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1. INTRODUCTION

In the last two decades, much progress has been made in the study of weak frag-
ments of arithmetic. Generally speaking, the term “weak fragments” or “bounded
arithmetic” represents those theories which cannot define the totalty of the ex-
ponential function. These terminologies are justified by the result of R. Parikh
[20] dated back in 1975 which states that $\Delta \mathrm{p}$ induction cannot $\Delta_{0}$ define functions
of superpolynomial growth. As the exponential relation has $\Delta_{0}$ presentation, it
follows that the well-known theory $I\Delta 0$ cannot define exponentiation.

The second leap was made by J. Paris and A. Wilkie [21]. They investigated
properties of the theories $I\Delta 0$ and $I\Delta 0+\Omega_{1}$ , both proof theoretical and model the
oretical. Among them are the problem posed by Macintyre whether the pigeonhole
principle is provable in these theories and the provability of Matijasevic theorem
in $/\mathrm{A}\mathrm{o}$ . Especially the first problem was given apartial answer for the relativised
case by M. Ajtai [2] for which he used the forcing method and this later became
one of the main topic in the $1990\mathrm{s}$ .

The third great progress is closely connected to the theory of computational
complexity, notably to the famous $P=NP$ problem. In [8], S. Cook presented an
equational theory $PV$ which has defining axioms for all polynomial time computable
functions. There he showed that reasonings in $PV$ is translated into polynomial
size extended Frege proofs and vice versa. Inspired by this result and the traditional
Gentzen-style proof theory, S. Buss [5] introduced ahierarchy ofbounded arithmetic
theories $S_{2}\dot{.}$ and $\dot{T}_{2}$ whose provably total functions corresponds to the $\mathrm{i}$-th level of
the polynomial hierarchy.

In this exposition, we will survey model-theoretical aspects of various theories
of bounded arithmetic. The first of such studies is credited to R. Parikh, who
proved his own famous Parikh’s theorem model theoretically. Also, after the Buss’
cerebrating results, A. Wilkie showed the witnessing theorem using amodel $\mathrm{t}\mathrm{h}\infty-$

retical method (unpublished) and P. Hdjek and P. Pudlik [10] generalized Wilkie’s
proof to other theories of bounded arithmetic. At first these results seemed only
subsidiary ones and proof theoretical analysis were considered more essential for
bounded arithmetic. However recent analysis of witnessing using Herbrand type
argument revealed its deeper structure. Especially J. Avigad [3] introduced the n0-

tion of Herbrand saturation which enabled the use of essentially the same method
to show witnessing and conservation for various theories.

Finally one more progress is worth mentioning here in the model theory of weak
fragments. The problem of initial segments and end extensions was one of the
fundamental problems in stronger fragments of arithmetic. (See Kaye [16]). In the
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case of bounded arithmetic sharper notions are defined to investigate the structure
of models of arithmetic.

One of such is the notion of length initial substructure defined by J. Johannsen
[14]. He used it to show several independence results for sharply bounded arith-
metic. For example, he showed model theoreticaly the theorem by G. Takeuti [23]
stating that the theory $\mathit{9}_{2}$ cannot define the predecessor function.

On the other hand, A. Beckmann [4] considered other variations of initial segment
and he showed that end extension problems accroding to these variations are closely
related to separations of complexity classes.

This paper is organized as follows: in section 2we will prepare basic notions of
first and second order theories of bounded arithmetic and present some properties
which wiil be used in later sections. In section 3we will analyse proof ofwitnessing.
In section 4we give model theoretical arguments for connecting first and second
order theories. Finally in section 5some modifications of initial segments and end
extensions are preented and discuss about their applications.

2. PRELIMINARIES

First we w1U give some basic notions of bounded arithmetic.

2.1. Language. We will use several different languages according to the theory in
concern. The language $L0$ contains aconstant 0, function symbols $S(x)=x+1$ ,
$x+y$, $x\cdot y$ and arelation symbol $\leq$ . The language $L_{1}$ contains all symbols in $L_{0}$

together with additional function symbols $|x|=\lfloor\log_{2}(x+1)\rfloor$ , $\lfloor\cdot/2\rfloor$ and $x\# y=$
$2^{|\mathrm{r}|\cdot|y|}$ .
2.2. Complexity of formulae. Let $L$ be afixed language of arithmetic. For a
term $t$ in $L$ , quantifiers of the form $\forall x\leq t$ and $\exists x\leq t$ are called bounded. Let
$|t|$ denote the length of the binary expression of $t$. Then we call quantifiers of the
form $\forall x\leq|t|$ and $\exists x\leq|t|$ sharply bounded. (Notice that when we refer to sharply
bounded quantifiers, we assume that the function $|\cdot$ $|$ is in the language $L$ . A
formula is called bounded if all quantifiers in it are bounded and sharply bounded
if ffi quantifiers are sharply bounded.

Definition 1. The sets of $L_{1}$ formulae $\Sigma_{\dot{1}}^{b}$ and $\mathrm{n}_{\dot{1}}^{b}$ $(i\geq 0)$ are defined inductively
as follows.$\cdot$

$21. \cdot\sum_{\Sigma}.\cdot--\Pi_{0}^{b}\dot{u}\int_{+1}^{b}.heseland\mathrm{R}_{+1}^{b}a|t$ $ofshar\mathrm{p}lybundedfo|m.uloe_{1}\mathrm{f}\mathrm{l}esmallestsebdat\dot{u}\ovalbox{\tt\small REJECT} ng$

.

$(\mathrm{b})(\mathrm{a})\Sigma.\cdot’ and\mathrm{n}^{\dot{1}}\mathrm{z}_{i^{\prod_{+1}.\subseteq\Sigma^{b}}\mathrm{T}}^{\iota\iota}|$$\dot{|}+11and\Sigma\iota.\cdot,\prod_{OS},b.\subseteq|\mathrm{n}_{1+1}^{b}a|\epsilon dedund.er’ connectives$

$\wedge$, $\vee$ and sharply bounded
quantifications,

(c) $\Sigma_{\dot{|}+1}^{b}$ is closed under bounded $er\cdot sten\hslash.d$ quantifications and $\mathrm{n}_{+1}^{b}.\cdot$ is closed
under bounded universal quantifications,

(d) $|.f$ $\varphi\in\Sigma_{+1}^{b}.\cdot$ or $\varphi\in \mathrm{n}_{\dot{|}+1}^{b}$ then $\neg\varphi\in \mathrm{n}_{\dot{|}+1}^{b}$ and $\neg\varphi\in\Sigma_{\dot{|}+1}^{b}$ respectively,
(e) $\dot{l}f\varphi\in \mathrm{n}_{\dot{|}+1}^{b}$ and $\psi$ $\in\Sigma_{\dot{|}+1}^{b}$ &n $\varphi\supset\psi$ $\in\Sigma_{\dot{|}+1}^{b}$ , the same statement holds

$\dot{l}f$ we exchange $\Sigma_{\dot{|}+1}^{b}$ and $\mathrm{n}_{\dot{1}}^{\iota_{+1}}$ .
$\Sigma_{\infty}^{b}=\bigcup_{:\in\omega}\Sigma_{\dot{1}}^{b}$ .
Definition 2. The set of bounded formulae in $\hslash e$ language $L0$ is denoted by $\Delta_{0}$ .
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2.3. Axioms. We use the following axioms to define our weak theories. $P^{-}$ $\mathrm{i}\epsilon$ the
set of finite number of sentences which define symbols in $L\mathrm{p}$ . BASIC is the same as
$P^{-}$ for the language $L_{1}$ . Examples of $P^{-}$ and BASIC can be found in Htjek and
Pudl\’ak $[]$ .
Definition 3. Let $\Phi$ be a set of formulae Then

