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1 Introduction

In 1958, K. Godel published a paper in the journal Dialectica, in which he
gave an interpretation of the first-order intuitionistic arithmetic HA (Heyting
arithmetic) by the higher-order functional calculus T. This result implies the
consistency of the first-order classical arithmetic PA (Peano arithmetic) in the
following three steps:

1. Godel’s own double-negation translation of PA into HA;
2. the given interpretation of HA by T

3. the normalization of T, proved by Tait, using the transfinite induction up
to €, as expected.

The functional interpretation is now known as the Dialectica interpretation,
and extended to the various fragments of first-order and second-order arith-
metic. The system T of the functional calculus is a variant of the typed lambda
(combinatory) calculus, but notably with the recursors for each type as the new
constants.

In 1969, D. Scott wrote up a paper, in which he introduced the typed com-
binatory calculus, strengthened by the fixpoint operators for each type, and
provided with a sound semantics. The paper was intended to exhibit the supe-
riority of the typed calculi to their untyped counterparts, which were likely to
be only symbol manipulations without any semantic foundation. Right after the
paper was finished, Scott himself found the set-theoretic model for the untyped
lambda calculus, and the paper had been famous, but unpublished until 1993.
The calculus is now known as PCF, and became one of the most intensively
studied calculi in the theoretical computer science.

The most long standing problem with PCF was its semantics. The semantics
Scott gave is certainly sound, but it is not ”fully abstract” in the sense given
by Plotkin. In short, the semantics is fully abstract if the same meaning is
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always assigned to the two terms which are indistinguishable with respect to the
observable results in all computational contexts. The problem was finally solved
by the game semantics of Abramsky-Jagadeesan-Malacaria, and independently,
of Hyland-Ong.

Now, PCF can be formulated as the typed-lambda calculus with a number
of built-in constants: the constant zero, the successor, the predecessor, the
zero test, the conditionals for each type, and the fixpoint operators for each
type. T can be similarly formulated as the typed-lambda calculus with the
constant zero, the successor and the recursor operators for each type. By the
standard construction of the recursor Rec through the fixpoint operator Y and
the predecessor, T can be seen as the subsystem of PCF. Then it is certainly
possible to apply the game semantics of PCF to T, and HA as well: This is our
motivation in this paper.

We emphasize that the work presented here is in a very much preliminary
stage. We hope, however, that the reader will find the idea itself fairly clear
and worth exploring. So, we try to present the entire, not yet completely devel-
oped, landscape. We first summarize the game semantics of PCF by Abramsky-
Jagadeesan-Malacaria, and, secondly, we consider the characterization of the
terms of T within the PCF game semantics. Thirdly, we give the informal ar-
gument for the game-theoretical reading of the Dialectica interpretation. In the
last section of the paper, we briefly discuss the prospect of this line of works.

2 The game semantics of PCF

2.1 Some notational conventions

In this section, we summarize the game semantics given by Abramsky-Jagadeesan-
Malacaria [1, 2]. First of all, we need to fix the notations. For a given set X,
we use the following notational conventions.

e a,b,c,d,m,n ...: the elements of X;

e s,t,u,v ... : the finite sequences of elements of X;

e |s| : the length of the sequence s;

e s; : the ith element of the sequence s, where 1 <i < |s];

e st,as,sa, ... : the concatenation of two sequences, where the element a is
identified with its corresponding unit sequence;

e X™*: the set of the finite sequences of elements of X;
e Geven Geodd . the set of even (odd) length sequences in S, where S C X*;

e Pref S: the set of even length sequences in the prefix closure of § C X*;

f*: X* = Y* : the unique monoid homomorphism extending f : X — Y;
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s 'Y : the sequence obtained by deleting all the occurrences of elements
not in Y from s, where s € X* and Y C X

e s Ct: meaning that s is a prefix of t, i.e., su =t for some u.
Furthermore, let us fix the notations for the coproduct of sets.
e Y1 X; : the disjoint union (co-product) of a family of sets, i.e. ,

E,’e]Xi = {(’I,,IE) |’i€ I,.’E € X,}

e X; + X5 : the disjoint union of X; and X>;

e s [ i: the sequence obtained by deleting from s € ¥;¢1X; all the occur-
rences of elements not having the form (i,z) and then identifying (i, z)
with z.

The first and second projections are denoted by £st and snd, respectively. We
denote the partial functions f from X toY by f: X =Y.

e fx > y: meaning that fz is defined and equal to y;
e f*:Y — X : the inverse function for the injective f;

e fVg: X =Y : theunionof f: X =Y and g : X —= Y with disjoint
domains of definition.

