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Abstract. This paper defines the theories of parametricity for all system
of lambda cube, and shows its consistency. These theories are defined
by the axiom sets in the formal theories. These theories prove various
important semantical properties in the formal systems. Especially, the
theory for a system of lambda cube proves some kind of adjoint functor
theorem internally.

1 Introduction

1.1 Basic Motivation

In the studies of informatics, it is important to construct new data types and
find out the properties of such data types. For example, let T and 7" be data
types which is already known. Then we can construct a new data type T x T
which is the direct product of T and T'. We have functions left, right and pair
which satisfy the following equations:

left(pair zy) = z, right(pairzy) =y forany z: T and y : T",

pair(left z)(right z) = z for any z : T x T".
As for another example, we can construct List(T") which is a type of lists whose
components are elements of T. We have the empty list () as the elements of
List(T), the functions (—,~), which is so called sons-pair, and listrec. These
element and functions satisfy the following equations:

listrec() fe = e, listrec(z,l) fe = fz(listreclfe)
forany z: T, 1 : List(T),e: D and f : T — D — D, where D is another type.
Moreover, we have list induction such that:

Suppose that if P(l) then P((z,)) for any z : T and [ : List(T).

Then, if P(()) then P(l) for each I : List(T),
where P() is an arbitrary property over List(T).

Polymorphic type theory is very powerful for describing new data types. One
of the most famous polymorphic type theory is System F. Although we have only
two type constructor - and II in System F, we can encode the direct product
TxT asIIX.(T - T — X) = X in System F. And also we can encode the
functions left, right and pair as some terms in System F. Similarly, the type of
the lists is encodes as ITX.(T -+ X — X) - X — X, and the elements and
functions (), (—,—) and listrec are also encodable in System F. Under this
encoding, we have the following equations up to beta-equivalence:

lefi(pair zy) =g z, right(pairzy) =gy
listrec() fe =g e, listrec(z,l) fe =g fx(listrecife)



But, the term pair(left z)(right z) is not beta-equivalent to z. Moreover, the
statement of list induction is not described in System F, because System F is
a system for construction and calculation of terms with type assignment. Thus,
we cannot handle the equation pair(left z)(right z) = z nor list induction with
System F. We call such properties semantic properties.

Under such encoding, we have the problem that semantical properties are not
derivable. In order to avoid this problem, we sometimes use models of data types
which satisfy the semiantical properties, such as the equation pair(left z)(right z)
= z or list induction. Such models are often constructed in category theory or
domain theory. But it is more useful to solve that problem only in type theory
itself with a formal way.

Our aim is to make formal logical system over terms of a type theory, and
to derive semiantical properties by the logical system. A successful example is
the formal theory of parametricity over terms of System F, which is studied in
some literatures [ACC, PA, T]. The theory of parametricity proves many seman-
tical properties, such as the equation pair(left z)(right z) = 2 or list induction.
Therefore, we would like to extend the theory of parametricity into more strong
or general type theory, that is, lambda cube.

1.2 Interpretation of Category Theory Into Type Theory

Although it is successful to describe and prove some semantical properties by the
theory of parametricity over System F, there are much more useful notions and
semantical properties which cannot be described in System F. Some of them
are functors, natural transformations, and adjunction, which are provided by
category theory.

In order to describe such notions which come from category theory in type
theory, we have to describe the basic notions of category theory, such as objects,
hom-sets and arrows, in type theory. By comparing the parametric models of Sys-
tem F in the literatures [Hasegawal, Hasegawa2, BAC] with the formal theories
of parametricity in the literatures [ACC, PA, T], we find out the interpretation
of category theory into type theory as following:

Category theory Type theory
Object — Type
Expoillentla.l obJect} Functional type
om-set
Arrow —— Element of the type
Limit — Universal type

This interpretation is very attractive. Therefore, we preserve this interpretation
in extending our theory.