1. $\Phi- IND$ :
$\varphi(0)\wedge\forall x(\varphi(x)arrow\varphi(x+1))arrow\forall x\varphi(x)$ ,

2. $\Phi$-PIND.$\cdot$

$\varphi(0)$ A $\forall x(\varphi(\lfloor x/2\rfloor)arrow\varphi(x))arrow\forall x\varphi(x)$ ,
3. $\Phi$-LIND:

$\varphi(0)$ A $\forall x(\varphi(x)arrow\varphi(x+1))arrow\forall x\varphi(|x|)$ ,
where $\varphi\in 4\Phi$ .
Definition 4. $For:\geq 1$ the function $x\#:y$ is defined inductively as follows:

$x\# 1y$ $=|x|\cdot|y|$ ,
$x\#.\cdot+1y$ $=2^{x*y}‘$ .

The axiom $\Omega_{\dot{1}}$ states that the function $\#_{\dot{1}+1}$ is $iota/$.
2.4. Definition of theories. Now we can define various theories of bounded arith-
metic which we will treat in this exposition.

Definition 5. $I\Delta_{0}$ is the $L\mathrm{p}$ theory with aioms
\bullet $P^{-}$

$\bullet\Delta_{0}- IND$

Definition 6. 1. $For:\geq 0,\dot{\mathit{9}}_{2}$ is the $L_{1}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{o}\eta$ urih axioms
$\bullet$ BASIC
$\bullet\Sigma_{\dot{l}}^{b_{-}}PIND$

2. $For:\geq 0$ , $T_{2}^{\dot{1}}$ is the $L_{1}$ theory wiffi axioms
$\bullet$ BASIC
$\bullet\Sigma_{\dot{1}}^{b_{-}}IND$

2.5. Function Algebra and the theory $PV$. We also treat slightly different type
of theories which is based on recursion theoretic characterizations of complexity
classes.

Definition 7. A function $f$ is defined by bounded recursion on notation fro$m$

$g$ , $h_{0}$ , $h_{1}$ and $k$ if
$f(0,\vec{x})$ $=g(\vec{x})$ ,

$f(2n,\vec{x})$ $=h_{0}(n,\vec{x}, f(n,\vec{x})),\dot{\iota}fn\neq 0$,
$f(2n+,\mathrm{x}\mathrm{n})$ $=h_{1}(n,\vec{x}, f(n,\vec{x}))$ ,

provided that $f(n,\vec{x})\leq k(n,\vec{x})$ for all $n$ and $\vec{x}$.
Proposition 1. A function $f$ is polynomial time computable $|.f\dot{\iota}t$ is in the smallest
class containing $Z(x)=0$, $S(x)=x+1$, $P_{n}^{k}(x_{1}, \cdots, x_{n})=x_{k}$ , $x\# y$ and closed
under composition and bounded recursion on notation

Definition 8. Let $L_{PV}$ be the language with function symbols for each polynomial
time computable functions together $wid\iota$ a relation symbol $\leq$ . $PV$ is the $L_{PV}$ theory
with defining axioms for each polynomial time computable functions characterized
by the previous proposition plus PIND for open $L_{PV}$ formulae
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2.6. Second Order Systems. We will also consider second order systems. The
essence of considering second order systems is that second order objects (sets) are
regarded as short sequences in the sense that

$\forall i\leq|a|(:\in X\Leftrightarrow B:t(x,:)=1)$ ,

where Bit(x,:) is the $\mathrm{t}$-th bit of the binary expression of $x$ . Thus any set must
contain only afinite number of elements. Furthermore, in the second order case,
there are two types of theories according to whether we include the smash function
in our second order language.

Definition 9. Let $L_{2}k$ ffie second order language $wi\theta\iota$ the following symbols:
$\bullet$ functions of $L_{2}$ are $\theta\iota e$ functions of $L_{1}$ minus $x\# y$,
$\bullet$ $L_{2}$ has second order variables of he $fom$ $X^{p(|t|)}$ where $p$ is a monotone poly-

nomial and $t$ is a term,
$\bullet$ predicates of $L_{2}$ $are\leq and$ $x\in X^{p(|t|)}$ .

The intended meaning of $X^{p(|t|)}$ is that all elements of X are bounded by $p(|t|)$ .

Definition 10. The sets of $L_{2}$ formulae $\Sigma_{\dot{1}}^{1,b}$ and $\mathrm{n}_{\dot{1}}^{1,b}(i\geq 0)$ are defined induc-
tively as follows:

1. $\Sigma_{0}^{1.b}=\mathbb{I}_{0}^{1,b}$ is $\theta\iota e$ set of bounded formulae;
2.

$\Sigma_{\dot{|}+1}^{1,b}and,\prod_{\Pi(\mathrm{a})\Sigma_{\dot{1}}^{1,b\mathrm{i}^{1}\tau_{\subseteq\Sigma_{\dot{|}+1}^{1,b}and\Sigma_{\dot{1}}^{1,b},\Pi_{\dot{1}}^{1,b}\subseteq \mathrm{n}_{\dot{|}+1}^{b}}^{b}}}\dot{.},’ ar\mathrm{e}thesmdlestsehsat\dot{u}\ovalbox{\tt\small REJECT} 1^{\cdot},ng$

(b) $\Sigma_{\dot{|}+1}^{1,b}$ and $\mathrm{n}_{+1}^{1,b}.\cdot$ are closed under connectives $\wedge,$ $\vee and$ first order bounded
$\varphi\iota anh.fications$,

(c) $\Sigma_{\dot{|}+1}^{1.b}$ is closed under second order $uistent\dot{\iota}d$ quantifications and $\mathrm{n}_{+1}^{1,b}.\cdot$ is
closed under second $o$ rder universal quantifications,

(d) $\dot{\iota}f\varphi\in\Sigma_{l+1}^{1,b}$ or $\varphi\in \mathrm{n}_{\dot{|}+1}^{1,b}$ hen $\neg\varphi\in \mathrm{n}_{\dot{|}+1}^{1,b}$ and $\neg\varphi\in\Sigma_{+1}^{1,b}\dot{.}$ respectively,
(e) $|.f$ $\varphi\in \mathrm{n}_{\dot{|}+1}^{1,b}$ and $\psi$ $\in\Sigma_{\dot{|}+1}^{1,b}$ ffien $\varphi\supset\psi$ $\in\Sigma_{\dot{|}+1}^{1,b}$ , the same statement holds

$|.f$ we exchange $\Sigma_{\dot{|}+1}^{1,b}$ and $\mathrm{n}_{\dot{|}+1}^{1,b}$ .
Definition 11. Let $BASIC_{2}$ be afinite set of axioms which defines symbols in $L_{2}$ .
Definition 12 (Buss). For $i\geq 0$ , $U\mathrm{i}$ is the theory with the following $ax\dot{\iota}om$:

$\bullet$ BASIC2 axioms
$\bullet$ axiom stating ffiat all sets are bounded:

$\forall X^{p(|t|)}\forall x(x\in X^{p(|t|)}arrow x<p(|t|))$

$\bullet\Sigma_{\dot{1}}^{1,b_{-}}PIND$

$\bullet\Sigma_{0}^{1,b_{-}}CA$ :
$\forall x\exists X^{x}\forall y<x(y\in X^{l}rightarrow\varphi(y))$ ,

where $\varphi\in\Sigma_{0}^{1.b}$ .
$V\mathrm{i}$ is obtained from $U\mathrm{i}$ by replacing $\Sigma_{\dot{1}}^{1,b}$-PIND with $\Sigma^{1,b_{-}}.\cdot IND$ . $U_{2}.\cdot$ and $V_{2}\dot{.}$ are
obtained by adding the smash function $x\# y$ and its defining ctscioms to $U\mathrm{i}$ and $V\mathrm{i}$

respectively,
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2.7. Some Properties of Bounded Arithmetic.

