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1. INTRODUCTION

In the last two decades, much progress has been made in the study of weak frag-
ments of arithmetic. Generally speaking, the term “weak fragments” or “bounded
arithmetic” represents those theories which cannot define the totality of the ex-
ponential function. These terminologies are justified by the result of R. Parikh
[20] dated back in 1975 which states that A induction cannot Ay define functions
of superpolynomial growth. As the exponential relation has Ao presentation, it
follows that the well-known theory IA¢ cannot define exponentiation.

The second leap was made by J. Paris and A. Wilkie [21]. They investigated
properties of the theories IAg and IAg +;, both proof theoretical and model the-
oretical. Among them are the problem posed by Macintyre whether the pigeonhole
principle is provable in these theories and the provability of Matijasevi¢ theorem
in IAg. Especially the first problem was given a partial answer for the relativised
case by M. Ajtai [2] for which he used the forcing method and this later became
one of the main topic in the 1990s.

The third great progress is closely connected to the theory of computational
complexity, notably to the famous P = NP problem. In (8], S. Cook presented an
equational theory PV which has defining axioms for all polynomial time computable
functions. There he showed that reasonings in PV is translated into polynomial
size extended Frege proofs and vice versa. Inspired by this result and the traditional
Gentzen-style proof theory, S. Buss [5] introduced a hierarchy of bounded arithmetic
theories Si and T§ whose provably total functions corresponds to the i-th level of
the polynomial hierarchy.

In this exposition, we will survey model-theoretical aspects of various theories
of bounded arithmetic. The first of such studies is credited to R. Parikh, who
proved his own famous Parikh’s theorem model theoretically. Also, after the Buss’
cerebrating results, A. Wilkie showed the witnessing theorem using a model theo-
retical method (unpublished) and P. Héjek and P. Pudlak [10] generalized Wilkie’s
proof to other theories of bounded arithmetic. At first these results seemed only
subsidiary ones and proof theoretical analysis were considered more essential for
bounded arithmetic. However recent analysis of witnessing using Herbrand type
argument revealed its deeper structure. Especially J. Avigad [3] introduced the no-
tion of Herbrand saturation which enabled the use of essentially the same method
to show witnessing and conservation for various theories.

Finally one more progress is worth mentioning here in the model theory of weak
fragments. The problem of initial segments and end extensions was one of the
fundamental problems in stronger fragments of arithmetic. (See Kaye [16]). In the
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case of bounded arithmetic sharper notions are defined to investigate the structure
of models of arithmetic.

One of such is the notion of length initial substructure defined by J. Johannsen
(14]. He used it to show several independence results for sharply bounded arith-
metic. For example, he showed model theoretically the theorem by G. Takeuti [23]
stating that the theory S9 cannot define the predecessor function.

On the other hand, A. Beckmann [4] considered other variations of initial segment
and he showed that end extension problems accroding to these variations are closely
related to separations of complexity classes.

This paper is organized as follows: in section 2 we will prepare basic notions of
first and second order theories of bounded arithmetic and present some properties
which wiil be used in later sections. In section 3 we will analyse proof of witnessing.
In section 4 we give model theoretical arguments for connecting first and second
order theories. Finally in section 5 some modifications of initial segments and end
extensions are presented and discuss about their applications.

2. PRELIMINARIES

First we will give some basic notions of bounded arithmetic.

2.1. Language. We will use several different languages according to the theory in
concern. The language Lo contains a constant 0, function symbols S(z) = z + 1,
z + y, -y and a relation symbol <. The language L; contains all symbols in Lo
t?gleltlller with additional function symbols |z| = |logs(z + 1)], |-/2] and z#y =
2=,

2.2. Complexity of formulae. Let L be a fixed language of arithmetic. For a
term ¢ in L, quantifiers of the form Vz < ¢ and 3z < ¢ are called bounded. Let
|t| denote the length of the binary expression of t. Then we call quantifiers of the
form Vz < |t| and 3z < |t| sharply bounded. (Notice that when we refer to sharply
bounded quantifiers, we assume that the function | - | is in the language L. A
formula is called bounded if all quantifiers in it are bounded and sharply bounded
if all quantifiers are sharply bounded.