2.2 The definition of games

The game A is played between the Player P and the Opponent O, alternately.
The moves M4 of the game A is partitioned by the function A4 into the Player’s
and Opponent’s moves, and further into Questions and Answers. The acceptable
plays are specified by the prefix closed set P4 of sequences in M. Furthermore,
in order to cancel the difference due to the codmg convention, the equivalence
relation =4 is imposed on Pjy.

Formally, a game A is the structure (M4, A4, Pa,~4), where

e M, : the set of moves;
e \y: My — {P,0} x {Q, A}; we use the notations

— ABO — st o A4 and A9” = sndo A4

- ME = 2;'({P} x {Q, A}) : the Player’s moves

- M9 = 2;'({0} x {Q, A}) : the Opponent’s moves
— M9 = 2;1({P,0} x {Q}) : the questions

— M% = 31({P,0} x {A}) : the answers
~P=0and O =P

= M%(a) =2%(a) and 35 = 00, 23%)
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e P, : the set of valid positions of the game; this is a non-empty prefix
closed subset of the set Mj? of all finite sequences s € M} satisfying the
three conditions

(p1) the starting condition, i.e., the Opponent moves first;
s=at = ae M9
(p2) the alternating condition, i.e., the Player and Opponent alternate;

(Vi :1< i <Jsl) [AZ(se41) = NEO(o)]

(p3) the bracketing condition, i.e., no answer is given unless a correspond-
ing question is asked;

(veCs) (e T MAI< It T MZ))

e =4 : an equivalence relation on P4 satisfying
(el) smat = X4(s) = A4(2)
(e2) s=at,s'Cs, 'Ct, |s|=|t/| = ' =~at
(e3) s=at, sa€ P4 => 3b.sa=4 th.

2.3 The definition of strategies

A strategy specifies the unique response of the player against a given move
by the opponent. Note that a strategy does not need to specify the responses
to all the possible moves. This is different from the definition of strategies in
the Abramsky-Jagadeesan games for the multiplicative linear logic. To put it
differently, a strategy corresponds to a partial function.

Formally, a strategy for the Player is a non-empty subset o of P§"*® such
that @ = o U dom(o) with

dom(c) = {sa € P3* | 3b. sab € o}
is prefix closed. In particular, a strategy is history-free if it satisfies
e sab, taceoc = b=c
e sabt€ o, tac P4, = tabe o.

The equivalence relation =4 can be naturally extended to a relation on strate-
gies. Let o < 7 if and only if

sabe€ o, s’ €7, samy s'a’ = 3. [s'a’t) € T A sab =, s'a'V]

and, let 0 ~4 7 if and only if 0 $ 7AT 5 0. The relation x4 on strategies then
becomes a partial equivalence relation, and we write [0] = {7 | 0 =4 7} when
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2.4 The multiplicatives and exponential

The tensor product and linear implications of games A and B are defined as
follows.

Tensor The game A ® B is defined as follows.
o Msgp =Ma+ Mp
e \agB = [Aa, AB), i.e. given by cases
e Pagp is the set of all s € Mg 5 such that

1. Projection condition: The restriction of s to the moves in M4 (resp.
Mp) is in P4 (resp. Pg)

2. Stack discipline: Every answer in s must be in the same component
game (i.e. A or B) as the corresponding question.

o smagptif s|Amat| AANs | B=at| BAfst*(s) =1fst*(t).
The tensor unit is given by

I=(0,0,{e}, {(c,©)}).

Linear implication The game A —o B is defined as follows.
e Mas op=Ms+Mp
® M—oB = [Xa, 5]
e Pyopisthesetof all s € Mf_o g such that

1. Projection condition: The restriction of s to the moves in M4 (resp.
Mp) is in P4 (resp. Pg)

2. Stack discipline: Every answer in s must be in the same component
game (i.e. A or B) as the corresponding question.

e sy optiff s|Amat[AAs|[B=yt| BAfst*(s) =1fst*(t).

Exponential The game ! A is defined as the ”infinite tensor power” of A.
Formally, it is given as follows.

o Mia=wX My =3ic, My
° /\!A(i,a)=)\A(a)
o Piyisthesetofall se M ?A such that

1. Projection condition: (Vi)[s [ 1 € Pa
2. Stack discipline: Every answer in s is in the same index as the cor-
responding question;

e Let S(w) be the set of permutations on w; then

siat = (AreSW))[(View slimat [ n@E)A(mofst)” = fst*(t)]



2.5 The category of games

Games and strategies form a category in which
e the objects are games,

e the morphisms from A to B are the equivalence classes [0] of strategies o
on the game A —o B with 0 ®4 B 0.