According to the interpretation above, there exists a category which is in-
terpreted as the collection of all types. Here, we write * for the collection of all
types, as is done by Barendregt [Barendregt], and we write £ for such category
interpreted as *, as is done by Hasegawa [Hasegawa3]. Then, the functors of
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2 into € should be interpreted as a term of type * — *. System F does not
have the object of type * — *, thus the functors are not internal objects in the
formal theories of type theory in the literatures [ACC, PA, T]. On the other
hand, the system Aw in lambda cube has such objects of type * — *, namely,
AX . T2 X x> %

Our motivation is to extend the theory of parametricity to a formal logic
which includes Aw, and prove some semantical properties on functors. For ex-
ample, we will show the adjoint functor theorem for functors of £2 — €2, that is,
if a functor of £ — € preserves some kind of limits, then it has a left adjoint.

1.3 Lambda Cube

Lambda cube is studied by Barendregt [Barendregt]. It is a family of eight type
assignment systems, which are A—, AP, A2, AP2, Aw, APw, Aw and APw. The
system A2 is equivalent to System F, and APw is equivalent to the system of
calculus of construction. We define the theory of parametricity for each system
of lambda cube by using conformity relation. ’

The definitions for eight systems are uniform. That is only the reason that
we define the theory of the parametricity for all of eight systems, nevertheless
the theory of parametricity for A=, Aw or APw is not so important.

We use AP2 as predicate logic for A=, AP, A2 and AP2, and we use APw as
predicate logic for Aw, APw, Aw and APw.

The systems A\P2 and A\Pw seem stronger than what is necessary as predicate
logic over A2 and A\w, because terms and proofs are not separated in the sys-
tems. Actually, the predicate logic for System F in precedent works [PA, T] is a
subsystem of AP2. Barendregt also provides other family of systems named logic
cube, in which terms and proofs are separated. But they have more constants
and rules than AP2 and APw. We use AP2 and APw because of the simplicity of
rules. We can separate terms and proofs in the discussion of this paper easily,
and it makes no problem.

The system AP with equality has a power enough to play the role of predicate
logic for AP. But the rules of equality destroys our uniformity. Therefore, we use
AP2 as predicate logic for AP, although AP2 is much stronger than what is
necessary.

1.4 Relat;ad Works

The original meaning of parametricity was as a notion for models of polymor-
phic calculi, such as System F, which is second order lambda calculus studied
by Girard [Girard]. More recently, many researchers have had interest in para-
metricity in formal logic. In this paper we also discusses parametricity in formal
logic.

In the sense of Reynolds [Reynolds], parametricity is the property that if f
is of universal type IIX.F[X] then fT(F[R])fU holds for all types T' and U
and for all relations R between the domains of T and of U. We regards the
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parametricity notion as extended into the notion for all types, just as Plotkin
and Abadi [PA] do.

Abadi, Cardelli and Curien [ACC] propose System R, a formal system for
parametricity. It is a logical system for binary relations between terms of System
F. Because it deals only with binary predicates, its expressive power is rather
weak.

Hasegawa [Hasegawal, Hasegawa2, Hasegawa3] makes a categorical model
for polymorphism. If it is parametric, then it is a categorical model for Sys-
tem R. By formalising his informal logic in [Hasegawal, Hasegawa2], we can
obtain a formal treatment of parametricity in formal second order predicate
logic, Such formal treatment is equivalent to the treatment in [PA, T]. Hasegawa.
[Hasegawal, Hasegawa2] does not show the existence of the relation-frame which
is parametric for all the types of System F, although he shows the existence of
the relation-frame which is parametric for some particular types, such as pair
types, sum types, natural numbers, and so forth.

Bellucci, Abadi, and Curien [BAC] construct a model of System R from a
partial equivalence relation model of System F. This is a model theoretic proof
of the consistency of the theory of parametricity.

Plotkin and Abadi [PA] formalise parametricity based on a second order
predicate logic. In their system, the basic logic is not specialised to the treatment
of parametricity, and the axioms implement the parametricity. Takeuti [T] gives
a syntactic proof of the consistency of their system.

As a formal logical systems for dealing with semantic properties, Pfenning
and Paulin-Morling [PP] proposed calculus of construction, which is equivalent
to A\Pw. They showed that calculus of construction can describe many semi-
antic properties. The set of axioms which we will give in this paper proves such
semiantic properties.

