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1 Preliminary

J. Paris and A. Wilkie(1985) proposed following counting problems in Bounded
Arithmetic in [2]:
Problem 1. Let A be a Aq set.

1. Is {{n,m)| m = |ANn|} Ay definable?

2. Is {{n,i)] i <pAi=|ANn| mod p} Ay definable for prime p?

3. Let p,q be prime and p # q. If {{n,4)| i <pAi=|ANn| mod p} is
Ag definable, is {(n,%)| i <gAi=|ANn| mod ¢} Ay definable?

We locally call the above counting function problems. All these problems
are still open, however, they proved a relativized problem with using Ajtai’s
combinatorics[1].

Theorem 1 (Paris and Wilkie). There erists A C N such that A{;‘ 18 not
closed under counting mod 2.

They also proposed a problem related to theorem 1.

Problem 2. Is there any A C N such that Af is closed under counting
mod 2 but not closed under counting.

In this paper we prove this problem affirmatively.

Remark. Recently, we found almost same results in Zambella’s work[6]. His
proof contains some combinatorics developed only for the proof. We directly
use a famous theorem in circuit complexity.
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1.1 Second order Bounded Arithmetic

We define a second order theory S,. Let language £ be (+-, Lz, #<
;0,1;€)

Definition 1. X is the class of L-formulae only with first order bounded
quantifiers.

Definition 2. S, is a L-theory consists of
1. BASIC for £
2. T-CA
3. LNP

, where {¢(z, X)}-CA(comprehension axiom) and LNP(least number princi-

ple) denote
VX3AYVz(z € Y + ¢(z, X))

and '
VX (3z(z € X) = Jz(z € X AVy < z(—y € X)))

respectively.

The following definition is the same in [2].

Definition 3.

COUNT, &, VX3YVzVy({z,y) €Y <> ((z=0Ay =0)

VZz>0Az-1€eXA0<y<pA{z—-1l,y—1)€Y)
Viz>0Az-1€e XAy=0A{z-1,p—1)€Y)
Viz>0Az—-1¢€ X A{z—1,y) €Y))).

Next is the main theorem.
Theorem 2. For any prime p and integer ¢ > 1 such that p{ q
Con(S; + COUNT, + -COUNT,).

Remark. Those who are familiar with Bounded Arithmetic and Complexity
Theory may recall counting principle, say Count(p) defined by Ajtai and
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Definition 4. Let A a set such that |A| = an + 1 and let [A]P = {X C
A| | X| = p}. Variables Px are defined for each X € [A]*.

C’ount,’; = V (Px A Py) \ V A *lpx.

X#Y,XNY #0 icAieX
It is also written as the following scheme:

VX((Vy <pn+1F < n{z,y) € X) AVrIye, -+ ,Yp1
(o <+ < Yp-1 AT, %) € X A+ AT, Yp-1) € X)
Y <pn+1(Vz <nlz,y) €Y AVz <pn+ 13 < n(
z#y—(r,2) €Y)AVzIyp, -+ ,¥p-1(yo < - ++ < Yp1
A <$7y0) EYA---A (x7yp—~1) € Y)))

COUNT, is much powerful than Count?.

2 Some Models of S,

Through this section we use some techniques developed in [5] which modify
the method of Boolean extension in set theory. Take a countable nonstandard
model N = Nand n € N — N. Let (M,S) be a model of S,. First(resp.
second) order variables range over M (resp. S). We give a base model (M, S)
such that

M:={z € N|z < n#---(s times)---#n,3s € N} and
S:={X C M| 3Ja € N(Vi € M(bit(e,i) =1 > i € X))}.

Lemma 1.
(M,S) ES,.

Proof. Obviously, M satisfies 1 in definition 2.

Since N has a code a of a sequence with length < 27 of bouned formula é(z),
2 holds.

Let X € S. By definition of (M, S) there exists & € N such that o codes X.
Because of N > N, we derive that

N EVz3y(2¥|z AVz(2%|z — 2 < y)).

Let £ = a, then z € N is the least number in X. O
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We aim to construct extended model (M, S[G]) by the method of boolean
extension. So we define some notion.

Definition 5. A Boolean algebra B C S is called M-complete iff

Ve MVX e S(X: M- B
—)/\X(y)eBand VX(y)GB).

y<z y<z
Example 1. Let

B :={X € S| X codes a constant depth super-
polynomial size circuit}

with variables vy,vy,--+ ,v;,--+ € B, © € M, then B i3 non-atomic M-
complete Boolean algebra.

2.1 Coding circuits and sets of circuits

A circuit C is a directed acyclic graph with labelled nodes, say gates. Gates at
one edge are called input gates consist of vy, . .. ,v,—1. Gates at the other edge
are output gates. The remaining gates are called connective gates computing
some Boolean functions. Unless we specify differently, connective gates are
A, V and —. The size of circuit C is defined as the number of connective
gates of C and the depth of it is defined as the length of the longest path
from an input gate to the output gate of C.