Definition 1. The sets of L; formulae T2 and I (i > 0) are defined inductively
as follows
8 = II§ is the set of sharply bounded formulae;
1 and II%, ; are the smallest sets satisfying
C T Ry and THIBC s
(b) 2s+1 and II3,, are closed under connectives A, V and sharply bounded
quantifications,
(c) £b,, is closed under bounded ezistential quantifications and IT3, ; is closed
under bounded universal quantifications,
(d) ifpe 8'_‘_1 orp el then ~p € %, and ~p € B!, respectively,
(e) fp €Il and p € XY, then ¢ D ¢ € £, the same statement holds
if we ezchange £2,; and I1%, ;.

Ego UzEw Eb )
Definition 2. The set of bounded formulae in the language Lo is denoted by Ao.
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2.3. Axioms. We use the following axioms to define our weak theories. P~ is the
set of finite number of sentences which define symbols in Ls. BASIC is the same as
P~ for the language L;. Examples of P~ and BASIC can be found in Héjek and
Pudlék [ ].

Definition 3. Let ® be a set of foumulae. Then
1. ®-IND:
©(0) AVz(p(z) = p(z +1)) — Vzo(z),
2. ®-PIND:
0(0) AVz(p(|2/2]) = p(z)) — Yzo(z),
3. ®-LIND:
©(0) AVz(p(z) = p(z + 1)) — Vzo(|z]),
where p € ®.

Definition 4. Fori > 1 the function z#;y is defined inductively as follows:

z#y = |zl -yl
THivry = 2°H.
The axiom S); states that the function #41 is total.

9.4. Definition of theories. Now we can define various theories of bounded arith-
metic which we will treat in this exposition.

Definition 5. IAg is the Lo theory with azioms
e P~ '
e Ao-IND

Definition 6. 1. Fori >0, S} is the Ly theory with azioms
e BASIC
° Eg-PIND
2. Fori >0, T} is the Ly theory with azioms
e BASIC '
o X-IND

2.5. Function Algebra and the theory PV. We also treat slightly different type
of theories which is based on recursion theoretic characterizations of complexity
classes.

Definition 7. A function f is defined by bounded recursion on notation from
g, ho, h1 and k if
f(O,:z':') = g(f)i ’
f(2"',5) = ho(n, T, f(n, Z)), ifn #0,
4 f(2n+1’f) = hl(nsfy f(nrf))v
provided that f(n,Z) < k(n,Z) for alln and .

Proposition 1. A function f is polynomial time computable if it is in the smallest
class containing Z(z) = 0, S(z) = z + 1, P¥(z1, -+ ,Za) = Tk, T#y and closed
under composition and bounded recursion on notation

Definition 8. Let Lpy be the language with function symbols for each polynomial
time computable functions together with a relation symbol <. PV is the Lpy theory
with defining azioms for each polynomial time computable functions characterized
by the previous proposition plus PIND for open Lpy formulae.
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2.6. Second Order Systems. We will also consider second order systems. The
essence of considering second order systems is that second order objects (sets) are
regarded as short sequences in the sense that

Vi < |a|(i € X & Bit(z,i) = 1),

where Bit(z,1) is the i-th bit of the binary expression of z. Thus any set must
contain only a finite number of elements. Furthermore, in the second order case,
there are two types of theories according to whether we include the smash function
in our second order language.

Definition 9. Let Ly be the second order language with the following symbols:

e functions of Ly are the functions of Ly minus z#y,

o L, has second order variables of the form XPUH) where p is a monotone poly-
nomial and t is a term,

o predicates of Ly are < and z € XPUt),

The intended meaning of XPUt)) is that all elements of X are bounded by p(|t]).

Definition 10. The sets of Ly formulae E:’b and II:"’ (i > 0) are defined induc-
tively as follows:
. Tp® = TI}® is the set of bounded formulae;
2. L‘}_"f’l and I11:%, are the smallest sets satisfying
(a) =Mt C o and TP P C Y,
(b) 2,+1 and I'I,,H are closed under connectives A, V and first order bounded
quantzﬁcatzons,
(c) =hP i1 is closed under second order existential quantifications and IT1.; is
closed under second order unsversal quantzﬁcatzons,
(d) ifpe )3,_,_1 or g€ l'IH_l then ~p € I} 41 and ~p € E,“ respectively,
(e) fpe l'I,_‘,1 and ¢ € 2s+1 thenp Dy € }3‘1_’,,1, the same statement holds
if we ezchange 2i+1 and l'IH_1

Definition 11. Let BASIC, be a finite set of axioms which defines symbols in L,.