There are some works to formalise category theory in type theory. One of
them is by Huet et al [HS]. They work is to formalise category theory in Coq.
In their work, both objects and arrows in category theory are interpreted as
ground level object, or terms, in type theory, and Hom-set is interpreted as a
ternary relation of the arrow, the domain and the codomain. That is directed to
another direction than our interpretation, and therefore we cannot apply theory
of parametricity for their work.

1.5 Outline

Section 2 has the brief introduction of lambda cube and the definitions of our
notations. Section 3 has the definitions of conformity relation and of the axioms
of parametricity. Section 4 has our interpretation of category theory into lambda
cube. Especially, the adjunction theorem is proved in Section 4. Section 5 has
concluding discussion.
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2 Lambda Cube

2.1 Lambda Cube as a Type Assignment System

Lambda Cube is a family of eight systems studied by Barendregt. We will give
the definition of them. We use the term ‘phrase’ instead of ‘term’ or ‘expression’.
First of all we will define the notions of prephrases and prebases.

Definition 2.1.1 (Prephrase) A syntactic class of prephrases are defined by
the following syntax:
M:=Var|O| % |[AVar MM | MM |IIVar: M. M

where Var is a variable. There are of infinitely many variables. Parentheses are
supplied to parse, as (Az:M.M')(M"M'""). The symbols A and IT bind vari-
ables. The notions of free variables, a-equivalence, substitution of variables,
and (-reduction are defined in the ordinary manner. We identify a-equivalent
prephrases. We write F'V (M) for the set of all the free variables of M. We write
M[M'/z] for the prephrase given by substitution of z with M’ in M.

Definition 2.1.2 (Prebasis) A prebasis is a finite sequence of expressions z :
M in which z is a variable and M is a prephrase which satisfies the following
conditions. A sequence I' = x; : My, 23 : Ma, ..., z, : M, is a prebasis iff for
each 1,
T; ¢ {xl,xg,...,x,-_l}u U FV(MJ)
1575

The set {z1,Z2,...,Zn} is called the domain of I', and written as dom(I"). The
length n may be 0, thus, an empty sequence is also a prebasis. An expression
z : M is called a clause in a prebasis. A prebasis I' is equivalent to another
prebasis I iff I" is a permutation of I''. We write I" ~ I"" when I is equivalent
of I'". Note that I' ~ I'" only if both I" and I’ are prebases.

Definition 2.1.3 (Subsequence) Let I' and I"' be two prebases. The relation
I'<<I" holds iff there is a sequence i1, ts, ..., i, such that:

1841 <i2<--<ip Em

I'= T;, :M,;l, Ti, 3Mi2, ceey g, :Mi,.

I'= T ZM1, 172:M2, veny .'Em:Mm
We write I' < I'" and say that I' is a subsequence of I"" when there is a prebasis
I'" such that I'<<I""" and I'"" ~ I'"". It is easily seen that < is a reflexive transitive
relation, and if ' < I and I' > I'' then "' ~ I'".

Definition 2.1.4 (Marge) Let I', I" and I"" be three prebases. The basis I’
isa mergeof I and I iff I' < I, I' < I'"" and each clause z : M in I" appears
either in I'" or in I'”.

Definition 2.1.5 (Lambda Cube) Let Cube be a set of symbols such that
Cube = {—, P, 2, P2, w, Pw, w, Pw}. A set ACube consists of A\S for all S €
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Cube. A map | - | is an injection of Cube into the power set of {*,0}2, which is
defined as below.

|- = { (%) }
IPl = { (*, %), (»,00) }
12| = {(x), (0, %) }
|P2| = { (*,%), (*,0), (O, %) }
lw| = {(*,%), (0,0) }
IPQI = { (*1*), (*1[])’ (D) D) }
lw| = {(*%), (0,%), (0,0) }
|Pw| = {(*,%), (x,0), (0,%), (0,0) }

Each AS € ACube is a type assignment system The judgements have a form
'+ A : B where I is a prebasis, and A and B are prephases. The derivation
rules for each AS is the followings.