The composition of [¢] : A — B and [r] : B — C is defined as follows.
The strategies o and 7 can be identified with the partial functions oy : M} +
MS — MS + ME and and 7, : ME + M@ — Mg + M{, respectively. The
composition 7 o ¢ is then the strategy on the game A —o C, i.e. the partial
function (7 0 o)p : MY + M8 — M + ME given by the instruction:

e Case: a € M f ; apply oy; if the result is in Mg, return it; else apply the
following loop to it;

— Case: be M g ; apply 7; if the result is in Mg , return it; else continue
the loop with the result;

— Case: b € Mg; apply oy; if the result is in Mg, return it; else
continue the loop with the result;

o Case: a € MY; apply 7g; if the result is in M§, return it; else apply the
above loop to it.

Identity The identity morphism id4 : A — A is given by the ”copycat strat-
egy.” Let us distinguish two copies of A, as Ag and A;. Then the identity
is the function from M5 + M$ — MY + MJ, such that (0,a) € M} and

(0,a’) € M2, are copied as (1,a) € M% and (1,a') € MQ,, respectively.

Linear application The linear application LAPP4 g from A ® (A1 — Byg) to
B is the copycat strategy between Ap and A;, and between By and B;.

Dereliction The dereliction dery : ! A — A is obtained by choosing one
component A; in ! A and doing the copycat between A; and the target A.

Promotion Given [0]: ! A — B, we can obtain the morphism [of]: 1A — !B
by taking the disjoint union of w many copies of ¢, and identifying w x w x M4
and w X M4 via a bijection between w X w and w.

Contraction The contraction conty : !A — A ® ! A is given by taking
two disjoint infinitary subsets ko and k; of w, and doing the copycat between
Ko X M4 (resp. K1 X M4) and {0} xw x M4 (resp. {1} Xw x M) in the target.

Weakening The weakening weaky : ! A — I is given by the empty strategy.
Note that I is indeed the terminal object in this category.
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2.6 The model of PCF

The model of PCF is obtained as the co-Kleisli category of the category of
games, where

e the objects are games,

e the morphisms from A to B are morphisms f : ! A — B in the category
of games.

We use the notation f : A = B for the morphism f in the co-Kleisli category.
For f: A= B and g: B = C, we write g o f for the composition in the
co-Kleisli category defined as the composition in the category of games:
1 g
gof:'1A— 1B =C

The notation f; g may be used solely for the category of games.
Definition 2.1. We define the game A&B as follows:

® Magp=Ma+ Mp

® MagB = [Aa, AB], i.e. defined by cases

L4 PA&B = PA + PB ‘

® NAQB=RA + ~pB.
Furthermore, the projections A S5 AR B 22, B e defined as the strate-
gies induced by the partial identities, respectively,

(M) +ME)+ M3 — (M3 + M3) + My undefined on ME
(Mf +ME)+ Mg — (M3 + M§) + M} undefined on ME.

Proposition 2.2. In the category of games,
1. there are natural isomorphismses p: | (A&B) 2 !AQ® !B,
2. 1I=1.

Proposition 2.3. I is terminal in the co-Kleisli category.

Proposition 2.4. A&B is a Cartesian product in the co-Kleisli category with
the projections my : A&B = A and w3 : A&B = B defined as

m : 1 (A&B) =5 AgB 2%, 4
my: | (A&B) =5 AB 2%, B,

Proposition 2.5. The co-Kleisli category has a countable product.

Proof. 1t is just a countable disjoint union of games. O

Note that the application morphism Ap 4,8 (A= B)&A = B is given by

Ap,p: (!A—-B)&A) S 1(1A—-B)® !4
L8, 1A~ B)®@ A X% B
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Ground types The ground type nat is interpreted as the game N where
o My ={*}Uw
o Av = {(x,0Q)} U{(n, PA) | n € w}
o Py ={x}U{(xn)|necw}
e =~y is the identity.
The ground type bool is interpreted by the game B defined similarly with the

values true and false.

The constants The constant zero is the strategy {¢,*0} on N. Truth values
are defined similarly.

Successor and predecessor The successor is the strategy
{e,¥1%:JU {*¢1 ¥ ni(n + 1)1 | n € w}
on ! Ny —o N; where we write *; for (i, (0,%*)) and so on. The predecessor is

defined similarly.