Definition 12 (Buss). Fori >0, U} is the theory with the following azioms:
e BASIC, azioms
e ariom stating that all sets are bounded:
vxPIDyz(z € XPU) 2 < p(J2]))

e =M*_PIND
o Tib-CA:

YrIXVy < z(y € X= & ¢(y)),

where ¢ € 2(1,'5.

Vi is obtained from U} by replacing £°-PIND with $}°-IND. Ui and V§ are
obtained by adding the smash function z#y and its defining azioms to U} and V}
respectively.



2.7. Some Properties of Bounded Arithmetic.

Definition 13. A function f is £? definable in a theory T if for some ¢ € T?

o T+ Vzilyp(z,y),

o N = Vzp(z, f(z)).
We denote by 2(f) the set of £ formulae in the lanugage Ly U {f}. For a theory
T we denote by T(f) the theory T in the language Ly U {f}. Also for a set of
functions F, T(F) is the theory in the languages L1 U {f : f € F} together with
defining azioms for all f € F. o

Proposition 2. Let f be a £¢ definable function in S} then S}(f) is a conservative
extension of S3.

Proposition 3. Fori>1, S} X2 - LIND « X! — PIND.

Proposition 4. Fori> 1, S C Ti C Sit! and U C V§ C Uit?

2.8. Models of Arithmetic. Finally we state some basic notions and properties

of models of arithmetic.

Definition 14. Let M and N be models of arithmetic in the same languages and
® be a set of formulae. We say M and N are @ elementary if forallp e ® M =
if and only if N = 9. M and N are elementary if for any formula truth values
coincides.

Definition 15. Let M be a model of arithmetic and N be a substructure of M.
We say N is a initial segment of M (denoted by N C. M) if for all x € M if there
existsy € N such that z <y thenxz € N.

Proposition 5. Let M and N be models of arithmetic with N C, M and suppose
@(Z) € Ag (or £b,) with parameters among £. Then for any ¢ € N, M = ¢(C) if
and only if N = ¢(C). In words, bounded formulae are absolute between M and N.

3. WITNESSING IN MODELS OF ARITHMETIC

3.1. Parikh’s Theorem. Before we discuss about witnessing proofs, we first give
a model theoretic proof of Parikh’s theorem, which might help understanding the
details of witnessing. Parikh’s theorem was first proved in a proof theoretical man-
ner and soon after that, much simpler model theoretic proof was established. The
theorem holds for any bounded theories while we state the case for IAy.

Theorem 1 (Parikh [20]). Let ¢ € Ag and suppose IAg + Vz3yp(z,y). Then
there ezists a term t(z) such that IAg - Vz3Iy < t(z)p(z, y)-

Proof. For the sake of contradiction suppose for any term t(z),
IAo i/ Yoy < t(z)¢(z, ).

Let t1(z),t2(x),... be an enumeration of all terms whose only free variable is z.
Then for any n € w,

IAg + -3y S ti(Q)p(e,y) + -+ -+ =3Iy < tn(c)p(c,y)
is consistent where c is a new constant symbol. So by compactness

IAo + {—Gy <tn (C)(p(c, y)}new

49



is also consistent. Let M be a model of this theory and define

N={aeM : M|=a<ty(c) for some n € w}.
Then as N C, M, N |= IA¢ and by the definition of N, N |= -3yyp(c, ). a
3.2. Witnessing proof I. Now we shall give the first proof of witnessing theo-

rem which can be applied to any IT9 axiomatized theory as the argument utilizes
Herbrand’s theorem for IT? axiomatized theories.

Theorem 2 (Herbrand [11]). Let T be a I1? aziomatized theories and suppose T |-
Vz3yp(z,y) where @ is a quantifier free formula. Then there exists a finite number
of terms t,,... ,t, such that

T+ Vz [p(z, t1(z)) V- -V o(z, ta(z)))] - .
Before proving Herbrand’s theorem we need the following model theoretic prop-
erty of II axiomatized theory.
Lemma 1 (Los and Tarski). A theoryT isII? ariomatized if and only if it is closed
under substructures, that is, if M |= T and N is a substructure of M then N =T.