Initial rule: Tautology: | Exchange:
Fx:0 'A:s I'+A:B
Nz:AFz: A I'+A:B
(s€{+0)  (FxI"
Weakening: Quantification:
''+A:B I'+A:B I''z:AFB:s 'FA:s
r'+-A:B 'rIIz:A.B:s
(I'" is a merge of I" and I") ((s',8) €|S))
Abstraction: Application:
rz:A+rM:B 'FlIz:AB:s TI'+M:Iz:AB I'kFN:A
I'FXx:AM:IIz: A B ' I' MN : B[N/z]
Beta-Conversion:
I'+A:B I'+B:s 'FB':s
'FA:B

(s € {*,0}, B is B-equivalent to B’ by one-step B-conversion.)

Only the rule of quantification depends on S. All the other rules are common.

Lemma 2.1.8 Strong normalisability, confluency and subject reduction property
on (-reduction hold for each \S.

Proof. Shown in the literature [Barendregt). ]

Definition 2.1.7 (Term, Type, Formula, Predicate, Kind, Phrase, Ba-
sis)

A prephrase A is a kind iff some AS derives I' - A : O.

A prephrase T is a type iff some AS derives I' - T : *.

A type is also called a formula.



A prephrase P is a predicate iff some AS derives I P : A for some kind A.
A prephrase M is a term iff some AS derives I' - M : T for some type T.

A prephrase is a phrase iff it is a term, a predicate, a kind, or O.

A prebasis I' is a basis iff some \S derives I' - A : B. ’

Notation 2.1.8 A notation A — B is an abbreviation of ITz : A. B, where z is
fresh. We write AzT.e and ITz”.P for A\z:T.e and ITz:T.P. We write Azy.e for
AxT AyV.e, and ITzy.P for IzT.ITyY.P, and so forth.

Notation 2.1.9 We write e =) f for S-equality, because we sometimes use 3
as a meta-variable.

2.2 Lambda Cube as a Logical System

We regard AS’s as logical systems as well as type assignment systems. Thus, we
define the notions of axioms, theorems and so forth over the systems of AS’s.

Definition 2.2.1 (Infinite Basis) Let I' = {z; : T;}i<o be an infinite set
indexed by ordinal numbers less than an infinite ordinal number a, where for
each ¢ < a, z; is a variable and T; is a phrase. The indexed set I" is an infinite
AS-bases, or an infinite bases of A\S, iff for each i < o,

—.’L',;Q{:Lj'j(i},&ﬁd

— there is a finite sequence of ordinal numbers 4,2, ...,%, such that 0 < 4; <
ig < -+ <1ip <1 and AS derives z;, : T3, ..., z;, : T;, F T;: s where s is * or
a.

For a bases or infinite basis I" and an infinite bases I', the relation of subsequence
I' < I' is defined in the similar way to that for finite sequences.

Definition 2.2.2 (Derivation of Infinite Basis) For an infinite A\S-basis I,
we say that AS derives I' - A : B when there is a basis I’ such that I"" < I" and
AS derives I' .

Definition 2.2.3 (Axiom Set, Theorem) Let A = {a; : A;}icnin be an
finite or infinite bases of AS such that AS derives - A; : x for each i. Then, we
sometimes regard A as an aziom set. If A\S derives ' - P:xand I A+ M : P
for some phrase M, then we call P a theorem of A, and we say that A proves P
in AS. ’

Notation 2.2.4 We use the following notations when we regard these types as
formulae.
P>Q=P-Q, V2T.P:=Vz:T.P:=IIz:T.P,
PAQ:=VX*(PDODQD>X)DX.
r=y =VXT?T>* XzD> Xz, &r = TyT.z=y
Let P and Q be predicates of kind A = ITz1*...zT~ %, then
PCQ:=Vzr...2,. Pzy..7, D Qx1...25,
P2Q:=PLQAQLCP, =,4:=)\XAYAXxY.
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3 Axioms of Parametricity

3.1 Predicate Logic Over Terms of Each System

We define AS for each AS. Each system AS play the role of second order pred-
icate logic over terms of AS. Second order universal quantifying appears in the
definition of parametricity. Hence we discuss the formal theory of parametricity
of the system AS on AS regarded as the logical system. The formal definition is
the follows.

