JM)[[a]() :== C()] =
c(M[[a)():=C()])-

p-reduction is specified by the following rule: (ua. M)N —, pa. (M [[ed() :=
[a](()N)]) In graphical notation, the rule is

(wee.(- - ([P) -)N =y pa(- - ([(P'N)) -). (9)

13

For instance, (pa. (o] (yla]z))z —, po. [o] (y ([a)(zz)) 2). Of cou
free Au-calculus has the usual B-reduction.

6.1 Informal Semantics of Ay

p-application(abstraction,reduction) = infinite applicatior
B-reduction). Consider an informal translation from the type-fr
to (infinitely long) type-free A-calculus:

[) P — Pag...om... and poe. M — dag...0m ...
Then, the above rewriting rule (9) is translated to
(/\aoal PN (. (Paoal .) .))N —3)\aoal e (. (P’Naoal .

which turns out to be a B-reduction between infinite terms, if w
bound variables infinite times Aaj.... (- - (P’Nay...)) =
(P'Naga; .. .)-). The n-like reduction on continuation pa. [a] P —
turns out to be just infinite n-reductions(see Theorem 6.14).

This idea of Parigot is being studied by Fujita[5]; with tyf
translation above precisely corresponds to Godel translation and
ag, a1, . . . is finite.

p-variable = infinite stream. The idea of (10) leads us to in

~ - P—
(o] P ~ lign Popay...op >~ [t — Pogay ...ag)~ a; = carx(cdr *

Then, we have a Swap rule of Streicher-Reus’s version of type-free .
[consx M xN]P ~ [N](P*M), if we allow more general continuati
mere pu-(continuation) variables namely pure A-terms stacked t«
cons * My » (cons * Mz x ... * (cons* M, xa)...).

Before we consider the interpretation of u-abstraction, we v
rigorous.

u-reduction causes delay in a stream. The translation resuli
ing rule (9) is f — g such that

f(t) ~(Aao...as.(--(Pag...as))N =~ dajy...a.((PNay
g(t) ’L’/\ao...at.('-(Pﬁao,,.at)..)

But, f(t+1) ~ g(t). Because it takes 1 ‘clock time’ to compute(b;
g from f, a delay will occur because of the extra computational -
Anyway, [f]~ # [9]~ in n-lim(A). So, n-lim(A) does not interpre
Neither does a-lim(A).

To equate f and g above, let us replace the symmetric, transit
with the smallest symmetric, transitive relation ~ containing ~ &

14

15

rule f = (t — f(t +1)). Unfortunately, a quotient set (N — |4]) / = cannot
have the synchronous application operator [f]x * [g]~ ~ [t — f(2) - g(t)]~ well-
defined.

6.2 Asynchronous Applicative Structure and Parallel Limit

Given a PCA A, we introduce another partial algebra n-LIM(.A) where an ap-
propriate application operator can be defined.

The carrier set of n-LIM(A) is {f | 3n > 0. f : N®* — |A| and f ~ f}/ ~,
where ~ is a symmetric, transitive relation over |J,,.o(N® — |.A]) defined by
the symmetricity rule, the transitivity rule plus the following two rules.

tdX---xtd X sucxid---xid

1. The ‘delay’ rule. N® L A~Ne g LJER | A| where id
is the identity function on N and suc is the successor function.

As for X, it is an associative operator and for all f; : A; — B; we have

fi x fa: A1 x A2 — By x B, such that (f1 x f2)(a1, a2) is (f1(a1), f2(a2))
if each f;(a;) is defined, and it is undefined otherwise.

The rule is necessary to have lim; f(¢) ~ lim; f(¢t + 1).
2. The ‘exchange’ and ‘weakening’ rule.

(wc',"(l),ﬂc',"(z),...,w;"("))

N* L4 ~ N, S NV
where m > n, o is a permutation on {1,...,n}, and foreach k =1,...,m
the function 73" returns the k-th argument.

For all f; : A — B; we have (fi,...,fn) : A = B; x---x B, such
that (f1,...,fa)(a) is (fi(a),..., fu(a)) if each f;(a) is defined, and it is
undefined otherwise.

The rule will make the following application operator well-defined.

