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THE LATTICE VERTEX OPERATOR ALGEBRA Vg5, AND
SOME VERTEX OPERATOR ALGEBRAS CONSTRUCTED
FROM Zs-CODES

CHING HUNG LAM

In this note, we shall discuss a construction of vertex operator algebra from
Zg-codes and the lattice vertex operator algebra V 5p,. This construction is
essentially a commutant or coset construction associated with certain lattice
VOAs constructed from the lattice V, 55, . Most of the materials are already

written in [3, 4, 9]. Please refer to the corresponding references for more details.

1. A GLUE LATTICE ASSOCIATED WITH V2D,

We shall start by constructing some glue lattice Lp from a Zg-code. First,

let
Dl = {(ml,...,xn) GZI

l
Zm,- is even }, l=3,4,...,

=1

be the root lattice of type D;. Then the dual lattice of D; is

!
D} = {y€Q®th (z,y) =iny,~ € 7Z for alla:EDl}

i=1

1
= { §(y1, ..., Yn)| all y;’s are integers and have the same parity} .

Note that Dy /D; = Z4 if l is odd and D} /D, = Z, if | is even
Let L be a lattice with basis {a;,09,...,0} such that (a4, o) = 26;; and

N = Ei i=1Z(a; £ 0;). Then, L is isomorphic to a direct sum of I copies of the
root lattice of type A; and N & 2D, = {Z:=1 a; 0l Zizl a; =0 mod 2}.
Moreover, the dual lattice of N is

l
L1, 1
N ED,={ZZb,-a,~

i=1

(%

all b;’s are integers and have the same parity} .
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Note that N*/N = (Z;)'~! x Zg when [ is odd.

Actually, if we set v = a; + a2 + --- + ;. Then, v is a vector of square
length 2! and the subgroup generated by the coset 7 + NV is a cyclic group of
order 8 in N*/N.

From now on, we shall always assume ! is odd and N = +/2D,. First, let us

consider the sublattice R generated by the following eight cosets of N in L

Y Y | 3y
N, 4+N, 2+N, | 2 + N,
S5y 3y Ty
N — — — .
v+ N, 1 + N, 5 + N, 2 +N

Then we have

R/N =< %+N > Zs.

For simplicity, we shall denote Lf = iy + N for any i € Zs.

Let R* = R&® --- ® R be the orthogonal sum of n copies of R. For any
0 =(61,...,0,) € Z3, we define

Li=L%"+---+ L* = {(z1,...,2.) € R*| 2 € L%,i = 0,...,7}.

For any subset D C Zg, we define
Lp = Ls.
éeD
Definition 1.1. Let § = (é,...,6,) € Z§. The Euclidean weight of ¢ is
defined to be .
wt § =Y min{6? (8 - §)’} € Z,

=1

where 6; € {0,1,...,7} are considered as integers.
Definition 1.2. A linear Zg code D is said to be doubly even if
wtd=0 mod 16

for any § = (6,...,0,) € D.
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Theorem 1.3. Let D C Zg be a doubly even Zg-code. Then Lp is an even

lattice.

Proof. Since D is a linear code, it is clear that Lp is closed under addition.
Thus, it is a lattice.
For any a € Lt, i € Zs,
(a,a) = (zZ ZZ) 222 = ! — min{i?, (8 —1)%} ~mod 2.
Thus, for any § € D and z = (zy,...,z,) € Ls,

(z,z) = Z(x,,x, = me{&,,(S 6)’} =0 mod 2.

Hence, Lp is even. O

Corollary 1.4. Let D be a doubly even Zg code. Then the Fock space Vip =
S (f)i) ® C{Lp} is a vertex operator algebra. Moreover,

= @ (é VLa,.> as a vector space.