Proof of Herbrand’s theorem. The proof proceeds almost parallel to that of Parikh’s
theorem. For the sake of contradiction suppose

TYVzp(z,ta(z)) V---V(z,ta(z))]
for any finite set of terms t;,...,t,. Then
T + 3z [-p(z, t1(2)) A - - - A ~p(, ta(2))]
is consistent. Thus by compactness

T+ —p(e, ta(c)) + (e ta(c)) + - -
is consistent where c is a new constant symbol. Let M be a model of this theory
and define N = {t(c) : tis a term}. Then N is a substructure of M. As T is IT¢
axiomatized, N = T by Lemma 1 and by construction T |= -~3yp(c,y). O

Lemma 2. PV is a II aziomatized theory.

Proof. It suffices to show that the witness of PIND axiom for quantifier free formu-
lae can be computed by a polynomial time function. This can be done using binary
search. That is, suppose ¢(0) A —p(a) holds for a quantifier free formula ¢, then
using binary search we can compute z < a such that ¢(|a/2]) A -¢(a) holds. O

Theorem 3 (Witnessing theorem for PV). Let ¢(z,y) € L2 and suppose PV
Vz3yp(z,y). Then there exists a polynomial time computable function f € va
such that PV - Vzp(z, f(z)).

Proof. First notice that for ¢(z,y) € % there exists a quantifier free formula
Y(z,y, z) € such that

PV - Vz,ylp(z, y) & 2¢(z, y, 2)].

Suppose PV | Vzdyp(z,y). By the above remark PV F Vz3y3zy(z,y,z). Let
w = (y,2). Then PV | Vz3wy(z, (w)o, (w)1). Now by Theorem 2, there exists a
finite number of functions fi,...,fn. € Lpy which witnesses w. Since definition
by cases can be realized by a polynomial time algorithm, these functions can be
combined into a single polynomial time computable function. O
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3.3. Witnessing Proof II. Next we extend Theorem 3 to the case for S} as
follows: :

Theorem 4 (Buss [5]). Lety € X% and assume that S} - Vz3Iyp(z,y). Then there
ezists a polynomial time computable function f such that PV |- Vzp(z, f(z)).

This time a simple application of Herbrand’s theorem fails. To see this suppose
PV ¥ p(a, f(a)) for any f € Lpy. Then by compactness there exists a model

M E PV + {—p(a, f(a)) : f€ PTIME}.
Define M* = {f(a) : f € PTIME}. Unfortunately, we cannot prove that
M* }= S} since S} is not 19 axiomatized.
So we need a more complicated construction of a model. This can be achieved by
the following chain construction. We will present a method developed by Zmbeﬂa:

Theorem 5 (Zambella [26]). Let M = PV be a countable model. Then there ez-
ists another model M’ |= S}(PV) such that
1. M’ is a X% elementary extension of M,
2. for any open PV formula p(z,y) there exists a PV-term f(x) with only free
variable z such that

M' |=Vz3yp(z,y) — Vrp(z, f(z)).

Proof Sketch. Let ¢1, 2, ... be an enumeration of £% formulae. We shall construct
a chain of models My, M,, ... as follows:
1. My =M.
2. To construct My, add a witness for ¢; and take the closure under all poly-
nomial time computable functions.

Finally, let
M = | M.
k€w
Now we claim that M’ |= S}(PV). Suppose

M’ |= ¢(0) AVz < |al(p(z) — o(z +1)).
Then we can compute a witness of ¢(z + 1) using a witness of ¢(z) in M’. Iterating
this for |a| times and we have M’ |= (|a|). Thus M’ | LIND(p) for any X2
formula in the language Lpy. Also the second step in the construction of M’ can
be done so that M,y is E! elementary over My for each k. So condition 1 is

satisfied. Furthermore, condition 2 is guaranteed since we added witnesses for all
@€ Xtin M. O

Now Theorem 5 implies that S} is ©2 conservative over PV. So S and PV have
the same X% definable functions.

3.4. Herbrand Saturated Models. The above witnessing arguments are simpli-
fied by using Herbrand saturated models, a new method developed by J. Avigad
[3]. Here we will illustrate how the V3X} conservation of S over PV is proved.

Definition 16. Let L be a language of arithmetic and M a L-structure. Then
define
L(M)=LU{c : constant for each element in M}.
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A type with parametes from M is a set of sentences in and extension of L(M)
by finitely many constants. Let I' be a type with parameters from M. Then T is
realized in M if there is an interpretation of additional constants in M making every
sentence in I true. T is universal if every sentence in I' is universal. Furthermore,
T is principal if ' consists of a single sentence.