Definition 13. A function $f$ is $\Sigma^{b}.\cdot$ definable in a theory $T|.f$ for sorne $\varphi\in\Sigma^{b}.\cdot$

$\bullet T\vdash\forall x\exists!y\varphi(x, y)$ ,
$\bullet \mathrm{N}\models\forall x\varphi(x, f(x))$ .

We denote by $\Sigma_{\dot{1}}^{b}(f)$ the set of $\Sigma^{b}.\cdot$ formulae in the lanugage $L_{1}\cup\{f\}$ . For a theory
$T$ we denote by $T(f)$ the theory $T$ in the language $L_{1}\cup\{f\}$ . Also for a set of
functions $F$ , $T(F)$ is the theory in the languages $L_{1}\cup\{f : f\in F\}$ together with
defining aioms for all $f\in F$ .
Proposition 2. Let $f$ be a $\Sigma_{1}^{b}$ definable function in $S_{2}^{1}$ then $S_{2}^{1}(f)$ is a conservative
dension of $S_{2}^{1}$ .
Proposition 3. $For:\geq 1$ , $S_{2}^{1}\vdash\Sigma^{b}.\cdot$ -LIND $rightarrow\Sigma^{b}.\cdot$ -PIND.

Proposition 4. $For:\geq 1,\dot{\mathit{9}}_{2}\subseteq\dot{P}_{2}\subseteq\dot{\mathit{9}}_{2}^{+1}$ and $U_{2}^{\dot{1}}$ $\subseteq V_{2^{\dot{1}}}$ $\subseteq U_{2}^{\dot{|}+1}$

2.8. Models of Arithmetic. Finally we state some basic notions and properties
of models of arithmetic.

Definition 14. Let $M$ and $N$ be models of arithmetic in the same languages and
$\Phi$ be a set offorrmulae. We say $M$ and $N$ are aelementary iffor all $\varphi\in\Phi$ Af $\models\varphi$

if and only if $N\models\varphi$ . $M$ and $N$ are elementary if for any formula truth values
coincides.

Definition 15. Let $M$ be a model of arithmetic and $N$ be a substructure of $M$ .
We say $N$ is $a$ initial segment of $M$ (denoted by $N\subseteq_{e}M$) iffor all $x\in M|.f$ there

$e$$\dot{m}tsy\in N$ such that $x<y$ then $x\in N$ .
Proposition 5. Let $M$ and $N$ be models of arithmetic with $N\subseteq_{\mathrm{C}}M$ and suppose
$\varphi(\vec{x})\in\Delta_{0}$ (or $\Sigma_{\infty}^{b}$) wiffi parameters among $\tilde{x}$. Then for any $\vec{c}\in N$ , $M\models\varphi(\vec{c})$ if
and only if $N\models\varphi(c)rightarrow$ . In words, bounded formulae are absolute between $M$ and $N$ .

3. WITNESSING IN Models OF ARITHMETIC

3.1. Parikh’s Theorem. Before we discuss about witnessing proofs, we first give
amodel theoretic proof of Parikh’s theorem, which might help understanding the
details of witnessing. Parikh’s theorem was first proved in aproof theoretical man-
ner and soon after that, much simpler model theoretic proof was established. The
theorem holds for any bounded theories while we state the case for $I\Delta_{0}$ .

1

Theorem 1(Parikh [20]). Let $\varphi\in\Delta_{0}$ and suppose $I\Delta_{0}\vdash\forall x\exists y\varphi(x,y)$ . Then
there exists a term $t(x)$ such that $I\Delta_{0}\vdash\forall x\exists y\leq t(x)\varphi(x, y)$.
Proof. For the sake of contradiction suppose for any term $t(x)$ ,

$I\Delta_{0}\psi\forall x\exists y\leq t(x)\varphi(x, y)$ .
Let $t_{1}(x),t_{2}(x)$ , $\ldots$ be an enumeration of all terms whose only free variable is $x$ .
Then for any $n\in\omega$ ,

$I\Delta_{0}+\neg\exists y\leq t_{1}(c)\varphi(c,y)+\cdots+\neg\exists y\leq t_{n}(c)\varphi(c,y)$

is consistent where $c$ is anew constant symbol. So by compactne
$I\Delta_{0}+\{\neg\exists y\leq t_{n}(c)\varphi(c,y)\}_{n\in\omega}$
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is also consistent. Let M be amodel of this theory and define
N $=$ {a $\in M$ : M $\models a\leq t_{n}(c)$ for some n $\in\omega$}.

Then as $N\subseteq_{e}M$ , N $\models I\Delta 0$ and by the definition of N, N $\models\neg\exists y\varphi(c,$ y). $\square$

3.2. Witnessing proof I. Now we shall give the first proof of witnessing $\mathrm{t}\mathrm{h}\infty-$

rem which can be appled to any $\mathrm{n}_{1}^{0}$ axiomatized theory as the argument utilizes
Herbrand’s theorem for $\mathrm{n}_{1}^{0}$ axiomatized theories.

Theorem 2(Herbrand [11]). Let $T$ be a $\mathrm{n}_{1}^{0}$ niomat$\dot{u}ed$ theories and suppose $T\vdash$

$\forall x\exists y\varphi(x,y)$ where $\varphi$ is a quantifierfree fomula. Then ffieoe this a finite number
of terms $t_{1}$ , $\ldots$ , $t_{n}$ such that

$T\vdash\forall x[\varphi(x,t_{1}(x))\vee\cdots\vee\varphi(x,t_{n}(x))]$ .
Before proving Herbrand’s theorem we need the folowing model theoretic prop-

erty of $\mathrm{n}_{1}^{0}$ axiomatized theory.

Lemma 1(Los and Tarskl). A heofyT $\dot{u}\Pi_{1}^{0}\dot{\mathrm{m}}omat\dot{u}$$ed$ $\dot{|}f$ and only $|.fl$
.

is closed
under substructures, that is, $|.fM\models T$ and $N$ is a substructure of $M$ then $N\models T$ .
Proof of Herbrand ’s theorem. The proofproceeds almost parallel to that ofParikh’s
theorem. For the sake of contradiction suppose

$T\psi\forall x[\varphi(x,t_{1}(x))\vee\cdots\vee\varphi(x,t_{n}(x))]$

for any finite set of terms $t_{1}$ , $\ldots$ , $t_{n}$ . Then
$T+\exists x[\neg\varphi(x,t_{1}(x))\wedge\cdots\wedge\neg\varphi(x,t_{n}(x))]$

is consistent. Thus by compactness
$T+\neg\varphi(c,t_{1}(c))+\neg\varphi(c,t_{2}(c))+\cdots$

is consistent where $c$ is anew constant symbol. Let $M$ be amodel of this theory
and define $N.=$ {$t(c)$ : $t$ is aterm}. Then $N$ is asubstructure of $M$. As $T$ is $\mathrm{n}_{1}^{0}$

axiomatized, $N\models T$ by Lemma 1and by construction $T\models\neg\exists y\varphi(c,y)$ . $\square$

Lemma 2. $PV$ is a $\mathrm{n}_{1}^{0}$ niomat$\dot{u}ed$ theory.