Zero test and conditionals The zero test is the strategy
{e, *B*N,, *B *N, 0false} U {xp *n, ntrue |n € wA0 < n}

on ! N —o B where *p is initial question by the opponent in B and so on. For
the conditional of the type B — Ag — A; — Az, we use the strategy

{€, *2*p, *2 xp true g, *2 xp false*;}

U {*2 *xpg true *gaopaz, *2 xp false *; biba |a € Mgo,b € Mgl}
where ag and a; are copies of the same object, and similarly for b; and bs.
Fixpoint operators The homset of our co-Kleisli category is the set of strate-
gies and forms a pointed poset (i.e. poset with a least element) under the or-
dering < on strategies. It is now known whether this poset is a CPO or not,
but it has a certain property sufficient for the standard construction of fixpont

operators. The property is called rationality and defined as below.
A cartesian closed category C is ppo-enriched if:

e Every homset has a pointed poset structure;

e Composition, pairing and currying are monotone;

e Composition is left-strict, i.e. for all f: A — B,
lpcof=1lac

where 1 g c and L4 ¢ are the least elements of the homsets.



C is rational if it is ppo-enriched, and for all f : A x B — B:
e The chain (f*) | k € w) in the homset C(4, B) defined inductively by
FO = 143, FED = fo(idy, F)
has a least upper bound fV;
e Forallg:C > Aand h:B— D,
hof¥Yog =21€1phof(k) og.

Now let ©4 from I x (A — A) » Ato (A — A) —» A be
[F:(A— A)— AR AfA=A F(Ff): (A— A) — 4]

and define the fixpoint operator Y4 = ©Y. This is indeed nothing but the least
upper bound of

Y] = FAA FFS - (F La) - )]
N e’

k

2.7 The decomposition lemma

Definition 2.6. We define the strategy x : N&N“ => N and Xo : N® N — N,
where N¥ is the infinitary product of N, by

Xa = Pref {xg *x1 n*2n monmo | n,m € w}: N1 ® Ny’ —0 N

and
x: | (N&N¥) 5 IN @ | (N¥) 228%%, N @ Nv X2 N

Let us consider the game (A; & - - &Ax) = N where
A; = (Bi,l == Bi,l,-) = N.

We write A for A;&: - &Ay. We define the strategies 1 ; : A= N and KAn :
A= N by
1z ={e}, K;in = {€,*n}.
and, if for some 1 < i < k and for each 1 < j < l;, we have
g;: A = Bi,j

and for each n € w,

Thn:A=> N
then we define the strategy

Ci(0iy--,01,,(Tn |RnEW)): A= N
by
Ci(os- - 01, (T | R E w))

=XO(APO(---AP°<7T1;,0'1),--- ,0'1;),<7'n|'n€w)).
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Theorem 2.7 (The decomposition lemma). Let
0 (A& - &Ap) = (Aps1 = -+ = Ay = N)
be any strategy, where
Ai=B;) = ---=2B;;,,=N, 1<ilq.

We write C~'f01;A1,--- yAp, and D for Apt1,--+ JAq. IfT: C,D = N, then we
write A5(7) : C = (Apy1 = -+ = Ay = N) for the currying of T with respect
to D. Then exactly one of the following three cases applies.

1. o =Ap(Le,p)
o = Ap(Kg pn) for somen € w
o =Ap(Ci(oi,- -+ ,01,,(Tn | n € W))) where1 <i< g, and
oj: C,D=B;;, 1<j<l
™m: C,D= N, n € w.
Theorem 2.8 (The unicity of decomposition).
1. Ifo~lap, theno = Lg p.
2. If o =Kg pn, then o = Kg pn.
8. IfCi(oi, - ,0u,, (Tn | n € w)) S Cilo}, -+ 07, (T, | n € w)), then

0;j 505, 1<j <L, and Tn SThy NEW.

3 The game semantics of T

3.1 The functional calculus T

Godel used an extension of the type lambda calculus, which he called T, to
interpret formulas of HA [3, 4]. The calculus T is a standard typed lambda
calculus enhanced with the new constants, the constant zero, the successor and
the recursion operator for each type. The functions computed by T are called
the primitive recursive functionals of finite type.

Types Types are defined inductively from the single ground type nat by the
binary constructor —.

Terms In addition to the standard machinery of the simply typed lambda
calculus, T has the constants:

e the constant zero 0 with type nat
o the successor succ with type nat — nat

e the recursor Rec; with type t — (nat — ¢t — t) — nat — t for each type t



Reduction We write m for the term obtained by applying succ to 0 m times.
T has the reductions for the new constants:

e Rec;c MNO— M
e Rec;M N (succ m) — Nm(Rec;M Nm).

where the terms M and N are of the types t and nat — t — t, respectively.
Note that Rec; can be defined in PCF by the fixpoint operator as follows.