Lemma 6.1 Let ¢,5,k > 0. Ifo‘v? (ui,...,ux) € NF Vs1,...,8i,t1,...,t; €N
fl(ul,. ..,uk,sl,...,si) zfz(ul,...,uk,tl,...,tj), then f1 ~ f2,

Proof. Assume that if £ > to, then fi (t, t_{) ~ folt, t;) Let g,-(i; t_;) ~ fi(ty +
to,...,tk+to,t;). Then, f; ~ g; by kto times repeated applications of the ‘delay’
rule. We can derive g; ~ g2 by the ‘exchange’ and ‘weakening’ rule from that

g1(t,t1) ~ g2(t, t2). By the transitivity of ~, we have f; ~ f,. Q.E.D.

Remark 6.2 Consistent with Lemma 6.1, for each X = a-lim(A), n-lim(A),
or n-LIM(A), we mention the relationship between the symmetric, transitive
relation ~ for X and the limit structure of X.

e For a-lim(A), we have always i = j = 0 and k = 1 and for an autonomous
sequence of .A-elements the sequential limit lim; a - ¢ corresponds to [a]~. €

a-lim(.A).

e For n-lim(A), we have alwaysi =j=0and k=1 and fora f : N — | /]
the sequential limit lim, f(t) corresponds to [f]~ € n-lim(.A).

e Forn-LIM(A), for a f : N¥+ — | 4] the parallel limit of limy, . ¢, f(t1,- ..
corresponds to [f].. € n-LIM(A).

atl

As is common, the contraction rule is seen as a communication(synchronization)-

In defining ~, we cannot replace the ‘exchange’ and ‘weakening’ rule with the
‘exchange,’ ‘weakening’ and ‘contraction‘ rule:

(Tg1) T a(2)r1Ta(n))

N* L4 ~N™ Nt Ly

where m > n, o is a function on {1,...,n}.

An asynchronous application operator. For f: N" — |A| and g : N™ —
| A|, define
. n o am X9 =)=
[flo*lgle = [A~ , with h=N" x N™ 20 | 4] x | 4] ——— |4]

where (—) - (—) is the application operator of a given PCA A. The operator * is
‘asynchronous’ in the sense that f x g is involved. The operator, as well as the
symmetric, transitive relation ~, permits ‘delay’ in the arguments (as streams).
Therefore,

Lemma 6.3 (—) * (—) is well-defined.

We say n-LIM(.A) is the extension of a PCA A by the non-constructive parallel
limits and the asynchronous application.

Remark 6.4 We can explain the application operator with the vocabulary of
the concurrency theory:

1. f and g (respectively) is a process having at most n and m (respectively)
independent clocks. For all time slices? except for finite numbers, we can
observe A-elements.

2. h is a process having the clocks of both f and g. Given a time slice, let a
be the observation of f at a given time slice and let b be the observation
of g at a given time slice. Then the observation of A at a given time slice
isa-b.

Lemma 6.5 In n-LIM(.A), we have [k]. * z * y = z. It is not the case that
[s]~ ¥z *y* z ~ z * z* (y * z). But, it is the case if z = [h]. with some h € A.

1 A total differentiable function f(z,y) of analysis and an analytic function F(z) of complex
variable z = z + iy allow us to calculate the derivative f’, F’ by either an iterated sequential
limit lim, limy, ... or a parallel limit limg,y ...,lim; The variable x and y is cooperating and
‘communicating’ each other in the calculation of the derivative. If z,y can be seen as clocks,
f, F as a process, and f’, F’ as the generator of the process, then the total differentiability
and being analytic can be seen as a cooperating and/or communicating process.

2(t1,...,tn) where each t; is the value of the clock.

16

Proof. Let x = [f]~,y = [g]~, 2z = [h]~, and the arities of f,g,h be n,m,l.
[k]~ * T *y is [p]~ such that p= f o (a}*™ x ... x #%+™) ~ f by the exchange
and weakening rule. Therefore [k]. xz*xy =1z .

[s]~ * T * y * z is [u]~ with u being naturally an (n + m + [)-ary partial
function, while z * z * (y * 2) is [v]~ with v being naturally (n + ! + m + l)-ary.
So, it is difficult to have the equation unless [=0 (i.e., h € A). Q.E.D.

Definition 6.6 For every polynomial t[z], define the polynomial A\z.t[z] as
follows. Let x not occur in u.

e \z.a~[kl~*a. Azr.z~[Az.2]N, AZ. U * T ™ u.
o \z.t[z] * u ~ [Azyz. x2y]~ * (AZ. t[2]) * U,

o \z.u*t[z] ~ [Axyz. £(yz)]~ * u * (Az. t[z]).

o A\z.t[z] * t'[x] ~ [s]~ * (Az. t[z]) * (A\z. t'[Z]).