éeD \i=1

2. CONFORMAL VECTORS

In this section, we shall recall the construction of certain conformal vectors

Let

l
N = Z Z(o; £ aj)
4,j=1
be a sublattice of L, whlch is isomorphic to the root lattice of type \/_ 2D;. We

choose the following elements as the simple roots of type Dj:

B = (a1 + (12)/\/5, B2 = (—az + 063)/\/5, B3 = (—c1 + 012)/\/5,
ﬂiz(_ai+ai+1)/\/§ for 3<i<Il-1.
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& = {(os + a)/VE, (—ai + oy)/V2|1 i < j < 1)

is the set of positive roots. Let

(21) W () = 3B(-1)7 % (V% + &)
and set
(2.2)
81 = % —(Bl))
= £ (W () +w(B) +w (B +5),
= lgg,-s, (v (e +0)/V2) + 0™ ((—e + a5)/v2)), 3<r <L,
w= Z—('lltl—) Z B(‘—].)2

pedt
It was shown by [5] that the elements

(2.3) w! =s!, Ww=s-s12<i<]I, Wl =w -

are mutually orthogonal conformal vectors. Their central charges c(w’) are as

follows:
c(w') =1/2, c(w?) =7/10, c(w)=4/5, and c(w')=1for4<i<I+1.

The subalgebra Vir(w') of the vertex operator algebra Viy generated by w* is
isomorphic to the Virasoro vertex operator algebra L(c(w'),0) which is the
irreducible highest weight module for the Virasoro algebra with central charge
¢(w') and highest weight 0. Moreover, the subalgebra T of Vy generated by

these conformal vectors is a tensor product of Vir(w*)’s, namely,
T = Vir(w!) ® - - - ® Vir(w'*?)

> L(c(w'),0) ® -+ - ® L(c(w'*!),0)

96



97

and Vy is completely reducible as a T-module.

Next, we shall consider three automorphisms 6,, 6, o of order two of the
vertex operator algebra Vz, associated with a rank one lattice Za, where
(a,a) =2 (cf. [3, 4]). They are determined by

0, : a(-1) — a(-1), e* — —e?, e % — —e™ %
0, : a(—1) — —a(-1), e*—r e %, e — €%,
g:a(-1)—e*+e % e*+e*r— al-1), e —e*r— —(e* —e™).

The automorphism 6; maps u ® €® to (—1){*#2y ® ef for u € M(1) and

B € Za and 6, is the automorphism induced from the isometry § — —f of
Za. Note also that

0610 =03, o(a(-1)*) =a(-1) and o(er*) = (a(-1) F (e* — e™))/2.

Let L be a lattice with basis {a1, as, ..., o} such that (o;, ;) = 26;;. Then,
the vertex operator algebra V is a tensor product V; = Vz4, ® -+ ® Vzq, of
Vza,’s. Using the automorphisms 6y, 6,, and o of Vz,, described above, we can

define three automorphisms ;, ¥,, and 7 of V7, of order two by
h=60Q® - -®0,, Yo=0,---Q 0, T=0Q®- --Qo0.

Then

(2.4) 1 (u® €f) = (—1)lrtart—tanhl/2y g ¢

for u € M(1) and B € L, 9, is the automorphism induced from the isometry
B +— —B of L, and 7917 = vs.
Let ¢ : Vi, = Vi be an automorphism defined by

Yru® P —s (_1)(02+03,ﬂ)/2u ® eﬂ’

where u € M(1) and B € L. The automorphism ¢ acts as 6, on Vz,, and Vz,,
and acts as the identity on V,, for ¢ # 2, 3. Set p = p7. Then we have



Lemma 2.1 (Dong at. el. [4] ).

p(st) = %w_(ﬁs), p(s%) = ::)‘(w_(ﬂs) + w™(B2) + w™ (B2 + B3)),

p(s)=7(s"), 3<r<l, pw)=w.

Let &' = p(w') and set

Yr=o1+az+---+op—ropy, 1<r<l-1,
(2.5)
=0 +ax+- -+
Lemma 2.2 (cf. [4]). (1) The vectors &', &?, and &® are the mutually or-
thogonal conformal vectors of Vg(a, —az)+Z(az—as) = V.34, defined in [5].
1

(2) ™! = Zr(r—_'_l—)fy,(—l)z for3<r<i-1

1
~4l L 12

Note that for 3 < r < [, the element w"*! is the Virasoro element of the
vertex operator algebra Vz,, associated with a rank one lattice Z-,.