Y(Af. Ax. Ay. Az. if zero?(z) then z else y(pred(z))(fry(pred(2))))

Hence, it is certainly possible to give the game semantical interpretation of T
through PCF. We will give, however, more direct interpretation.
3.2 The strategy x*

The key idea is to use the translation into the infinitary calculus, as given by
Tait in the normalization proof of T.

In Tait’s infinitary calculus, we may form the term (M;) with type nat — ¢
from the countably many M; of type t. This term is required to satisfy the
reduction:

e (Mi)n— M,
[ <M¢>nM' — (M,-M’)n

where M; and M’ has the types s — t and s, respectively.

The strategy x used in the decomposition lemma gives the semantical version
of the above construction for the basic type N. We generalize x to x* for the
game A = A; = --- Ap, = N and show that the construction given by x* indeed
satisfies the second equation (reduction relation) as well.

Definition 3.1. Let A=A — --- = N. We define x2: N® A“ — A; by
X2 = Pref {*1 xN N2 *n, 5 | *1 *n, s € ida}.
Proposition 3.2. xﬁ s a strategy.
Proof. Immediate from the fact that id, is a strategy. O
Definition 3.3. We define x? : N&A“ = A by the composition:

A wy © wy der @der w Xf:
x?: 1(N&A¥) > IN® 1 (AY) ——— N® AY —= A.

Lemma 3.4. Let A=A = Ay = - => A, => Nand A/ = A, = --- =
A, = N. For 7, : C = A, n € w, define 1), : C&A; = A" by

7 1(C&A) D 1C® 1A T8 A0 | A, AP, 47,
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c:N®!(C&A1) 28 NR(IC®1A4;) S (N !C)® A

. 3 A i
(1d®(-r,,|n€w))®1d) (N®Aw)® 1 4, Xo®id A® 1A, _LE_E,A’

and

. ’ Al
o N® ! (C8Ay) 28I Ny A Xa\ g,
Then o =~ o'.

Proof. Any sequence in ¢ is identical to some sequence in o' modulo reindexing,
and vice versa. O

Proposition 3.5. For 7, : C = A, n € w, let 7, = Apo (Th&idy). Define
0: N&(C&A;) = A' and o’ : N&(C&A;) = A’ by

o =Apo (x"&ida,) o ((idN 8(Tn | n € w))) 0 0
o' = x4 o (idy &(7\ | n € w))

where
o : |(N&(C&A1)) > IN® |(C&A1) 285 IN® (1C® 1 4))

4 (IN®!C)® A 224 |(NgC) ® | A, < 1((N&C)&As)
2T, (N&C)&A;.

Then 7!, =~ e; T, @ id14,;LAPP and o = o’.

Proof. Use the previous lemma and the properties of der and ()t. O

Corollary 3.6. Let 7, : C&A; = A’, n € w. Then

A, (x* 0 (idn &(rn | 1 € w)) 00’ ™) m x* 0 (idN &(A, (Ta) | n € w)).
Fact 3.7.

1. Let f: D — C and g: B&A — D. Then,

Apo (Aa(fog)&ida) = goApo(Aa(g)&ida).
2. Let f; : B&A — C;, fori € I Cw. Then,

(Apo (A(fi)&ida) | i€ I) m Apo (Aa((fi | i € I))&ida).
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Lemma 3.8. Let 7, : |C - N, n€w, and 7}, : !D - N, m € w. Define
0,0 :(N®!C)®!D— N by

s:(N®!C)® D (i ®(mnln€w)®@1d (N®NW)®!D_XG_§E)_)N® D
id (7, |m€w) N®N“’—x—°i)N

f a! id@r" w Xa

c:(N®!C)®!'D— N®(!IC®!D) —— NQNY = N

where 7" : (1C ® ! D) (T ®(TmIme)Xaln€) N Then o o

Proof. Any sequence in ¢ is identical to some sequence in ¢’ modulo reindexing,
and vice versa. O

Proposition 3.9. Letoc: A= N, 7,,:C = N and7),: D= N, forn,m € w.
Then,

X (0 (08{T | 1 € W))&drh | m € W)
% X0 (08(x 0 (Tm&(Tm | m € W)) | n € W) 0 a~L.

Proof. Use the previous lemma. O

Proposition 3.10. x o (Kipn&(m | n € w)) = m, o 7.