Definition 17. Let M be a L-structure. M is Herbrand saturated if for any prin-
cipal universal type if T is consistent with the universal diagram of M,that is all
true universal sentences in M, then I’ is realized in M.

Theorem 6. Every consistent unversal theory T has an Herbrand saturated model.

Proof Sketch. Let L, = LU {e1,¢a,...} and 61(1,91),602(22,12),... be an enu-
meration of all quantifier free L,, formulae. Define

So = universal axioms of T,
Si = {Si U {Vyi316i+1(G, ¥i31)}, if it is consistent,
Si, otherwise.
Then S, = U;¢,, Si is consistent. Let N be a model of S, and define
M={tN : teL,}.
Then M is Herbrand saturated and M = T. O

Theorem 7. Let M be an Herbrand saturated L structure and suppose that M |=
VZI3jp(Z, §,d) where ¢ is a quant‘zfier formula and @ € M. Then there exists an
universal formula Y(Z, W) and terms £1(Z,9), ... ,tx(Z, @) such that

M |= 2iii)(@, )
and .
= ¥(Z,9) — o(Z, tl(:t, Z,8,2)) V.-V p(Z, t(Z, 2,7, 2)).
" Proof. Direct application of Herbrand’s theorem. O

Theorem 8. Let T be a universal theory and T} be a theory in the language of T5.
Suppose every Herbrand saturated model of T; is also a model of Ty. Then every
V3 sentence provable in Ty is also provable in T.

Proof. Suppose every Herbrand saturated model of T is a model of T. Let (%, 9)
be a quantifier free formula in the language of T such that T3 I/ VZ3ijp(Z, y). We

claim that T} ¥/ VZ35p(Z, ). Assume that T3 U {V§i~p(d, #)} is consistent where d
is new constants. By Theorem 6, there is an Herbrand saturated model M of this

theory. So the reduct of M to the language of T3 is a model of T3 U {Vy—-cp(d 37)}
Bu assumption this is also a model of T3.

Now we will prove our conservation result
Theorem 9. S} is conservative over PV for VAL sentences.

Proof. Let M |= PV be an Herbrand saturated model. Note that such a model
exists since PV is an universal theory. By Theorem 8 it suffices to show that
M |= T8-LIND. First note that for any £% formula y(z, Z) there is a quantifier
formula ¢(z, y, Z) such that

PV F (%, 2) « Jyp(z,y, 2).
Suppose M satisfies
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e Jyp(0,y,a) and

o Vz(3yyp(z,y,d) — yp(z + 1,y,d)).
As the second formula is equivalent to

vz, y3y (p(z,9,8) = p(z +1,¥/,3)),

by Theorem 7 we have PV functions f and g such that

o 3yp(0, £(@,b1,d)) and

o VaVylp(z,y,d) — p(z +1,9(z, 9,4, b;), a)).
Now using bounded recursion on notation from f and g yields a function which
computes the witness of Vz3yyp(z,y, d). O

4. TRANSLATIONS BETWEEN FIRST AND SECOND ORDER THEORIES

4.1. RSUYV isomorphism. The RSUV isomorphism clarifies the relation between
first order theories and second order theories without the smash function. Intu-
itively, large numbers of first order world is translated by a finite set and vice
versa. More formally, the theorem is stated as follows:

Theorem 10 (Takeuti [25]). There are translations between first order bounded
formulae and second order bounded formulae

Aest - Alest andBe Xl — B exl?

such that

1. if Sy B then Vi + B,

2. if Vi - A then Si + Al,

3. Si+ B = (B?), and

4. Vi A= (AM)2

Rather than giving a formal proof of RSUV isomorphism, we shall illustrate how
a first order model of S} is translated to a second order model of V§ and vice versa.
This method is due to Krajicek [17].

First let M |= S3. The first order part of our second order model is

Log(M) = {|z| : z € M}.
For the second order part, consider pairs of elements of M, (a, |a|). We will regard
this as a second order object A by the following correspondence;
Vz < |a|(z € A & Bit(a,z) = 1).
To avoid duplication, define .
(c lal) ~ (B, [b]) > |a] = [b] AVz < [a|(Bit(e, ) = Bit(,z)).
Now define S = {(a, |a]) : a,a € M} and S* =S/ ~. Then
(Log(M), S*) | V3.