Qeﬁnition 3.1.1 A map S — S is a function of Cube into Cubg such that
|S| = |P2| U |S|. Thus, S = P2 for Se {—, P, 2 P2}and S = Pw for
S €{w, Pw, w, Pw} :

We will define the axioms of parametricity for terms of AS as formulae of
AS. The conformity relation {(—)){} played the essential role in the theory of
axiomatising parametricity for System F in the literature [T]. We would like
to define this conformity relation for each system of A-cube. As for System F,
the relation ((T){€} is defined by induction on T'. There are only types appear
as subexpressions of a type. Therefore it is sufficient to define (T 1€} only for
types T. But, in the systems of A-cube except for A — and A2, there are many
objects of other levels appears as subexpressions of a type. Therefore we have to
define ((P)){} for P which may not be a type. In order to define that, we define
a notation (P : a){®} and call it the kind of conformity notation.

3.2 Kind of Conformity Relation

Definition 3.2.1 (Double Assignment) A double assignment is a set of ex-
pressions of the form (e, f)/z which satisfies the followings:

— Each component (e, f)/z € © consists of a variable z and two phrases e and
f-
— For each variable z, there is at most one component (e, f)/z € 6.

The component (e, f)/T € © means that © assigns the pair of phrases (e, f) to
the variable z.

Definition 3.2.2 (Domain of a Double Assignment) Let © be a double as-
signment such that © = {(e1, f1)/1, (€2, f2)/%2, -, (én, fn) /Tn}. Then dom(O)
is the set of variable such that dom(@) = {z;,z2, ..., Zn}. It is called the domain
of the double assignment ©.

Definition 3.2.3 Let © be a double assignment such that @ = {(e1, f1)/z1,
(e2, f2)/ T2, -+, (€ny fn)/Zn}. Then 6! and O are the substitutions of the dou-
ble assignment which are defined as 6! = {e1/z1,e2/z2,...,en/Tn} and O7 =

{fi/z1, f2/ %2y s fr/Tn}

Definition 3.2.4 (Double Assignment for a Declaration) Let I" and I”
be declarations. Let © be a double assignment. Then the double assignment ©
is a double assignment for I" under I"' iff O satisfies the followings:
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- dom(0) C dom(I').

—Foreachz:T € I', either z € dom(@) or I"+x : T.

— For each component (e,f)/z € ©,f ' F z : T, then I'" + e : TO" and
' f:Tor. |

If © is a double assignment for I" under I'’, then we write I - I"' > ©.

Definition 3.2.5 (Kind of Conformity Relation) Let P be a predicate of a
kind o under some I". Let @ be a double assignment. Then the kind of conformity
relation of P : a is defined as below:
(P : +){6} := PO' - PO™ — «
(P: IzT.a){6} := Mz,T6' 3,T9" (Pg : of{6:(21.22)/3}
for some type T under I'.
(P: IIXP.a)i®} .=
I1X1P8' X,P6" TTY : (X : B){6:(X1.X2)/X} (PX : o){6:(X1.X2)/X}
for some kind 3 under I'.

Lemma 3.2.6 Let I" and I be declarations. Let @ be a double assignment such
that ' F ' > O. Let a be a kind and P be a predicate such that I' - P : a.
Then, it is derivable that I'" - (P : o){€} : x.

Proof. Induction on a. a
Proposition 3.2.7 If a =) 8, then (P : o)t} =, (P : g){6}.
Proof. Easy. |

3.3 Conformity Relation

Definition 3.3.1 (Multiple Assignment) A multiple assignment is a set of
expressions of the form (e, f)/z or of the form (e, f,g)/x which satisfies the
followings:

— Each component is either of the form (e, f)/z which consists of a variable z
and two phrases e and f, or of the form (e, f, g)/z which consists of a variable
x and three phrases e, f and g.

— For each variable z, there is at most one component (e, f)/z or (e, f,g)/z € ©.
The component (e, f)/z € O, or (e, f,g)/x € ©, means that © assigns the pair
of phrases (e, f), or (e, f, g) respectively, to the variable z.

Definition 3.3.2 For a multiple assignment @, the double assignment @' is

defined as (e, f)/z € O iff (e, f)/z € O, or (e, f,g)/z € O for some phrase g.
In other words, for a multiple assignment ©, the double assignment O! is

made by omitting the third phrase in each component of @ with three phrases.