Proof. This reduces to Kin ® (7, | n € w); Xa = unit;,, where unit is the
empty strategy. O

3.3 The interpretation of T

The interpretation of types is the same as PCF. For terms, we give more direct
interpretations by the Tait translation. Furthermore, we present the expanded
version of the interpretations which already conform to the normal form given by
the decomposition lemma. Hence we have reduced x4 to x from the beginning.
The soundness of such reduction is exactly what is guaranteed by the properties
of x4, particularly by Proposition 3.5.
To enhance the readability, we use the notation which is similar to natural
deduction. We write the morphism Ap o (o, 7) : C = B as
C C
o ir
A=>B A

A
B P

and x o (0,(Tn | n €Ew)) : C = N as
¢ ¢
Lo Ty
N N
N X

with the index n quantified over w. Furthermore, we simply write n for K4n.
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[Hb z; : nat] =

(5] [H]

N N

![HD:B,-:AP+1—>---—>Aq—+nat]]=

[H'] [H']
5 'I.H,Dxp+1 ZAP+1]]
Apy1= - =2 B Apn A
App2=---=>N P [H']
:  [H'>zq: A] [H]
A= N A, Ap in
N N

N X
Mgy, 04
App1=> - = Ag=> N i

with H' = H,zp41 : Apt1,- -+ ,Zq : Ag. Here and in the following, A’s are used

for the names of types as well as their interpretations.

ﬂHDAm:s.M:s—»t]}:
IIH,:.z:s]]
ﬂsﬂIIMll
t
Fl-m "

[Hv>0:nat] =
4]
: 0
N
[H > succ : nat — nat] =

[H,z :nat] [H,z:nat]
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[H>MN :t] =
[H] [H']
c[M] [N [H']
[sl=1[t] [s] Ap : [H'> zpy1 : Apia]
[t] Api1
Ap+2=>"'=>N I[H,]]
; D [H'>z,: A [H]
A, =N Aq A ‘n
N P N
N X

= Adyyare A,
i

witht = Apy1 — -+ = Ay —»nat and H' = H,zpq1 : Apy1,- -+ ,Zq : Ag.

[H >Rec;:t — (nat —t —t) — nat — ¢

]
- Tp+3 Tn
N N
N oy, X... )
[ e
N = [t] N A
(N=>[=[)=N=[g Vo=t
H=ON=>[H=[)=>N=>[] H

witht = Ap14 — -+ — A, — nat and

H' = H,Zp41:t,Tpyz :nat >t —t,Tp13 :nat, Tpra : Apia, -+ ,Tq: Aq

where 79 is

[H'] [H']
P Tpi1 L [H > Tpiat Aped]
[[t]] Ap+4 Ap
Apps=>-=>A; =N [H']
[H'>zq:Ag] [H]
A, N A, ‘n
N Ap N

N



and Tp41 is
[H] 2] [H]
: Tp42 in Tn
N=[tj=10t] N '
[t = [t Ap iAA,m--,Aq [H#'] ’
[t] = [t] [t] Ap L [H'> Zpta: Apid]
[[t]] Ap+4 A
Aps= S A, >N T [H]
[H'>zq: A] [H']
A= N Aq in
N Ap N,
N

3.4 The characterization of T

In this part, we show that if we recursively apply the decomposition lemma to
any interpretation of a term of T, then we obtain the well-founded tree with the
rank < &op.

Note that the well-foundedness of strategies (seen as trees of moves) does not
characterize T at all, since the identity strategy may not terminate depending
on how the Opponent plays.

The restriction of the class of strategy-inducing partial functions does not
work, either. Consider the strategy o : N; = Ny induced by

*p > *1.0, N1,i > *1,441.

This function can be encoded by a primitive recursive function (indeed pairing
suffices), but ¢ is a totally undefined function, since it first responds to the initial
question in Ny by the question in the first component of ! N, and whatever
answer may be returned, it keeps asking a question in the next component.

Our result is not surprising nor sufficient for the complete characterization
of T, since we can encode any total function from w to w by a strategy with
the well-founded decomposition tree, but it at least shows how the techniques
in the infinitary logic [5] can be applied to the game semantics as well.

For the complete characterization, we seem to need the restriction of the
class of strategy-inducing partial functions and the well-foundedness of the de-
composition tree, both.

We will work with the expressions for morphisms rather than morphisms
themselves. The same symbols are used for the expressions as for morphisms.
All the proofs are rather straightforward and we only give their sketches.

Definition 3.11 (Degree). We define the degree of of the expression A, de-
noted deg A, by

e degN =0
o deg(A = B) = max(deg A, deg B) + 1.
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If the expression ¢ has the form given by
o == m |Kan|Aa(0) | Apy g o (0,0) | x0 (0| n € w)
then o will be called a T-expression.

Definition 3.12 (Rank). We define the rank of the T-expression o, denoted
o], by

o |m;|=1 and |[Kn| =1

e |Apo (o, 7)| = max(|a],|7[) + 1

e 1Aa(0)] = o] +1

o [xo(o,(m|n€w))|=sup({lo+1}U{lm|+1]|n€cw}).