Conversely, take (M, S) |= V{. This time consider M = {(a,a) : a € M,a € S}.
By a similar argument as above, we obtain a model of V. O

We also have similar correspondences between other first and second order the-
ories. For example, F. Ferreira defined a string language theory Th — FO. This
theory have all AC? computable functions together with their defining axioms that
utilizes a decriptive complexity characterization developed by N. Immerman [12].
Then he showed that



Theorem 11 (Ferreira [9]). Ao and Th — FO are isomorphic via RSUV isomor-
phism.

4.2. Restricted Exponentiation. Now we talk about an isomorphism between
first order bounded arithmetic and second order theories with the smash function.
So the question is: which theory of first order bounded arithmetic can translate
reasonings in second order thories like Uj or V;#? We shall answer this question by
allowing restricted use of exponentiation function in certain first order theories.

Definition 18. For a bounded arithmetic theory T', the set T+1-Exp consists of all
b formulae p(a) such that there is a term t(a) for which T proves the implication

t(a) < || — ¢(a)
where c i3 a free variable not occurring in t(a) or .
Theorem 12 (Krajitek [17]). Let p(a) € T2,. Then
¢(a) € S} + 1-Ezp iff V3 - ¢(a).
The same relation holds for Ry and U} in place of Si and V3 respectively.
Proof. Assume that V3 I/ o(a). Then there is a model

(K,S) V3 + ~(a).

The same construction as in the proof of Theorem 10 yields a model M |= S} with
Log(M) = K. Assume

Si I t(a) < ¢ — ¢(a).

Since (K, S) |= V4, t(m) € K, so 2t™ € M. Hence ¢(m) holds in M. As K is
an initial segment of M and ¢ is a bounded formula, it must be that K = ¢(m),
which is a contradiction.

For the converse implication, assume that ¢(a) & S + 1-Exp. By compactness
we have a model M |= S} with a cut I C, M such that

1. I'=S3,

2. ceM\IWbe I M=2<ec

Let
S={aC1I : aiscoded by somea € M,M |=a < c}.

Now it is readily proved that (I,S) = V. O

Problem 1. Which second order bounded arithmetic is equivalent to the theory
ACC®CA + 1-Exp in the sense of previous theorem, where AC°CA is the theory
with arioms for all AC® definable functions together with polynomial induction for
8 formulae?

In the next section we will use a similar translation of models to show that
certain initial segment of a model of S} can be used to constract a second order
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5. SUBSTRUCTURES OF MODELS OF BOUNDED ARITHMETIC

Now we will consider much deeper analysis of models of bounded arithmetic.
One of fundamental problems in “classical” theories of models of arithmetic like
Peano arithmetic concerned about a model and its initial segment. For example
there are problems like

1. for a model M |= PA does there exist N C. M such that N |= PA?
2. for a model M |= PA does there exist M C. N such that N |= PA?

In the context of bounded arithmetic, these questions are almost nonsense since
we talk only about bounded formulae in our theories while bounded formulae are
absolute between a model and its initial segment. Thus we need a sharper notion
of initial segment to argue in the case for bounded arithmetic.

In this section we introduce two attempts for defining such notions of substruc-
tures.

5.1. Length Initial Substructures. The first notion, length initial substructure,
is introduced by J. Johannsen in order to give a model theoretical proof of the
following theorem:

Theorem 13 (Takeuti [23]). S? I/ Vz(z =0V Jy(y = Sz)).
He also proved similar independence results concerning systems S and the fol-
lowing theories:

Definition 19. R3 is the theory obtained from S9 by adding subtraction and MSP
function defined by

MSP(z,0) =z,
MSP(z,i+1) = |MSP(z,i)/2].
LY is obtained from S§ by replacing $§-PIND by X§-LIND.
Theorem 14 (Johannsen [14],Tada and Tatsuta [22]). For k € w, R} proves
VzIy(y = |z/k])
if and only if k is a power of 2.
Theorem 15 (Johannsen [13]). L3/ £8-PIND.

We first introduce the key notion to prove above three theorems in a single
method. :

Definition 20 (Johannsen [13]). Let M be a model of bounded arithmetic and N
a substructure of M. N is called a length initial substructure of M, denoted by
N - M; ‘lf

Ve M3y e N(z < |y| = ¢ € N).