Definition 3.3.3 Let © be a multiple assignment. Then the substitutions @
and O are defined as @' = (0'")! and 6! = (O'")".

Definition 3.3.4 (Multiple Assignment for a Declaration).
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Let I and I"' be declarations. Let © be a multiple assignment. Then the Mul-
tiple assignment © is a multiple assignment for I' under I'" iff © satisfies the
followings:
- dom(©) C dom(I').
~Foreachz:T €I, eitherz € dom(@) or Iz : T.
— For each component (e, f)/x € 6,if I' - z : T, then the following is derivable:
I'+-TO : «, I'TOT : x,
I'hke:Té, I'kf:Toer.
— For each component (e, f,g)/z € ©,if I' F z : T, then the following is derivable:
I'+Te':0, I'+Ter: 0,
I't+e:TE, I'vf:.TO",
and I"Fg: (z: T){S}
If © is a double assignment for I" under I, then we write I - I"' > ©.

Definition 3.3.5 (Conformity Relation) Let P be a predicate under some
I'. Let © be a multiple assignment. Then the kind of conformity relation of P is
defined as below:
— For a variable X4,
(X8} := >, where X ¢ dom(6)
«X»{G} = Q where (PlaP2a Q)/X € dom(@)
— For a type T and a term e under I,
(Iz:T. P»{e} = ,\y(Hz:T.P)O’ (z:T.P)6'
Vz,T6' 2,76 (TH Oz 2y D (THO(=1:22)/2} (yz1 ) (225)
Oz : T.P){6} := \g,T6' £,TE" ((Pz)){E:(21,22)/2}
(Pe)(®} := (P)){}(eB")(e6")
— For a kind a and a predicate @ under I',
(IIX : a.P)®} .=
vxlae' X,29" WY : (X : aD{G",(Xan)/X } (P){E:(X1.X2,Y)/ X}
(AX : a.P)i6} .= |
A Xlae‘ X2%9"\Y : (X : aD{G'".(Xx,Xz)/X},« P){6:(X1,X2,Y)/ X}

(PQ)iet := (P)I®HQE")(QO") (@) 6}
Lemma 3.3.6 Let I' and I"' be declarations of A\S. Let © be a multiple assign-
ment such that A\S derives ' F I'>O. Let a be a kind and P be a predicate such

that AS derives I' - P : o ‘
Then S derives I + (P){6} : (P : a]){®"}.

Proof. Induction on P. O

Notation 3.3.7 If the multiple assignment is empty, then (P : a)) := (P : o {}
and {(P)) := (P){}. Supposethat '+ T :*, "'+ e:Tand '+ f : T. Then
(T)ef is a formula under I". We read this formula {(T"))ef as e is conforming to
f, or e and f is conforming to each other.

Proposition 3.3.8 If P =) Q, then (P){6} =, (Q){6}.
Proof. Easy. O
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Remark 3.3.9 If P is a A2-type, and all the phrases in © are A2-phrases, then
the conformity relation {(P)){€} is equivalent to that in the theory of axiomatis-
ing parametricity for System F. Thus, this definition of conformity is an extension
of that in the theory of axiomatising parametricity for System F.

Definition 1. (Axiom of Parametricity) Let T be a type under basis I" in
AS. Then, the aziom of parametricity for T is defined as: Par(T) := &r = (T).
The set of arioms of parametricity for AS is defined as:

Par)s := {V[.Par(T)| AS derives I' - T : * }.

3.4 Consistency

Theorem 3.4.1 (Consistency) Pary,s does not prove VX*VzXyX.z = y.
which means corruption of calculation.

Proof. The proof is done by using the relativisation which is similar to that in
[T]. The relativisation reduces the consistency of Par)s to normalisability of S
which is shown in Lemma 2.1.6. g

Remark 3.4.2 The formula VX*.VzXyX .z = y means corruption of calcula-
tion.

4 Category Theory

We will show an application of the theory of parametricity to a category theory
in formal system. First we will interpret category theory into APw. Then we
show an internal theorem, which is adjunction functor theorem.