Lemma 6.7 For every a € n-LIM(.A) we have (\z.t[z])a ~ t[a], if = occurs in
t[x] at most once, or if a = [h]~ with some h € A.

The Church numeral t below is defined with the M-abstraction of Definition
6.6.

Lemma 6.8 n-LIM(.A) has a pairing cons, car, cdr; and nth such that nth *
(Toy -+ Tn) ¥t x4

Proof. The pairing is by Lemma 6.7 and (8). Let nth ~ Azy. car*(y*cdrxz).
Q.E.D.

We can define similarly the ertension a-LIM(A) of a PCA A by the au-
tonomous parallel limits and the asynchronous application.

6.3 The Interpretation

Convention 1 In every Au-term M, every bound pu-variable is distinct® and
different from any free u-variables.

Definition 6.9 Given a type-free Au-term M. Let {a,p,...} be the set of
p-variables in M, then a set {tq,ts, ...} of numeric variables is denoted by MP.

We will define the partial function M9 returns at most one .A-element, when
the values of M? is determined; z9 ~ z ranges over the elements of A, (M N)9 ~
M9IN9I and (Az. M)9 ~ \x. M9.

([a]M)Y ~ MI(ntha)...(nth aty);
(na. M)? =~ dop...ap,. M9a:=(aq,...,0,)].
The interpretation [M] of M in n-LIM(A) is [M9]_ .
SThat is’ a#ﬁ’ if M is...(#a_ ...a...)...(uﬁ' ...ﬁ...)....

17

We will prove that this interpretation works well for the af
Au-calculus.

Lemma 6.10 (P[z := Q)])? ~ P9z := QY].

Proof. By induction on P. We abbreviate [z := Q)] as 8, [z := (

1. Case Pis [@|M. Then the left hand side ([a](M8))9 is ~ (M6
By induction hypothesis, it is M969 (nth o 0) ... (nthat,)
which is the right hand side.

2. Case Pis uB. M. Then the left hand side is (u8. (M0))9 ~ \(
(Bo, - - -, Bt,)]- By induction hypothesis, it is AGp . . . B¢, M 96
Because we can assume that § is not in Q without loss of §

last is (,\,Bo...ﬁtﬁ.Mg (8 := (ﬂo,...,ﬂtﬁ)]) 69, which is tl
side.

When P is of the other forms, then it is trivial. Q.E.D.

Lemma 6.11 (P[[a]() := ()Zo...7¢,])’ = P9[a = (z0,...,2

Proof. By induction on P. ¢ stands for [[a]() := ()zo...Z,
[@:= (Z0,...,Z¢,) |-

1. Case P is [a]M. Then the left hand side is (MY zo ...z,)?.
hypothesis, it is M90xy . . .z, which is the right hand side

2. Case P is uB.M with 8 # a. Then the left hand side
which is M ... Bes. (MY) [B := (Bo, ... Bts)]- By induc
sis, it is ABo...Bs- M99 [B := (Bo, ... Bis)]- It is ABo...
(Bo, ... Bis)]0, which is the right hand side.

When P is of the other forms, then it is trivial. Q.E.D.

Theorem 6.12 If x occurs free at most once in M, or if no p-v
in N, then ((Az. M)N)9 ~ (M|[z := N])9. Hence, [(Azx. M)N] ~ |

Proof. The left hand side is (Az. M9) N9, where z occurs free at
M9, or N ~ [h]. for some h € A. So, the left hand side is M9
Lemma 6.7. It is the right hand side by Lemma 6.10. Q.E.D.

Theorem 6.13 Let a occur free at most once in P, or let no u-
in Q. Then we have

u-reduction. [(ua. P)Q] =~ [pa. Pllo]() :=[ef((
Parigot’s S3 rule. pa. M| ~ [Az. po. M[[a](-) :=

18

Proof. In order to prove the two statements, we will claim respectively

L. if f(tartz) = ((ue. P)Q)’, then f(ta+1,t5) =~ (ua. Plo() = [a](()Q)])".;

and
2. if f(ta,tz) = (uov. P)?, then f(ta+1,t5) = (,\z. pee. P[[a]() := [a](()z)])g_ .