Definition 3.13. For T-ezpressions o : [H,z : s] — A and 7 : [H] — [s], we
define the T-expression T+ o : [H] — A by

o TH+MW =T

e 7T+Kn=Kn

7+ (Apo {o,v)) = Apo (T + 0,7+ V)

T+ AA(U) = AA(T + 0)

T+ (xo (0, (rnIn€w))) =x0(rT+0,(T+vn|necw))

Definition 3.14 (Ap-reduction).

[[H,:‘z:s]]
m " I[?]]
[sl=101 " ll Lzl
[t] — T+o

Definition 3.15 (R-normal expressions). The erpression o is r-normal if
one of the following conditions holds:

e for each occurrence of x o (0, (T | n € W)) in o, the expressions 7, end
with x or T, =Kn

e for each occurrence of Ap o (T,v) in o, the expression T has the form
Ap(xo (V, (T, | n€w))) orT =Kn

o o itself has the form Ap(x o (v, (Tn | n € w))) or T =Kn

Lemma 3.16. Any r-normal expression reduces to an r-normal expression by
a single application of the Ap-reduction.
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Proof. Immediate from the definitions of 7 + o and r-expressions. O

Definition 3.17 (x-reduction).

(2] [H]

‘nTm [H]
N N X Tn
N — N
(7] [H] [H] [H]
Lo i [H] H  in .
N N. Vm o NN
N X N y N N X.
N — N

The soundness of x-reductions are guaranteed by Proposition 3.9 and 3.10.

Lemma 3.18. Any r-normal expression reduces to an r-normal expression by
a single application of the x-reduction without creating any Ap-redezes.

Proof. Immediate from the definitions of r-expressions and x-reduction. O

Lemma 3.19. Let o be the expression [H > M : t], then |o| < w + n for some
new.

Proof. By induction. O

Lemma 3.20. Let Apo (0,7) — o' by a single application of the Ap-reduction.
Then |o’| < || + |o].

Proof. By induction, using the continuity of Ay.a + «. O
Lemma 3.21. The expression [Hv> M : t] is r-normal.
Proof. By inspection and induction. O

Theorem 3.22. Let the expression [H> M :t] reduce to o by the successive
Ap-reductions and o has no Ap-redezr. Then |o| < &, and o is r-normal.

Proof. By the standard argument, using the induction on the degrees and ranks.
O

Definition 3.23. The expressions without any x-redezes are called x-normal.
Lemma 3.24. Let a,vy, (m € w) be x-normal, and the expression
[H [H]
ol Um
N N
N X

be a x-redex. Then this expression can be reduced to a x-normal expression with
the rank < |a|{f sup,, |vm|, where {} is the natural sum.
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Proof. By induction on |a. a

Theorem 3.25. Any expression o can be reduced to a x-normal expression with
the rank < 2lol+1,

Proof. By induction on |o|, using the previous lemma. O

Theorem 3.26. Any expression [H> M : t] can be reduced to the expression
which is T-normal and x-normal with the rank < €.

Proof. Immediate. O

Corollary 3.27. The decomposition of [H > M : t] ends up with a well-founded
tree of the rank < €.

Proof. The r-normal and x-normal expression has the same form as the decom-
position tree. The result then follows from the unicity of decomposition. O

4 The games and the Dialectica interpretation

4.1 The Dialectica interpretation

In the Dialectica interpretation, each formula A in HA is interpreted as a 3V-
sentence A quantifying over the primitive recursive functionals of finite type.
The sentence has A® the form

VY[ AI(Z, ¥, ©) — 0]
where:
e 7 stands for a finite sequence of variables;

e 1 is the list of all free variables of type nat;

e A9(Z,7, 1) is a term of T of type nat; it is understood that O means the
truth and others the falsity.

For X = (Xo,... ,Xn), let X4 stands for the list (Xod,... ,Xn@). We say
that AC is true if and only if

o if Xis non-empty, there exist closed terms X of T such that for all closed
Y and U, . . .
[U/d)[Xu/Z)[Y /) A (Z, 9, 6) = O,

e otherwise; for all closed Y and 17,

[0 /@Y /§)A%(Z, §, i) — 0.
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The truth functions, the addition, the multiplication, the characteristic func-
tion of equality on natural numbers and the case constructor (”if ... then ...
else ... ”) are all definable in T. Using them, AC is defined inductively as
follows. We suppress all the free variables in this definition.