4.1 Basic Notations

Definition 4.1.1 (Category, Object) A kind is regarded as a category. A
predicate P of kind A is regarded as an object of the category A.

Notation 4.1.2 Let M be a type or a predicate, and I" be a prebasis such that
I'=x:Ty,.. 2Ty Then

Ir.P= VFP Hx wz P

MM = ,\xlTl... T, M

MI .= Mil)l

Definition 4.1.3 (Hom-set, Arrow, Identity, Composition) Let I" be a
prebasis and C be a category such that C = IIT.x. Let A and B be objects of
the category C. Then the type

A B:=ITI AI'» BI' (= AC B)
is regarded as the hom-set Hom¢ (A, B), and a term f of type A = B is an
arrow of Homgo (A, B). For an object A of a category C, the arrow

idg ;= Azl ¢
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is regarded as the identity arrow of P. For arrows f: A = A’ and g: A’ & A",
the arrow

goc f:= Al AzAl gI'(fI'x)
is regarded as the composition of f and g. We sometimes omit the type index
and write only o for o¢.

Proposition 4.1.4 For arrows f : Aj = Az, g: A2 > Az, and h: A3 5 Ay,
we have idg, o f =) foids,, andho(go f) =x (hog)o f.

Notation 4.1.5 eo (f,g) := Azy.e(fz)(gy). This notation is similar to fo g =
Az.f(gz).

Definition 4.1.6 (Functor) Let C, D be categories. Let Fyyp. be a predicate
of kind C = D, Fpeq be a predicate of kind (Fiype : C = D)), and Fpyp, be
a term of type IIXY : C.(X = Y) = FypeX = FyypeY. Then, the internal
formula that
the triple (Fiype, Fpred: Ffunc) 18 @ functor of C into D
denotes the conjunctions of the gllowing formulae:
- Identity Expansion: VX : C. FpredX X&qx =& FiypeX
— Functoriality:
VXX'YY':C.Vz: X 5 X'Vy: Y H Y.
Vo : (X : CPLEXV/XY wy: (Y : CPLOVY)/ Y
¢ Evo(z,y) DO FpregXYPL Fp,.edX'Y'(zpo(FfuncXX'x,FfuncYY’y))

Notation 4.1.7 Let F be a triple (Fyype, Fpreds Ffunc) Which is a functor of C
into D. Then, we write simply as follows:
F(A) := Fiype A for an object A : C,
F(®) := FppeqAB® for a predicate ¢ : (X : C){(4.B)/X}
F(f) := Fiype ABf for an arrow f: A= B
Then identity expansion and functoriality is written as follows:
— Identity Expansion: VX. F(&x) = &g r(x)
~ Functoriality: VXX'YY'zy¢y. ¢ C o (z,y) D F(¢) C F(¥) o (F(z), F(y))

Proposition 4.1.8 Let F be a functor of C into D. Let A, A’ and A" be objects
of C. Let f and g be arrows such that f : A5 A’ and g : A' 5 A". Then, the
system Aw or APw proves that

F(idy) =idFpa) end F(goc f) = F(g) op F(f),

We can describe the notion of adjunction in APw, that is, we can describe a
formula of APw which states that a functor F' of a category C into a category D
is a left adjoint of a functor G of a category D into a category C.

4.2 Adjunction

Notation 4.2.1 Let C = IIT.x be a category. and A be an object of C. Then,
'z :T.A:= \[.[IzT AT
T 4 A:= IT'zT.A where X is fresh.

Note that both IT'zT.A and T < A are also objects of C.
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Remark 4.2.2 Let F be a functor of C into C'. Then IT'X€.F(X) plays the
role of limit.

Definition 4.2.3 (Preserving Limits) When we say that a functor F of C
into C' preserves limits, we mean a formula which states the following condition
internally:
The following two arrows are isomorphisms and natural with respect to A
and T where T is a type.
1,4 := AP UT'2.42) 4T F(\yyz)z : F(II'zT.Az) = I'zT.F(Az)
jy = AFI'XAX) XC F(\yyX)z: F(II'XC .AX) > ' X' .F(AX).