(1) The left hand side f(ta+1,t5) is (Ao . ..0p 41. POla = (a0, ..., 0 41)])Q9,
which is, by Lemma 6.11, (Aao... (P[[e]() = ()ao...a¢.+1] }°)Q9, which
is, by Lemma 6.10 and the premise, A1 . .. oz, +1. (P[[@]() == ()Qa1 ... ao41])%,
which is, by renaming bound variables, Aayg . . .c¢,. (P[[0]() == ()Qa0...cx,.])°.
Because of Convention 1, the mixed substitution above is a composition of two
mixed substitutions: [[o]() := [](()Q)][[e]() :=()ao...0x,]. By Lemma

6.11, f(ta +1,tg) =~ }\ao...ata.(P[[a]() = [a](()Q)])g [@ == (a0,...,au.)],
which is the right hand side (ua. Plle]() == [a](()Q)])g. The claim (2) can

be proved in a similar way. Q.E.D.

Theorem 6.14 (7cont) If c is not free in M, then (pa. [o]M)9 ~ M9, hence
[e [0] M] =~ [M].

Proof. The translation (—)9 unwinds each occurrence a* of a to the same
sequence of usual variables ap, ay,...,0:,. Q.E.D.

When we validate the p-reduction but not 7..n¢-reduction, we can replace
(-)9 with another translation (—)€ satisfying the following two conditions 4 .

1. For the same p-variable a, we will distinguish the different occurrences by

al,a?,.... let (—)¢ unwind of to ag, a1, ..., ,

2. For the p-reduction with the following graphical notation
(ua.(- - ([o®)P) -+ ([0%]Q) -+)N —p pal (- ([”)(P'N)) - - ([®]Q") - -),

we have t; > to,t3,.. ..

7 Related Work

Model of Lambda-Mu Calculus. In [6], Fujita constructed a model of type-
free Ap-calculus, which is induced, in a typed case, from Godel-Gentzen transla-
tion. The term model is obtained by the use of a fixed point of a typable A-term

4These two conditions may be expressed along the line of Remark 6.4 with the vocabulary
of the concurrency theory (like, “uc waits the a’s inside the scope.....”).

Because we comply Convention 1, we assign to a given Au-term the largest number of
clocks. Renaming of bound p-variables of a Au-term M can save the number of clocks which
is assigned to M. Renaming of bound p-variables may correspond to a certain scheduling
among the parallel execution. But, I don’t know.

which corresponds to one side of a reduction rule associated with double nega-
tion elimination in a typed case. In fact, he present Gédel-Gentzen translation
as

o 19 =1

o (M1 M) = MY M3.

o (A\z. M)9 = Az. M9,

o (ua. M)? = C(Aa. M9).

Here, C is the Turing’s fixpoint operator applied to Azyz. z(Ak. y(Af. k(f=2))).

¢ ([o)M)I = aM?9.

Then, (pa. M) is potentially infinite A-abstraction; we have (ua. M)9 =4
AZy...Tp. (ua. M)9z; ...z, for any n. So, his idea is similar to our idea (10).
Because we are concerned with relating Ay to some process calculus, we used
stream(=limit) instead of fixpoint operator.

Classical Logic as Limit. We aim to bridge the gap between constructive
and classical logic through (Nakata-Hayashi) realizability interpretations. In
order to do so, we are concerned only with properties of limit operations which
are relevant to PCAs.

Different use of limit in interpreting classical logic are introduced by Berardi.
In [2], Berardi defined a constructive model for A maps. His model refines con-
structive interpretations for classical reasoning over one-quantifier formulas. In
his model, he used a completion idea, quite similar to the topological completion
producing R out of Q. He was concerned with the process to compute the limit
value. Based on that processes, he directly interpreted his semi-formal system
of A9 maps. '

The main difference is the following

1. He uses intuition reasoning, and, consequently, he uses cofinally true con-
ditions in place of definite true condition (classically, they are the same
for converging limits). Suppose that ! : D — N is a converging limit,
and define P(l) iff P(I(d)) cofinally on D. In his interpretation, he may
turn every proof of P(l) into a proof that P(I(d)) cofinally in d, and in
particular, P(l(d)) for some d € D. But the only way we have of finding
it is to go through all possible values for d.

2. When we write lim;_,o, £(¢,), we think of ¢ as the clock of some guessing
function £(t, z), which eventually (from some tg) stabilizes to some limit
value. He has our idea as particular case, but he rather prefers to think of
t as the finite set ¢t = {y1,...,yn} of ¥’s he used to check the correctness
of a guessing function £(y,z). He supposes to be given a total ordering
in the range of values of £(¢,z), as it is the case when ¢ guesses the
minimum witness of some excluded middle 3y. p(¢,z) V Vy. —p(t,). This

20

realizers may be (2,0) if p(y,z) is false for all y, or (1,y) if p(y,z). He
orders realizers lexicographically, and he let £(¢,z) be minimum realizer
in {¢(y,z) | y € t}. Ast increases (as a set), £(t,z) eventually stabilizes,
but differently from ours. He wants to represent computations in which
he never needs to check his guess against all natural numbers.