In this paper, we assume that a circuit has inputs v;,7 € M and only one
output. We also assume that super-polynomial size means n'¢®, n € N —N.

Lemma 2. Let C be a constant depth super-polynomial size circuit. If N
has a code of C, there exists X € S which codes C.

Next we code a set of circuits.

Lemma 3. Let C be a set of constant depth super-polynomial size circuits.
If [C| i3 super-polynomial size and each circuits in C is coded in N, then there
is X € S which codesC.
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2.2 Generic models and truth lemma
Definition 6. Foreach z € M and X € S let
(X)z == {y € M| (z,y) € X}

and
S8 = {X € S| Vz € M((X); € B)}.

Definition 7. Let z,y,z € M, X € SE.
ellz+y=z2|=1pez+ty==2
o |lz-y=z||=1pz-y==2
e lz<yll=1pez<y.
* [z € X|| := (X)s.
o [l¢ Vol =gl VIl
o |3z <yd(z)|l := Voo o)l
Theorem 3. If ¢ is 3° formula then ||@|| € B.
Definition 8. F' C B is M-generic ultra filter iff
1. Vae FVbe B(a<b—be F).
2. Va,b€e F(aAb€E F).
3. Va€ B(a € For —a € F).
4. VX € SPVz € M(Vy < z((X)y € F) = A e(X)y € F).
Definition 9. Let F' C B a M-generic ultra filter. For X € S? let
ir(X) :={z € M| (X); € F}
SIF] == {ir(X)] X € S}
Definition 10. For every X € S define X C M such that
Vy((X)y = 18 &y € X) A ((X), = 05 + y € X)),

where 0p, 15 is the minimum element, the maximum element respectively in
Boolean algebra B.
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Theorem 4. If X € S then
ir(X) = X.
Corollary 1. If F C B is a M-generic ultra filter then
S C S[F].

Proof. 1t is sufficient to check that X C Misin SP for any X € S. By
definition, there exists : € N such that Vz € M(z € X + bit(a, i) =1). So
we can find the code of X in N. O

Theorem 5 (truth lemma). Let ¢ be a b formula with variables zo, - - - ,x; €
M, Xo,--+ ,X; € SB. Suppose that F is a M-generic ultra filter then

(M’ S[F]) F ¢($07 te 7xi)iF(X0)7 se ,iF(Xj)) =
”QS(:B(),'“ ,$.‘,X0,"' ;XJ)” € F.

Proof. By induction on the complexity of formula.

1. Let ¢ a atomic formula. It is obvious if ¢ is a first order formula.
Without loss of generality we can assume that ¢ can be represented in
the form z € X. By definition

lzeX||e F& (X), €F
& (M, S[F)) E x € ip(X).

2. Suppose that 1) and 8 satisfy (5). It is easy to show that ¢ also satisfies
(5)ifd =9 Ab,9V0or . Let ¢ =3z < y(x).

I3z < y(e)ll € F & \/ (@)l € F

<y

&3z <y(|lv(z)ll € F)
(M, S[F)) F 3z < yy(x).
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2.3 Generic models of S,
Lemma 4. Let F' a M-generic uitra filter. then (M,S[F]) E LNP.

Proof. Let X be an arbitrary nonempty set in S[F]. By the definition of
generic extension, there exists X € S such that ir(X) = X. Let Y € N be
a set satisfying the following.

vz € M((Y), = (X)o A=\ (X)y)-

y<z

We remark that such a Y can be found in SZ by lemma, 3.
V)=V X)e=F <2z € X)|2|z€X| €F
z<z z<z

There exists such a z € X since X is nonempty. F' is M -generlc ultra filter.
So there exists z < z such that (Y), € F. For this z

lz € X AVy € X(z < y)ll 2 (X)e A N\ ((X)y = llz < 9]])

y<z

= (X)a A \~(X)y=(¥)a €F

y<z

By truth lemma we thus derive that
(M,S[F))Ez € XAVy € X(z < y).
d
Lemma 5. For any M-generic ultra filter ' (M, S[F]) E £*-CA.

Proof. Let ¢(z,X) € £° and let z € M, X € S[F). By the definition of
generic extension there exists X € S® such that

(X): € FeozeX.

Claim. There exists Y € S such that (Y), = ||¢(z, X)|| for any z € M.

At first glance we can find such a Y in S. Since ¢(z, X) € £°, ||¢(z, X)||
is written as some finite (AND OR)-alternations of p constant depth super-
polynomial size circuits, where p a super-polynomial of n. Thus ||¢(z, X)||

is also constant depth super-polynomial size and so in B.
We then obtain Y = iz(Y) which codes ¢(z, X). O
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By Lemmas

Theorem 6. Let B a M-complete Boolean algebra. If F C B a M-generic

ultra filter then

3 An Application of Boolean Valued Models

We devote this section to construct a generic model such that COUNT,, holds
but COUNT, fails. Take a following Boolean algebra:

B, := {constant depth super-polynomial size
circuit with mod p gates}.