There is a close similarity between length initial substructures and initial seg-
ments.

Proposition 6. Let N C; M and ¢ € £8. Then for all@ € N,

N = ¢(@) if and only if M |= ¢(a).
Proof. By induction on the complexity of . O
Note that L3 is a VE§ axiomatized theory and also
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Proposition 7. RS is VI8 aziomatized.

Proof. RJ we can be axiomatized by £8-LIND since we have subtraction and M SP
function. O

Thus if for example M |= S} and N C; M then it must be that N = RJ. So
to show that these theories it suffices to construct a length initial substructure in
which the predecessor or division cannot be defined:

Lemma 3. For some M |= S} there exist length initial substructure Ny and N of
M such that

1. M EVzIy(z =y +1),
2. Nz |=VzIy(y = z/k)).
Proof. Take M = S} to be such that log(M) # M and log(M) is closed under #.

Define
N1 ={ae M : count(a) < ||b}| for some b € M},

N2 ={a€ M : blk(a) < ||b]| for some b € M},

where
count(a) = #i < |a|(Bit(a,i) =1),
blk(a) = #i < |a|(Bit(a,i) # Bit(a,i + 1)).

Furthermore, N; satisfies S9. O
On the other hand,

Lemma 4. Let M |= S} + Q2 + ~Ezp. Then there is a length initial substructure
N of M which does not satisfy S9.
Proof. For z € M and n € N define

#0 =1,

z#l =g,

g#+D)  — gy
Choose a large a € M and define
N={beM : b¥"<aforalneN}u{be M : b>n-aforallne N}
O

Problem 2. Let p,q € w be relatively prime. Show that

R} +Vz3y(y = |z/p]) ¥ VzIy(y = |z/q)).
Theorem 14 can be extended to a independence for second order theory TP,

Definition 21. £ and II'Y are defined inductively as follows:
1. £ =TI3™ is the set of sharply bounded formula with possibly second order
free variables.
2. T C Y and II™ C T3Y.
3. 2}"" and H}"" are closed under conjunction disjunction and first order sharply
bounded quantification.
4. T3 is closed under second order eristential quantification 3X?(t) and I}
is closed under second order universal quantification VXP(tD),
Let oL = U i,

i€w



Definition 22 (Clote and Takeuti [7]). T7° is the theory in the language of R3
extended by second order variables which consists of the following azioms:

e BASIC azxioms ,
o bounding sets ariom: YXPUt)(z € X — z < p(|t]))
o LY. LIND |
TPol+ is the theory TP* extended by the binary counting function

count(z) = #{i < |z| : Bit(z,i) =1}.

Lemma 5 (Kuroda [19]). Let M |= S} and N C; M. Then there erists S C P(N)
such that (M, S) |= TP°'+.

To prove the lemma, we use a similar translation as used in the previous section.

Definition 23. The T'S-translation is the mapping of a T formula ¢ into a =Y,
formula ¢TS5 defined inductively as follows:
e if © is a first order atomic formula then oT% = .
o ifp =z € XPUD then T8 = (z < p(Jt|) A Bit(ax,z) = 1).
o if o = o Ap1,p0V 1 or ~po, then o5 = poT5 A 15,0075 v 0,75 or
—poTS respectively. .
o if p = Vz < |tlpo(z) or Iz < |t|po(z) then TS = Vz < |t|po(z)T> or
3z < |tlpo(z)TS respectively.
o if ¢ = VXPUD o (X) or AXPUD po(X) then oTS = Vz < 2P po(2)TS or
Az < 27Ut o (2)T° respectively.

Proof of Lemma 5. Let M and N be as above. We say that a € M is an N-code if
there exists X C N such that

Vi < |a|(Bit(a,?) = 1 & i € X).

Let
p is a polynomial, b € N and }

SN = {(p(|b|),a) * ais an N-code
Define the equivalence relation on Sy by

(p(|b1]), a1) =2 (p(|b2]), a2)

& p(|ba]) = p(|b2]) A Vi < p(|ba])(Bit(a1, i) = Bit(az, ).
Finally let S}, := Sy/ =2. Note that each element in S}, can be identified with a
finite subset of N in the sense of M in a natural way. Thus we may consider S},
as a subset of P(N).