Conjectures

. We conjecture that there is a constructive set theory such that if we con-

struct non-constructive limits n-lim(—) inside it, then outside the theory
the resulting limits are actually are autonomous limits a-lim(—).

. The realizability topos over a PCA A will be denoted by RT(A). We

conjecture that for every morphism f : X x N — Y in RT(A), we have
lim; f(—,t) : X — Y as a morphism of RT(a-lim(.A)). Conversely, we
conjecture that every morphism of RT(a-lim(.A)) is obtained in this way.
Remark 5.5 may be relevant.

Acknowledgment

The author acknowledges Susumu Hayashi and Mariko Yasugi for stimulating
discussion on limiting computation for discontinuous functions on R and lim-
iting realizability interpretation. He acknowledges Stefano Berardi for limiting
interpretation for classical logic. The author acknowledges Ken-etsu Fujita for
stimulating discussion on Au-calculi and for continual encouragement.

References

[

(2]
8]

H.P. Barendregt. The Lambda Calculus, Its Syntar and Semantics. North-
Holland, second edition, 1984.

Stefano Berardi. Classical logic as limit completion I&II, 2001.

A. Berarducci and M. Dezani-Ciancaglini. Infinite lambda-calculus and
types. Theoretical Computer Science, 212:29-75, 1999.

M. Felleisen and D.P. Friedman. Control operators, the SECD machine, and
the A-calculus. In M. Wirsing, editor, Formal descriptions of programming
concepts III, pages 193-217. North-Holland, 1986.

K. Fujita. On proof terms and embeddings of classical substructural logics.
Studia Logica, 61(2):199-221, 1998.

Ken-Etsu Fujita. Simple models of pur Au-calculus. Extended Abstract,
March 2001.

21

[7]
(8]
(9
[10]
[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

E. Mark Gold. Limiting recursion. Journal of Symbolic Logic, 30:28-48,
1965.

J. M. E. Hyland, P. T. Johnstone, and A. M. Pitts. Tripos theory. Math.
Proc. Cambridge Philos. Soc., 88(2):205-231, 1980.

J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Infinitary lambda
calculus. Theoretical Computer Science, 175(1):93-125, 1997.

J.R. Longley. Realizability Toposes and Language Semantics. PhD thesis,
University of Edinburgh, 1994.

M. Nakata and S. Hayashi. Limiting first order realizability 1nterpretatlon
Sci. Math. Japonicae, 2000. submitted.

Michel Parigot. Au-calculus: an algorithmic interpretation of classical nat-
ural deduction. In Logic programming and automated reasoning (St. Pe-
tersburg, 1992), pages 190-201. Springer, Berlin, 1992.

H. Schwichtenberg and S. S. Wainer. Infinite terms and recursion in higher
types. In J. Diller and G. H. Miiller, editors, & ISILC Proof Theory Sym-
posion (Proc. Internat. Summer Inst. and Logic Collog., Kiel, 1974), pages
341-364. Lecture Notes in Math., Vol. 500, Berlin, 1975. Springer. Dedi-
cated to Kurt Schiitte on the occasion of his 65th birthday, Lecture Notes
in Mathematics, Vol. 500.

R. I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in
Mathematical Logic. Springer-Verlag, Berlin, 1987.

Th. Streicher and B. Reus. Classical logic, continuation semantics and
abstract machines. J. Funct. Programming, 8(6):543-572, 1998.

H.R. Strong. Algebraically generalized recursive function theory. IBM
Journal of Research and Development, 12:465-475, 1968.

W.W. Tait. Infinitely long terms of transfinite type. In Crossley and
Dummet, editors, Formal Systems and Recursive Functions, pages 176-
185. North-Holland, 1965.

Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics,
volume 123 of Studies in Logic and the foundations of Mathematics. North-
Holland, 1988.

E. G. Wagner. Uniformly reflexive structures: On the nature of
Godelizations and relative computability. Transactions of the American
Mathematical Society, 144:1-41, 1969.

M. Yasugi, V. Brattka, and M. Washihara. @ Computability prop-
erties of Gaufiian function. available via http://www.kyoto-
su.ac.jp/~yasugi/Recent /gaussjuly19.ps, 1998. Revized version of an
article in Proc. of CCA’98,Brno.

22