Definition 4.2.4 For a functor F' = (Fiype, Fpred) Ffunc) of C into C’, the

triple F* = (Ft_;/‘p o Fp"re o Ff;n o) defined as follows:

Fie = AXC . M'YC(X B F(Y))5Y

{(C—C',Cc—»C’ ’Fpred)/z}

Food = (AXC'. II'YC.(X 2 ZY) 5 Y))

Frte = AXCXCAaX 5 Y AL N FOOT AL AT 2O 02
where C = IIT"x and C' = IIT" *.

Proposition 4.2.5 Par,, proves that for each functor F of C into C’, the
triple 7 is a functor of C' to C.

Theorem 4.2.6 (Adjoint Functor Theorem) The azioms Paryp, proves
the formula which states the following assertion.
If a functor F preserves limits, then F ™ is a left adjoint of F.

Remark 4.2.7 If F preserves limits, then F X is isomorphic to IIY.F(X —
Y) — Y, which is close to =F(—X) logically, as is mentioned in the introduction
of literature [Hasegawad]. '

4.3 Examples

Example 4.3.1 (Exponentiation and Product) Let A be a type. Let (A —
—) be a functor of * into * which maps an object B to A — B. The formal
definition is as follows:

(A= “)ype =EAX" A2 X

(A— "')pred = ((A = —)iype)

(A- _)func = AXY XYy X poy
Then, this functor (A — —) preserves limits under Par),,. Therefore, the left
adjoint (A — —) 7 is the functor which maps an object B to IIX : x.(B — A —
X) — X, which is isomorphic to A x B=IIX : x(A - B = X) = X. Thus,
the axiom set Par),, proves that the functor (A x —) is a left adjoint of (A — —).
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Example 4.3.2 (Existential Quantifier) Let T be a type. Let K be a functor
of * into T — * which maps an object P to AzT.P. Then, this functor K
preserves limits under Par,p,. Therefore, the left adjoint K ' is the functor
which maps an object PT—* to ITX* : (P = AzT.X) — X, which is identical to
vX*.(VzT.Pz D> X) D X. This is the standard encoding of 3zT.Pz. Thus, the
axiom set Par,p, proves that the existential quantifier is a left adjoint of K.

Example 4.3.3 (Universal Quantifier) Let T be a type. Let V be a functor
of T — * into * which maps an object P to ITx”T.Pz = VzT.Pxz. Then, this
functor V preserves limits under Paryp,. Therefore, the left adjoint V™ is the
functor which maps an object P to IXT>* : (P — IzT.Xz) & X. We can
prove that this V7P is isomorphic to K P under Paryp,. Thus, the axiom set
Par,p, proves that the universal quantifier is a right adjoint of K.

5 Conclusion

5.1 Main result

The extend the theory of parametricity in lambda cube, that is, we defined the
theory of parametricity for each of eight system in lambda cube. The definitions
of them are uniform, and the theory of parametricity for A2 is equivalent to that
in the precedent works [PA, T)]. This fact certificate our extension.

In some systems in lambda cube, We can deal with several notions which
come from category theory. Especially, the system Aw can deal with functors
and adjunction. The theory of parametricity for Aw proves the adjoint theorem.
This is our main result. The theory of parametricity for Aw is a theory in the
system APw, which is equivalent to the system of calculus of construction. There-
fore, we paraphrase our main result as the following: We formalised the notions
of functors and adjunction in calculus of construction, and proved the adjoint
theorem by the theory of parametricity.

5.2 Future work

We have many other properties which we did not discuss in this paper. Poll
and Zwanenburg proposed to put a useful property ParQuot as an axiom in
his paper [PZ]. The formula ParQuot states that for each type X and for each
equivalence relation R over X, there is a type @ which denotes the quotient
domain obtained by the domain X divided by R. Hasegawa Masahito has the
conjecture that ParPw proves the axiom ParQuot.

As for category theory, our theory can give the interpretation of only the
restricted categories. The class of such categories is called Uni by Hasegawa Ryu
[Hasegawad]. It seems attractive to extend the class of categories which can be
interpreted. The systems of A-Cube has only four levels of objects, which are of
terms, of types, of kinds, and of O. In order to extend the class of categories, we
need to extend our type theory with more levels of objects.
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