By induction on the complexity of ¢ € LL* we shall show that (N,Sy)
0(APU)) if and only if M |= pT5(a4), with a suitable assignment A +— a4 from
S% into M. For the base case, it suffices to consider the case where (AP(*)) =
c € APUt), Let (p(|t]), a) represent AP() € S%,. By putting a4 = a we have

(N, Sy) = c € APUD iff M = (c < p(|t]) A Bit(aa,c) =1).

For the induction step, the case where the outermost connective is either a logical
connective or a first order sharply bounded quantifier is trivial. Let (N, Sy) =
3xPUtho(xPUtD). Then (N, S}) k= w(APUND) for some AP(H) € S}.. By the induc-
tive hypothesis, we have M |= (¢75(aa) Aaa < 2”(“')) for the same a4 as above.
Thus M |= 3z < 2PUtDpTS(z). The case for second order universal quantifier is
treated similarly, thus we have proved the claim.

b7



Now we claim that (N,Sy) = TP°*. First note that N = BASICt. So
(N, Sy) = BASIC*. By definition of S} it is also straightforward to see that

(N, S) = vXPUtvz(z € XPUD o 2 < p(jt])).
For £}"Y-LIND we consider the equivalent scheme
LIND,(p) = ¢(0) AVz < |a|(p(z) = ¢(z +1)) — ¢(lal).
Assume (N, Sy) = ~LIND,(yp) for some ¢ € £}'“. Note that ~LIND,(p) €
TLw, So applying TS-translation yields (~LINDqa(y))TS with M |= (-LIND,(y))T5,

It is easy to see that (~LIND,(p))TS = ~LIND,(¢"®). Thus M |= ~LIN D, (p7%)
and as TS € X!, this contradicts to the assumption that M |= S}. O

Thus we have

Theorem 16 (Kuroda [18]). TPt cannot define the function |z/k| for k not a
power of 2. :

This improves the result by Takeuti [24].
Concerning length initial substructures, following questions are of interest:

Problem 8. Find necessary and sufficient conditions for
1. for all M |= R there is N |= S} such that M C; N,
2. for all M |= S} there is N |= S} such that M C; N,
3. for all M |= RS there is N =T} such that M C; N,

Note that the unconditional positive solution to the first problem implies the
first order conservation of TP over R3.

5.2. Weak end extension. The second variation is motivated by so-called end
extension problem. An example of bounded arithmetic version is the following:

Problem 4. Are there models of IAo+ BX; without proper end-extension to models
Of I Ao 2

Z. Adamowicz found a partial solution to this problem.

Theorem 17 (Adamowicz [1]). There ezxists a II, sentence T such that there is a
model of IAo+) +7+BX; without proper end-extensions to models of IAo+$1+7.

Turning our attension to the model of Buss-like systems, Beckmann defined the
following weaker notions of end extensions.

Definition 24 (Beckmann [4]). Let M be a model of bounded arithmetic.

1. A model M is 0%-unincreasable with respect to T if there are no L§ elementary
extension to models of T'.

2. Let M be a substructure of N. Then M is log-proper if log(M) # log(N).

3. M is a weak end extension of N, denoted by M C¥ N if M C. N and
log(M) C. log(N).

4. M is 1°-closed with respect to T if for all N |= T whenever N is an T
elementary extension of M then N is % elementary.

The following implication is an direct consequence from the definition.

Proposition 8. If M is 0-unincreasable with respect to T then M is 1°-closed
with respect to T and also M does not have weak end extension to models of T.



More interesting is the following:
Definition 25. Let BLY? denote the following bounded collection schema:
Vz < [t|3ye(z, y) — 32Vz < [ty < z0(2,v),
where p € T8.
Theorem 18 (Buss [6]). Fori>1, S} + BLY} is VII} conservative over Sj.

Theorem 19 (Beckmann [4]). Let 1 < i < j. Then the following conditions are

equivalent:

1. T is not VII{ conservative over Si,

2. there isa model M of Sy which is log-proper and Ob-umncreasable with respect
to T3,

3. there is a model M of Si + Q7 which is 1°-closed with respect to T}, where

Qnet =3¢ /\ (k<) AVYzIyY(||z|| - e = ||y||)] )
. k€w

4. there is a countable model M of S + BLY} without weak end extensions to
models of TJ.
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