O.TG

znat ,

e 0 =0,
o (s+1)% =sC+1%,
o (s xt)¢ =s%xt%,
o (s=1t)% = [s®=t¢ — 0].
Let AC = 32Vy[AI(Z, ) — 0] and BC = 3avu[BI(ii, v) — 0.
e (A A B)S = 3F3uVyVoA9(ZF, ) ABI (4, §) + 0]
o (AV B)C = 3735dVyvi(A9(Z, H)Ad = 0)V(BI (&, ?)Ad= 1) — 0]
o (—A)C = 3VVE[-A9(Z,YE) — 0]
e (A D B)C = 3U3YVEVH[AY(E, YED) D BI(UZ,7) — 0]
o (32 A)C = 3231VHA%(Z,7) — 0]
o (VzA)C = 3XV2V§[A9(X 2, §) — 0]
Godel then proved that for any formula A in HA, if it is provable in HA,

then A€ is true in the above sense.

4.2 Godel’s heuristics

In this part, we follow the exposition of S. Feferman [4]. After his second in-
completeness theorem, Godel’s concern was to give the constructive foundation
to mathematics. In the Yale lecture in 1941, he presented what would later
amounts to the Dialectica interpretation, and he then gave three criteria for
constructivity:

1. All primitive (undefined) functions ... must be calculable for any given
arguments and all primitive relations must be decidable for any given
arguments.

2. Existential assertions must have a meaning only as abbreviations for actual
construction ...

3. Universal propositions can be negated in the sense that a counter example
exists in the sense just described ... Therefore, leaving out abbreviations,
universal propositions can’t be negated at all ...



He then proceeded to explain the heuristics to arrive at his functional in-
terpretation, in particular, the most important one, i.e. the interpretation of
implication. Let us consider the formula

JzVyA(z,y) D FJuVvB(u,v), (1)

where A(z,y) and B(u,v) are quantifier-free. In Godel’s view of constructivity,
this sentence can only mean

Vz3Iu[VyA(z,y) D VvB(u,v)], (2)

although this equivalence is not accepted in intuitionistic logic. The second
sentence is then converted into

3UVz|VyA(z,y) D YvB(Uz,v)]. 3)

The formula inside the square bracket is then interpreted as a claim about
counterexamples. For this, we first consider its contrapositive

-VuB(Uz,v) D ~VyA(z,y) 4)

This is understood as the claim that one can convert any counterexample to
YvB(Uz,v) to a counterexample of VyA(z,y). Hence

3Y'Vu[-B(Uz,v) D ~A(z,Y'v)] (5)

Since the formulas B(Uz,v) and A(z,Y'v) are taken to be decidable, this is
equivalent to

3YVv[A(z,Y'v) D B(Uz,v)] (6)
Hence, (1) becomes
3UVzIY'V[A(z,Y'v) D B(Uz,v)] (7)
and the choice principle again yields

3U3IYVzVu|A(z,Yzv) D B(Uz,v)]. (8)

4.3 The game-theoretical reading of Dzalectica
From Godel’s above argument, we can intuitively understand that ¥ in
A€ = 3EVHAY(Z, §,T) — O]

are supposed to be filled in with functions trying to falsify A9, and £ with
functions trying to verify it, i.e.,

o the existential quantification corresponds to the Player’s strategy trying
to verify A,
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¢ the universal quantification corresponds to the Opponent’s counter strat-
egy trying to falsify A.

Then what the Dialectica interpretation claims is that if A is provable, then
the Player has the winning strategy in the verification game for A against any
counter strategy.

Such a game for the first-order classical logic is known as the Hintikka game.
Hence we seem to be able to understand the game semantics of T as the con-
structive version of Hintikka game for arithmetic. We have been working on
this account by restating the game semantics for T in terms of cut-elimination.

5 HA and beyond

Given the game-theoretical interpretation of HA, we can expect the extension of
game semantics to various systems of logic. The Dialectica interpretation itself
is extended to the various fragments of second order logic, and we expect their
game-theoretical counterparts.

From the other direction, there are works on the realizability interpretation
of the excluded middle by Berardi, Coquant and others, which can be stated
in terms of games. Is there any connection with our game semantics of T?
Furthermore, the axiomatic set theory is formalized in the first-order logic. Can
we extend the game semantics to, say, ZF?

In general, the game semantics has a strong proof-theoretic flavor. This may
make one wonder if it is worth the name ”semantics.” On the other hand, we
believe that more and more people are beginning to feel the frustration with the
denotational (or model-theoretic) semantics, which have been developed in the
tradition of Tarski.

It seems that the game semantics points to a certain middle ground between
proof theory and model theory, and it may be only in this middle ground that
the notion of "meaning” can be truly studied.
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