Proof. It suffices to show that the witness of PIND axiom for quantifier free formu-
lae can be computed by apolynomial time function. This can be done using binary
search. That is, suppose $\varphi(0)$ A $\neg\varphi(a)$ holds for aquantifier free bmula $\varphi$ , then
using binary search we can compute $x<a$ such that $\varphi(\lfloor a/2\rfloor)$ A $\neg\varphi(a)$ holds. Cl

Theorem 3(Witnessing theorem for $PV$). Let $\varphi(x,y)\in\Sigma_{1}^{b}$ and suppose $PV\vdash$

$\forall x\exists y\varphi(x,y)$ . Then Meooe $\dot{\varpi}sk$ a $\mu lynom\dot{|}d$ time computable function $f\in L_{PV}$

such $\hslash at$ $PV\vdash\forall x\varphi(x, f(x))$ .
$Pmf$. First notice that for $\varphi(x,y)\in \mathrm{Z}_{1}^{b}$ there exists aquantifier free formula
$\psi(x,y,z)$ $\in \mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$ that

$PV\vdash\forall x,y[\varphi(x,y)rightarrow\exists z\psi(x,y,z)]$ .
Suppose $PV\vdash\forall x\exists y\varphi(x,y)$ . By the above remark $PV\vdash\forall x\exists y\exists z\psi(x,y,z)$ . Let
$w=(y,z)$ . Then $PV\vdash\forall x\exists w\psi(x, (w)0,$ $(w)_{1})$ . Now by Theorem 2, there exists a
finite number of functions $f1$ , $\ldots$ , $f_{n}\in Lpv$ which witnesses $w$ . Since definition
by cases can be realized by apolynomial time algorithm, these functions can be
combined into asingle polynomial time computable function. 0
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3.3. Witnessing Proof II. Next we extend Theorem 3to the case for $S_{2}^{1}$ as
follows:

Theorem 4(Buss [5]). Let $\varphi\in\Sigma_{1}^{b}$ and assume that $S_{2}^{1}\vdash\forall x\exists y\varphi(x,y)$ . Then ffieoe
exists a polynomial time computable function $f$ such that $PV\vdash\forall x\varphi(x,f(x))$ .

This time asimple application of Herbrand’s theorem fails. To see this suppose
$PV\}$; $\varphi(a, f(a))$ for any $f\in L_{PV}$ . Then by compactness there exists amodel

$M\models PV+\{\neg\varphi(a, f(a)) : f\in PTIME\}.$ .

Define $M^{*}=\{f(a) :f\in PTIME\}$ . Unfortunately, we cannot prove that
$M^{*}\models S_{2}^{1}$ since $S_{2}^{1}$ is not $\mathrm{n}_{1}^{0}$ axiomatized.

So we need more complicated construction of amodel. This can be achieved by
the following chain construction. We will present amethod developed by ZmbeUa:

Theorem 5(Zambella [26]). Let $M\models PV$ be a countable model. Then there es-
ists another model $M’\models S_{2}^{1}(PV)$ such that

1. $M’$ is a $\Sigma_{1}^{b}$ elementary $oetens\dot{\iota}on$ of $M$,
2. for any open $PV$ formula $\varphi(x, y)$ there $n\cdot sh$ a $PV$-term $f(x)$ $with$ only ffie

variable $x$ such that
$M’\models\forall x\exists y\varphi(x,y)arrow\forall x\varphi(x, f(x))$ .

Proof Sketch. Let $\varphi_{1},\varphi_{2}$ , $\ldots$ be an enumeration of $\Sigma_{1}^{b}$ formulae. We shall construct
achain of models $M_{0},M_{1}$ , $\ldots$ as follows:

1. $M_{0}=M$ .
2. To construct $M_{k+1}$ add awitness for $\varphi k$ and take the closure under all poly-

nomial time computable functions.
Finally, let

$M’=\cup M_{k}k\in\omega$
.

Now we claim that $M’\models S_{2}^{1}(PV)$ . Suppose
$M’\models\varphi(0)\wedge\forall x<|a|(\varphi(x)arrow\varphi(x+1))$ .

Then we can compute awitness of $\varphi(x+1)$ using witness of $\varphi(x)$ in $M’$ . Iterating
this for $|a|$ times and we have $M’\models\varphi(|a|)$ . Thus $M’\models LIND(\varphi)$ for any $\Sigma_{1}^{b}$

formula in the language $L_{PV}$ . Also the second step in the construction of $M’$ can
be done so that $M_{k+1}$ is $\Sigma_{\dot{1}}^{b}$ elementary $\mathrm{o}_{\iota}\mathrm{v}\mathrm{e}\mathrm{r}M_{k}$ for each $k$ . So condition 1is
satisfied. Furthermore, condition 2is guaranteed since we added witnesses for aU
$\varphi\in\Sigma_{1}^{b}$ in $M’$ . $\square$

Now Theorem 5implies that $S_{2}^{1}$ is $\Sigma_{1}^{b}$ conservative over PV. So $S_{2}^{1}$ and PV have
the same $\Sigma_{1}^{b}$ definable functions.

3.4. Herbrand Saturated Models. The above witnessing arguments are simpl-
fied by using Herbrand saturated models, anew method developed by J. Avigad
[3]. Here we will illustrate how the $\forall\exists\Sigma_{1}^{b}$ conservation of $S_{2}^{1}$ over $PV$ is proved.

Definition 16. Let $L$ be a language of arithmetic and $M$ a $L$-structure. Then
define

$L(M)=L\cup$ { $c$ : constant for each element in $M$}.
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A type with parametes ftvrn $M$ is a set of sentences in and extension of $L(M)$

by finitely many constants. Let $\Gamma$ be a type $wih$ parameters from M. Then $\Gamma$ is
realized in $M|.f\hslash eooe$ is an interpretation of additional constants in $M$ making every
sentence in $\Gamma$ true. $\Gamma$ is universal if every sentence in $\Gamma$ is universal. Ihrffiemore,
$\Gamma$ is principal $|.f\Gamma$ consists of a single sentence.

Definition 17, Let $M$ be a $L$-structure. $M$ is Herbrand saturated $|.f$ for any prin-
$\dot{\alpha p}al$ universal type $\dot{\iota}f\Gamma$ is consistent with the universal diagram of $M$,that is all
true universal sentences in $M$, then $\Gamma$ is realized in $M$ .
Theorem 6. Every consistent unversed theory $T$ has an Herbrand saturated model.

Proof Sketch. Let L. $=L\cup\{c_{1},c_{2},$\ldots } and $\theta_{1}(\vec{x_{1}},\vec{y_{1}}),\theta_{2}(\vec{x_{2}},\vec{y_{2}})$ , \ldots be an enu-
meration of all quantifier free $L_{\omega}$ formulae. Define

$S_{0}$ $=\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{a}\mathrm{l}$ axioms of $T$,

$S_{+1}.\cdot$ $=\{$

$S_{\dot{1}}\cup\{\forall y_{\dot{|}+1}^{\sim}\theta_{\dot{|}+1}(\tilde{c,}y_{+1}^{arrow}.\cdot)\}$ , if it is consistent,
$S_{\dot{1}}$ , otherwise.