Theorem 7. Let F C By, a M-generic ultra filter. Then
(M, S[F]) ES2+ COUNT,.

Proof. By theorem, 6 it is sufficient to show that (M, S[F) satisfies COUNT,,.
So we construct modulo p counting function for arbitrary X € S[F]. Let X be
a element of SB» such that ir(X) = X. Then define b; = MOD,((X)o, ... , (X)i-1)
for every i € M. Each b; is a element of Boolean algebra B, since the con-
nective gates mod p are allowed in B,. Thus there exists Y € S5 such
that (Y); = b; for all i € B,. It is clear that ir(Y") counts X modulop. [I

3.1 Proof of the main theorem

To prove the main theorem(theorem 2) we have to choose a filter F' so that
(M, S[F)) E ~(VX3Y (Y counts X with modulo g)).

It is the following theorem that provides the key combinatorics for this
proof. ,

Theorem 8 (Smolensky[4]). For any prime p and integer ¢ > 1 such that
p 1 g, no constant depth super-polynomial size circuits with mod p gates
computes mod q gate.
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Fix a Boolean algebra B := B,. Since |SB| = wj it is able to enumerate
all the elements of SB:

X07X17"'1Xi"" t€N
Let us give a target set,
A = {{z,v;)| £ € M}.

We determine whether v, should be in F or not for all £ € M such that
no Y € S[F] counts the interpretation iz(A) modulo q. Let us note the
definition of counting function again. X counts ip(A) iff

Vz € M((X)(z-1,0 € F and Vi < ¢(i # 0 and
(X)(z—1,5) € F)) ©& MOD,(vp, -+ ,v,—1) = 0)
and Yz € M((X)(z—1,0) & F and Vi < ¢(i # 0 and
(X)(z-1,i) € F)) ©& MOD,(vp, -+ ,v5-1) = 1).
By induction on j € N, we make partial mapping o; :C V — {0,1} each for
X;, 1 €N '

Stage (0). Here we assign boolean value to the variables vy,... ,v,_; and
thus MOD,(vg, -+ + , Up—1)-
Let po : {vo,"*+ ;va_1} = {0,1}.
1. Suppose that
3po(((Xo)(n—1,0) [2e=1 and |pp| Z0 mod g)
or 0 < 3i < q((Xo)(n-1,i) [po=1 and |pp] =
0 mod q)
or (Xu)a10) lw=0 and oo =0 mod q)
or 0 < 3i < ¢((Xo)(n—1,i) [0o=0 and |po| #
0 mod g)).

Take such a py and define o := py.
2. If
EIpoilz < Q((XO)(n—l,i) rm$ O, 1)

then take such a py and define oy := py.
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Claim. Any cases except 1 or 2 cause contradiction.

If not in case 1,2 then all the partial mapping py give boolean value to
(Xo)n—14 for all i < p and the value represent |po| mod g. This contra-
dicts Smolensky’s result.

Stage (1). Case 1. Suppose that case 1 is chosen at stage (0). Let us de-
termine boolean value for MOD,(vg, " ** , Ungn—1)-

We have already known the value of vy, - -+ ,v,—1 by po.

Let py : {Un,*** , Ungn-1} — {0,1}. 01 can be chosen by similar way of stage
(0).

Case 2. Think in case 2 at stage (0).

Since (Xo)(n-1,4) € B, there exists the maximum index z € M such that v,
appears in (Xo)(n_1,)- By definition of M there is k € N such that

z2<nF---Fn.
#k#

Fix the minimum k € N of such ks. We now determine the value for
MOD, (v, - - »Und .. -#n—1)' Variables vy, : - - ,vn_1 are all assigned by py,
et o’

k+1

and so is MOD,(vp, -+ * ,n—1). Thus we can find
LR CRTTU TRTI B (US
n# ,, F#n -1
such that

(XO)(n—l,O) rpo r1r1?"' MODq('vO, th 1'Un—1)'

It is possible since (Xo)(n-1,0) [nZ 0, 1.
Next we define

iV Ut fin 1) — {0,1}
# - Fn n#f - -Ffn-1

k k41
with using the same argument at stage(0) and let oy := 7.

By induction step we obtain o; Vi € N, so that

Ua.- : {v;| . € M} - {0,1}.

ieN
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Fix a ultra filter F' such that |J;cxy0i € F. Then we have
(M, S[F]) E VX (X does not count ir(A) with modulo g).

a
Remark. There are some problems related to theorem 2.

1. Let p < ¢ < r are primes. Can S; + COUNT, + COUNT, prove
COUNT, ? .

2. Moreover, can S;+ COUNT,, + - -+ COUNT,, prove COUNT,,,, for
any s € N?

We finally remark the difficulty of our defining systems which could not be
improved in here. In this paper we have studied non-bounded version of
comprehension axiom and counting principles. We believe, however, that
to study a bounded version of them is more suitable in terms of Bounded
Arithmetic.
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