Then $S_{\omega}= \bigcup_{:\epsilon\omega}S_{\dot{l}}$ is consistent. Let $N$ be amodel of $S_{\omega}$ and define
$M=\{t^{N} : t\in L_{\omega}\}$ .

Then $M$ is Herbrand saturated and $M\models T$ . $\square$

Theorem 7. Let $M$ be an Herbrand saturated $L$ structure and suppose that $M\models$

$\forall\overline{x}\exists\tilde{y}\varphi(\tilde{x},\tilde{y}|\tilde{a})$ where $\varphi$ is a quantifier formula and $\vec{a}\in \mathrm{A}\mathrm{f}$. Then $\hslash eooe$ exists an
universal fomula $\psi(\tilde{z},\vec{w})$ and terms $\vec{t_{1}}(Z,\delta)$ , $\ldots$ , $tk(\vec{z},\vec{w})$ such that

$M\models\exists\Phi\psi(\tilde{a},\vec{w})$

and
$\models\psi(\tilde{z},\vec{w})arrow\varphi(\tilde{x},\vec{t_{1}}(\tilde{x},\tilde{z},\Phi,z\urcorner)$ $\vee\cdots\vee\varphi(\vec{x},\tilde{t_{k}}(\vec{x}, Z,\emptyset, z\gamma)$ .

Pmof. Direct application of Herbrand’s theorem. Cl

Theorem 8. Let $T_{2}$ be a universal theory and $T_{1}$ be a theory in the language of $T_{2}$ .
Suppose every Herbrand saturated $mdd$ of $T_{2}$ is $dso$ a model of $T_{1}$ . Then every

$\forall\exists$ sentence provable in $T_{1}$ is also provable in $T_{2}$ .
Pmof. Suppose every Herbrand saturated model of $T_{2}$ is amodel of $T_{1}$ . Let $\varphi(\vec{x},\overline{y})$

be aquantifier free formula in the language of $T_{2}$ such that $T_{2}\psi\forall\vec{x}\exists\vec{y}\varphi(\vec{x},\vec{y})$ . We
claim that $T_{1}\psi\forall\tilde{x}\exists\tilde{y}\varphi(\tilde{x},\vec{y})$ . Assume that $T_{2}\cup\{\forall\tilde{y}\neg\varphi(\vec{d,}\hat{y})\}$ is consistent where $\tilde{d}$

is new constants. By Theorem 6, there is an Herbrand saturated model $M$ of this
theory. So the reduct of $M$ to the language of $T_{2}$ is amodel of $T_{1}\cup\{\forall\vec{y}\urcorner\varphi(\vec{d,}\tilde{y})\}$.
Bu assumption this is also amodel of $T_{1}$ . $\square$

Now we will prove our conservation result

Theorem 9. $S_{2}^{1}$ is conservative over $PV$ for $\forall\exists\Sigma_{1}^{b}$ sentences.

Proof. Let $M\models PV$ be an Herbrand saturated model. Note that such amodel
exists since $PV$ is an universal theory. By Theorem 8it suffices to show that
$M\models\Sigma_{1}^{b}$-LIND. First note that for any $\Sigma_{1}^{b}$ formula $\psi(x,\overline{z})$ there is aquantifier
formula $\varphi(x,y,\vec{z})$ such that

$PV\vdash\psi(\tilde{x}, z]$ $rightarrow\exists y\varphi(x,y,\vec{z})$ .
Suppose $M$ satisfie
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$\bullet$ $\exists y\varphi(0,y,\vec{a})$ and
$\bullet$ $\forall x(\exists y\varphi(x,y,\vec{a})arrow\exists y\varphi(x+1, y,a\urcorner)$ .

As the second formula is equivalent to
$\forall x,y\exists y’(\varphi(x,y,\vec{a})arrow\varphi(x+1,y’,\vec{a}))$ ,

by Theorem 7we have $PV$ functions $f$ and $g$ such that
$\bullet$

$\exists y\varphi(0,f(\vec{a},\vec{b_{1}},\overline{a}))$ and
$\bullet$

$\forall x\forall y[\varphi(x, y,\vec{a})arrow\varphi(x+1,g(x,y,\vec{a},\vec{b_{2}}),\tilde{a})]$ .
Now using bounded recursion on notation from $f$ and 9yields afunction which
computes the witness of $\forall x\exists y\varphi(x,y,\tilde{a})$ . Cl

4. TRANSLATIONS BETWEEN FIRST AND $\mathrm{s}_{\mathrm{E}\mathrm{C}\mathrm{O}\mathrm{N}\mathrm{D}}$ $0_{\mathrm{R}\mathrm{D}\mathrm{E}\mathrm{R}}$ THEORIES

4.1. RSUV isomorphism. The RSUV isomorphism clarifies the relation between
first order theories and second order theories without the smash function. Intu-
itively, large numbers of first order world is translated by afinite set and vice
versa. More formally, the theorem is stated as follows:

Theorem 10 (Takeuti [25]). There are translations beteueen first onler bounded
formulae and second order bounded formulae

$A\in\Sigma_{\infty}^{1,b}\mapsto A^{1}\in\Sigma_{\infty}^{b}$ and $B\in\Sigma_{\infty}^{b}\mapsto B^{2}\in\Sigma_{\infty}^{1,b}$

such that
1. if $S_{2}^{i}\vdash B$ then $V_{1}^{i}\vdash B^{2}$ ,
2. if $V\mathrm{i}$ $\vdash A$ then $S_{2}\dot{.}\vdash A^{1}$ ,
3. $S_{2}\dot{.}\vdash B\equiv(B^{2})^{1}$ , and
4. $V\mathrm{i}$ $\vdash A\equiv(A^{1})^{2}$ .
Rather than giving aformal proof of RSUV isomorphism, we shall illustrate how

afirst order model of $\dot{\mathit{9}}_{2}$ is translated to asecond order model of $V_{1}^{i}$ and vice versa.
This method is due to Krajicek [17].

First let $M\models\dot{\mathit{9}}_{2}$ . The first order part of our second order model is
$Log(M)=\{|x| : x\in \mathrm{A}\mathrm{f}\}$ .

For the second order part, consider pairs of elements of $M$, $(\alpha, |a|)$ . We $\mathrm{w}\mathrm{i}\mathrm{U}$ regard
this as asecond order object $A$ by the following correspondence;

$\forall x<|a|(x\in A\Leftrightarrow Bit(a,x)=1)$ .
To avoid duplication, define

$(\alpha, |a|)\sim(\beta, |b|)\Leftrightarrow|a|=|b|\wedge\forall x<|a|(Bit(a, x)=Bii(b,x))$ .
Now define $S=\{(\alpha, |a|) : \alpha, a\in M\}$ and $S^{*}=S/\sim$ . Then

$(Log(M), S^{*})\models V\mathrm{i}$ .
Conversely, take

$(M, S)\models \mathrm{a}V\mathrm{i}\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{v}\mathrm{e}$

time consider
$M=\mathrm{f}\{(a, \alpha) : a\in M,\alpha\in S\}\square$

.
By asimilar argument as above, we obtain amodel of $V\mathrm{i}$ .

We also have similar correspondences between other first and second order the
ories. For example, F. Ferreira defined astring language theory $Th-FO$. This
theory have all $AC^{0}$ computable functions together with their defining axioms that
utilizes adecriptive complexity characterization developed by N. Immerman [12].
Then he showed that
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Theorem 11 (Ferreira [9]). Ilb. and Th-FO are isomorphic via RSUV isomor-
phism.

4.2. Restricted Exponentiation. Now we talk about an isomorphism between
first order bounded arithmetic and second order theories with the smash function.
So the question is: which theory of first order bounded arithmetic can translate
reasonings in second order thories like $U_{2}^{\dot{1}}$ or $V_{2^{\dot{1}}}$?We shall answer this question by
allowing restricted use of exponentiation function in certain first order theories.

Definition 18. For a bounded arithmetic theory $,$ &set $T+1- Exp$ consists of all
$\Sigma_{\infty}^{b}$ formulae $\varphi(a)$ such that there is a term $t(a)$ for $wh\dot{\iota}chT$ proves the implication

$t(a)<|c|arrow\varphi(a)$

where c is free variable not occurring in $t(a)$ or $\varphi$ .
Theorem 12 (Krajfcek [17]). Let $\varphi(a)\in\Sigma_{\infty}^{b}$ . Then

$\varphi(a)\in S_{2}^{t}+1- Exp$ iff $\dot{\psi}_{2}\vdash\varphi(a)$ .
The same relation holds for $R\dot{;}$ and $U_{2}^{l}$ in place of $\dot{\mathit{9}}_{2}$ and $V_{2}.\cdot$ respectively.

Proof Assume that $V_{2}^{\dot{1}}$ $\psi\varphi(a)$ . Then there is amodel

$(K,S)\models V_{2}+\neg\varphi(a)$ .
The same construction as in the proof of Theorem 10 yields amodel $M\models\dot{\mathit{9}}_{2}$ with
$Log(M)=K$. Assume

$\dot{\mathit{9}}_{2}\vdash t(a)<carrow\varphi(a)$.
Since $(K,S)\models V_{2}^{\dot{1}}$ , $t(m)\in K$, so $2^{t(m)}\in M$. Hence $\varphi(m)$ holds in $M$. As $K$ is
an initial segment of $M$ and $\varphi$ is abounded formula, it must be that $K\models\varphi(m)$ ,
which is acontradiction.

For the converse implcation, assume that $\varphi(a)\not\in\dot{\mathit{9}}_{2}+1-Exp$. By compactness
we have amodel $M\models\dot{\mathit{9}}_{2}$ with acut $I\subseteq_{\mathrm{G}}M$ such that

1. $I\models\dot{\mathit{9}}_{2}$ ,
2. $\exists c\in M\backslash Nb\in I,M\models 2^{b}<c$.

Let

S $=$ { $\alpha\subseteq I$ : $\alpha$ is coded by some a $\in \mathrm{A}\mathrm{f}$, M $\models a\leq c$}.

Now it is readily proved that (I,$S)\models V_{2}^{\dot{1}}$ . $\square$

Problem 1. Which second $\mathit{0}$ rder bounded arithmetic is equivalent to the theory
$AC^{0}CA+1- Exp$ in he sense of previous $theo\iota\epsilon m_{l}$ where $AC^{0}CA$ is $\hslash e$ theory
eryith axioms for all $AC^{0}$ definable functions together with polynomial induction for
$\Sigma_{0}^{b}$ formedae?

In the next section we will use asimilar translation of models to show that
certain initial segment of amodel of $S_{2}^{1}$ can be used to constract asecond order
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5. SUBSTRUCTURES OF Models OF BOUNDED ARITHMETIC

Now we will consider much deeper analysis of models of bounded arithmetic.
One of fundamental problems in $u\mathrm{d}\mathrm{a}\mathrm{a}\mathrm{e}\mathrm{i}\mathrm{c}\mathrm{a}1^{n}$ theories of models of arithmetic like
Peano arithmetic concerned about amodel and its initial segment. For example
there are problems like

1. for amodel $M\models PA$ does there exist $N\subseteq_{e}M$ such that $N\models PA$?

2. for amodel $M\models PA$ does there exist $M\subseteq_{e}N$ such that $N\models PA$?

In the context of bounded arithmetic, these questions are almost nonsense since
we talk only about bounded formulae in our theories while bounded formulae are
absolute between amodel and its initial segment. Thus we need asharper notion
of initial segment to argue in the case for bounded arithmetic.

In this section we introduce two attempts for defining such notions of substruc-
tures.

5.1. Length Initial Substructures. The first notion, length initial substructure,
is introduced by J. Johannsen in order to give amodel theoretical proof of the
following theorem:

Theorem 13 (Takeuti [23]). $\mathit{9}_{2}\psi\forall x(x=0\vee\exists y(y=Sx))$ .
He also proved similar independence results concerning systems $\mathit{9}_{2}$ and the fol-

lowing theories:

Definition 19. $R_{2}^{0}$ is the theory obtained ffom $\mathit{9}_{2}$ by adding subtraction and $MSP$

function defined by
$MSP(x,0)$ $=x$,

$MSP(x,i+1)$ $=\lfloor MSP(x,:)/2\rfloor$ .
$L_{2}^{0}$ is obtained ffom $\mathit{9}_{2}$ by replacing $\Sigma_{0}^{b}$ -PIND by $\Sigma_{0}^{b}$ -LIND.

Theorem 14 (Johannsen [14],Tada and Tatsuta [22]). For $k\in\omega$ , $R_{2}^{0}$ proves
$\forall x\exists y(y=\lfloor x/k\rfloor)$

if and only if $k$ is a power of 2.

Theorem 15 (Johannsen [13]). $L_{2}^{0}\psi$ $\Sigma_{0}^{b}$ -PIND.

We first introduce the key notion to prove above three theorems in asingle
method.

Definition 20 (Johannsen [13]). Let $M$ be a model of bounded arithmetic and $N$

a substr ucture of M. $N$ is called a length initial substructure of $M$, denoted by
$N\subseteq\iota M$ , if

$\forall x\in M\exists y\in N(x\leq|y|arrow x\in N)$ .
There is aclose similarity between length initial substructures and initial seg-

ments.

Proposition 6. Let $N\subseteq\iota M$ and $\varphi\in\Sigma_{0}^{b}$ . Then for all $\vec{a}\in N$,
$N\models\varphi(\vec{a})$ if and only if $M\models\varphi(\vec{a})$ .

Proof. By induction on the complexity of $\varphi$ . $\square$

Note that $L_{2}^{0}$ is a $\forall\Sigma_{0}^{b}$ axiomatized theory and also
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Proposition 7. $R_{2}^{0}$ is $\forall\Sigma_{0}^{b}$ aiomatized.

Proof. $R_{2}^{0}$ we can be axiomatized by $\Sigma_{0}^{b}$-LIND since we have subtraction and $MSP$
function. $\square$

Thus if for example $M\models S_{2}^{1}$ and $N$ CJ $M$ then it must be that $N\models R_{2}^{0}$ . So
to show that these theories it suffices to construct alength initial substructure in
which the predecessor or division cannot be defined:
Lemma 3. For some $M\models S_{2}^{1}$ heoe $\dot{\varpi}st$ length initial substructure $N_{1}$ and $N_{2}$ of
$M$ such mat

1. $N_{1}\models\forall x\exists y(x=y+1)$ ,
2. $N_{2}\models\forall x\exists y(y=\lfloor x/k\rfloor)$ .

Proof. Take $M\models S_{2}^{1}$ to be such that $\log(M)\neq M$ and $\log(M)$ is closed under $\#$ .
Define

$N_{1}$ $=$ {$a\in M$ : count(a) $\leq||b||$ for some $b\in \mathrm{A}\mathrm{f}$ } ,
$N_{2}$ $=$ { $a\in \mathrm{A}\mathrm{f}$ : $blk(a)\leq||b||$ for some $b\in M$},

where
count(a) $=\#:<|a|(B:t(a,|.)=1)$ ,

$blk(a)$ $=\#:<|a|(Bit(a,:)\neq Bit(a,:+1)$).
Furthermore, $N_{1}$ satisfies $\mathit{9}_{2}$ . $\square$

On the other hand,

Lemma 4. Let $M\models S_{2}^{1}+\Omega_{2}+\neg Exp$ . Then there is a length initial substructure
$N$ of $M$ wh.d does not satisfy $\mathit{9}_{2}$ .
Proof. For $x\in M$ and $n\in \mathrm{N}$ define

$X\# 0$ $=1$ ,
$X\# 1$ $=x$,

$X\#(n+1)$ $=x\#\# nx$ .
Choose alarge $a\in M$ and define

$N=$ {$b\in M$ : $b^{*n}<a$ for aU $n\in \mathrm{N}$} $\cup$ {$b\in M$ : $b>n$ . $a$ for all $n\in \mathrm{N}$}.
$\square$

Problem 2. Let $p,q\in\omega$ be relatively prime. Show that
$\mathfrak{B}$ $+\forall x\exists y(y=\lfloor x/p\rfloor)\psi\forall x\exists y(y=\lfloor x/q\rfloor)$ .

Theorem 14 can be extended to aindependence for second order theory $T^{pol}$ .
Definition 21. $\Sigma^{1,w}.\cdot$ and $\mathrm{n}_{\dot{1}}^{1,w}$ are defined inductively as follows:

1. $\Sigma_{0}^{1.w}=\Pi_{0}^{1,w}\dot{u}$ the set of sharlly bounded fomula $m\cdot A$ possibly second order
free variables.

2. $\Sigma_{\dot{1}}^{1,w}\subseteq \mathrm{n}_{\dot{|}\dotplus}^{1w_{1}}$ and $\mathrm{n}_{\dot{1}}^{1,w}\subseteq\Sigma_{\dot{|}+1}^{1,w}$ .
3. $\Sigma_{\dot{1}}^{1,w}$ and $\mathrm{n}_{\dot{1}}^{1,w}a\tau \mathrm{e}$ closed under $conjunct\dot{\iota}on$ disjunction andfirst orvler sharply

bounded quantification.
4 $\Sigma_{\dot{|}+1}^{1,w}$ is closed under second $\mathit{0}$ rder $ex\dot{|}stentid$ quantification $\exists X^{p(|t|)}$ and $\mathrm{n}_{+1}^{1,w}.\cdot$

is closed under second order universal quantification $\forall X^{p(|t|)}$ .
Let

$\Sigma_{\infty}^{1,w}=.\bigcup_{1\in\omega}\Sigma_{\dot{1}}^{1,w}$
.
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Definition 22 (Clote and Takeuti [7]). $T^{pol}$ is the theory in the language of $R_{2}^{0}$

extended by second order variables which consists of the following axioms:
$\bullet$ BASIC aioms
$\bullet$ bounding sets axiom: $\forall X^{p(|t|)}(x\in Xarrow x\leq p(|t|))$

$\bullet$
$\Sigma_{1}^{1,w}$ -LIND

$T^{pol+}$ is the theory $T^{pol}$ extended by the binary counting $fimct\dot{\iota}on$

cmnt$(x)=\#${$:<|x|$ : Bit{ax, $i)=1$ }.
Lemma 5(Kuroda [19]). Let $M\models S_{2}^{1}$ and $N\subseteq\iota$.M. Then there $en\cdot sk$ $S\subseteq P(N)$

such that $(M, S)\models T^{pol+}$ .
To prove the lemma, we use asimilar translation as used in the previous section.

Definition 23. The $TS$-translation is the mapping of a $\Sigma_{\infty}^{1,w}$ formula $\varphi$ into a $\Sigma_{\infty}^{b}$

fomula $\varphi^{TS}$ defined inductively as follows:
$\bullet$ if $\varphi$ is a first $o$ rder atomic formula then $\varphi^{TS}\equiv\varphi$ .
$\bullet$ if $\varphi\equiv x\in X^{p(|t|)}$ then $\varphi^{TS}\equiv$ ($x\leq p(|t|)\wedge$ Bit{ax, $x$) $=1)$ .
$\bullet$ if $\varphi\equiv\varphi_{0}\wedge\varphi_{1}$ , $\varphi_{0}\vee\varphi_{1}$ or $\neg\varphi 0$ , then $\varphi^{TS}\equiv\varphi 0^{TS}\wedge\varphi_{1}^{TS},\varphi 0^{TS}\vee\varphi_{1}^{TS}$ or

$\neg\varphi 0^{TS}$ respectively.
$\bullet$ if $\varphi\equiv\forall x\leq|t|\varphi \mathrm{o}(x)$ or $\exists x\leq|t|\varphi \mathrm{o}(x)$ then $\varphi^{TS}\equiv\forall x\leq|t|\varphi_{0}(x)^{TS}$ or

$\exists x\leq|t|\varphi \mathrm{o}(x)^{TS}$ respectively.
$\bullet$ if $\varphi\equiv\forall X^{p(|t|)}\varphi \mathrm{o}(X)$ or $\exists X^{p(|t|)}\varphi_{0}(X)$ then $\varphi^{TS}\equiv\forall x\leq 2^{p(|t|)}\varphi_{0}(x)^{TS}$ or

$\exists x\leq 2^{p(|t|)}\varphi_{0}(x)^{TS}$ respectively.

Proof of Lemma 5. Let M and N be as above. We say that a $\in M$ is an $N$-code if
there exists X $\subseteq N$ such that

$\forall i<|a|$ (Bii(a, i) $=1rightarrow i\in X$).

Let
$S_{N}:=\{\langle p(|b|)$ , $a)$ : $p\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}\mathrm{l}a\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{n}N- \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{e}’ b\in N\mathrm{a}\mathrm{n}\mathrm{d}\}$ .

Define the equivalence relation on $S_{N}$ by
$(p(|b_{1}|)$ , $a_{1}\rangle=_{2}\{p(|b_{2}|), a_{2}\}$

$\Leftrightarrow p(|b_{1}|)=p(|b_{2}|)\wedge\forall i<p(|b_{1}|)(Bit(a_{1},i)=Bit(a_{2},i))$.
Finally let $S_{N}^{*}:=S_{N}/=_{2}$ . Note that each element in $S_{N}^{*}$ can be identified with a
finite subset of $N$ in the sense of $M$ in anatural way. Thus we may consider $S_{N}^{*}$

as asubset of P.(N).
By induction on the complexity of $\varphi\in$

.
$\Sigma_{\infty}^{1,w}$ we shall show that $(N, S_{N}^{*})\models$

$\varphi(A^{\mathrm{p}(|t|)})$ if and only if $M\models\varphi^{TS}(a_{A})$ , with asuitable assignment $A\mapsto a_{A}$ fro$\mathrm{m}$

$S_{N}^{*}$ into $M$ . For the base case, it suffices to consider the case where $\varphi(A^{p(|t|)})\equiv$

$c\in A^{p(|t|)}$ . Let ($p(|t|),$ $a\rangle$ represent $A^{p(|t|)}\in S_{N}^{*}$ . By putting $a_{A}=a$ we have
$(N, S_{N}^{*})\models c\in A^{p(|t|)}$ iff $M\models$ ($c\leq p(|t|)$ A $Bit(a_{A},$ $c)=1$).

For the induction step, the case where the outermost connective is either alogical
connective or afirst order sharply bounded quantifier is trivial. Let $(N, S_{N}^{*})\models$

$\exists X^{p(|t|)}\varphi(X^{\mathrm{p}(|t|)})$ . Then $(N, S_{N}^{*})\models\varphi(A^{p(|t|)})$ for some $A^{p(|t|)}\in S_{N}^{*}$ . By the induc-
tive hypothesis, we have $M\models(\varphi^{TS}(a_{A})\wedge a_{A}\leq 2^{p(|t|)})$ for the same $a_{A}$ as above.
Thus Af $\models\exists x\leq 2^{p(|\ell|)}\varphi^{TS}(x)$ . The case for second order universal quantifier is
treated similarly, thus we have proved the claim
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Now we claim that (N. $S_{N}^{*}$ ) $\models T^{pol+}$ . First note that $N\models BASIC^{+}$ . So
$(N, S_{N}^{*})\models BASIC^{+}$ . By definition of $S_{N}^{*}$ it is also straightforward to see that

$(N,S_{N}^{*})\models\forall X^{p(|t|)}\forall x(x\in X^{p(|t|)}arrow x\leq p(|t|))$ .
For $\Sigma_{1}^{1,w}$-LIND we consider the equivalent scheme

$LIND_{a}(\varphi)$ $\equiv\varphi(0)\wedge\forall x<|a|(\varphi(x)arrow\varphi(x+1))arrow\varphi(|a|)$ .
Assume $(N,S_{N}^{\mathrm{r}})\models\neg LIND_{a}(\varphi)$ for some $\varphi\in\Sigma_{1}^{1,w}$ . Note that $\neg LIND_{a}(\varphi)$ $\in$

$\Sigma_{\infty}^{1,w}$ . So applying $\mathrm{T}\mathrm{S}$-translation yields $(\neg LIND_{a}(\varphi))^{TS}$ with $M\models(\urcorner LIND_{a}(\varphi))^{TS}$

It is easy to see that $(\neg LIND_{a}(\varphi))^{TS}\equiv\neg LIND_{a}(\varphi^{TS})$ . Thus $M\models\neg LIND_{a}(\varphi^{TS})$

and as $\varphi^{TS}\in\Sigma_{1}^{b}$ , this contradicts to the assumption that $M\models S_{2}^{1}$ . $\square$

Thus we have

Theorem 16 (Kuroda [18]). $T^{p_{\Phi}l+}$ cannot define the Junction $\lfloor x/k\rfloor$ for k not $a$

power of 2.

This improves the result by Takeuti [24].
Concerning length initial substructures, following questions are of interest:

Problem 3. Find necessary and sufficient conditions for
1. for all $M\models \mathfrak{B}$ there is $N\models S_{2}^{1}$ such that $M\subseteq\iota N$,
2. for all $M\models S_{2}^{1}$ there is $N\models S_{2}^{1}$ such that $M\subseteq\iota N$,
3. for all $M\models R_{2}^{0}$ there is $N\models T_{2}^{1}$ such mat $M\subseteq\iota N$,

Note that the unconditional positive solution to the first problem implies the
first order conservation of $T^{pd}$ over oe.
5.2. Weak end extension. The second variation is motivated by s0-called end
extension problem. An example of bounded arithmetic version is the following:

Problem 4. Are there models $ofI\Delta 0+B\Sigma_{1}$ without proper end-dension to models
of $I\Delta_{0}$ ?

Z. Adamowicz found apartial solution to this problem.

Theorem 17 (Adamowicz [1]). There $n\cdot sk$ $a\square _{1}$ sentence $\tau$ such that there is $a$

model $ofI\Delta_{0}+\Omega_{1}+\tau+B\Sigma_{1}$ without proper end-densions to models $ofI\Delta_{0}+\Omega_{1}+\tau$ .
Turning our attension to the model of Buss like systems, Bedanann defined the

following weaker notions of end extensions.

Definition 24 (Beckmann [4]). Let M be a model of bounded arithmetic.
1. A model M is $0^{b}$-unincreasable with respect to $T|.f$ there are no $\Sigma_{0}^{b}$ elementary

$oetens\dot{\iota}on$ to models of T.
2. Let M be a substructure of N. Then M is $log$-proper $l.f\log(M)\neq\log(N)$ .
3. M is a weak end extension of N, denoted by $M\subseteq_{e}^{w}N|.f$ $M\subseteq_{\mathrm{G}}N$ and

$\log(M)\subseteq_{\mathrm{G}}\log(N)$ .
4. M is $1^{b}$-closed wiffi respect to T|.f for dlN $\models T$ whenever N is an $\Sigma_{0}^{b}$

elementary extension of M Men N is $\Sigma_{1}^{b}$ elementary.

The following implication is an direct consequence from the definition.

Proposition 8. If $M$ is $0^{b}$ -unincreasable with respect to $T$ then $M$ is $1^{b}$ -closed
with respect to $T$ and also $M$ does not have weak end extension to models of $T$ .
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More interesting is the following:

Definition 25. Let $Bl\Sigma_{1}^{b}$ denote the foll owing bounded collection schema:
$\forall x\leq|t|\exists y\varphi(x,y)arrow\exists z\forall x\leq|t|\exists y\leq z\varphi(x,y)$,

where $\varphi\in\Sigma_{1}^{b}$ .
Theorem 18 (Buss [6]). $For:\geq 1,\dot{\mathit{9}}_{2}+BL\Sigma_{1}^{b}$ is $\forall\Pi_{1}^{b}$ conservative over $\dot{\mathit{9}}_{2}$ .
Theorem 19 (Beckmann [4]). Let $1\leq i\leq j$ . Then the follow $ing$ conditions are
equivalent:

1. $T_{2}^{j}$ is not $\forall\Pi_{1}^{b}$ conservative over $\dot{\mathit{9}}_{2}$ ,
2. there is a model $M$ of $\dot{\mathit{9}}_{2}$ which is $log$-proper and $0^{b}$-unincreasable with respect

to $T_{2}^{\mathrm{j}}$ ,
3. there is a model $M$ of $\dot{\mathit{9}}_{2}+\Omega_{1}^{nst}$ which is $1^{b_{-}}dosed\tau\dot{m}\hslash$ respect to $T_{2}^{j}$ , where

$\Omega_{1}^{nst}\equiv\exists c[_{k\in\omega}\wedge(k<c)$ A $\forall x\exists y(||x||\cdot c=||y||)]$ ,

4. there is a countable model $M$ of $\dot{\mathit{9}}_{2}+BL\Sigma_{1}^{b}$ wiffiout weak end densions to
models of $T_{2}^{j}$ .
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