Set U* = {v € U | (v) = £v} for any ,-invariant subspace U of V.

Lemma 2.3 (cf. [4]). Q) N={8€L|{aa+: -+ a,B) =0 (mod 4)}.
(2) Vv = {v € Vi |¥1(v) = v}.
(3) p(Vi) = V.

The last assertion of the above lemma implies that the decomposition of Vy
into a direct sum of irreducible T-modules is equivalent to that of V;" as a
T-module, where T = p(T) is of the form

T = Vir(@) @ - - - ® Vir(@*+)

1 7 4
= L(§,0) ® L(E’O) ® L(g, 0)®L(1,0)®---® L(1,0).
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Next, we shall study the decomposition of Viy = V. Details are again

written in 3, 4]. As in (3, 4], we set
E =Z(a1 — a2) + Z(as — a3) and D=FE+Zy;+--+ Zny,.

The elements a; — as, az — as, 73, ..., % form a basis of the lattice D. Since

Y =D ig t(@ — @iy1), We can take
{1 — g, @2 — 03, 3(a3 — @), ..., (1 = 2)(04-2 — €1-1), M-1, M}

as another basis. The lattices E, Zs3, ..., Zv; are mutually orthogonal, so the
vertex operator algebra Vp associated with the lattice D is a tensor product
Vb :VE®VZ73®"'®VZ7,.

Next, we want to describe the cosets of D in L. Set

& = e 1<r<i-1, ana & = %%. | |
Then we have
(2.6) =6+ & = %(—(al —ag) + (02 — a3)).
and |
(2.7) “G+&Lt+& =0

To simplify the notation, we set n = —§£; + &2.

Lemma 2.4. |D + Zay : D| is equal to the least common multiple of 3, 4, ...,
l.

Note that D + Zas = L for 3 <[ < 5. Indeed, the coset D + a5y contains
ai, az, and ag. Moreover, ay € D + 9as if | = 4, andka4 € D + 2loy and
as € D + 36a; if | = 5. Hence nag, 0 < n < d — 1, where d denotes the least
common multiple of 3, 4, ..., [, form a complete system of representatives of

the cosets of D in L in these three cases. However, D + Zay # L for [ > 6.
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We shall use the following elements to describe all the cosets of D in L. For

ms, ..., Mi_2, N € Z we let
A = A(mg,my, ..., My_2,n)

= mg(as — aq) + ma(ag — as) + -+ - + My_z(_2 — og-1) + nae

(2.8) 1-3
= (m3 + n)n + Z((T + l)mr — Ty + n){,

r=3
+ ((l - l)mz_g + n)&_g +né_1 + n§ (mod D)
The last congruence modulo D comes from (4.1), (4.2), and the fact that
Qr = Qpy = —(1‘ - 1)51‘—1 + (T + l)fr

Lemma 2.5. (1) {A = A(m3,...,m_2,n)|0<m, <r-1,0<n<(l-1) -1}

forms a complete system of representatives of the cosets of D in L.

(2) Every element in the coset D + A can be uniquely written in the form

-3
v+ (ms +n)n) + Y (i + ((E + 1)mi — imipa +n)&)

i=3

+ (=2 + (I = 1)mu_z + n)&i2) + (-1 + n&—1) + (w + n&)

for v € E and u; € Zv;.

Lemma 2.6. For A = \(m3,...,m_2,n),0<m, <r-1,0<n<I(l-1)-1,
we have D + A = D — ) if and only if mg, ..., my—2, and n satisfy one of the
following conditions.

(1) n =0, and m, =0 if r is odd and m, = 0 or r/2 if r is even.

(2) n=1(l-1)/2 and 2m, + (I — 1) =0 (mod r). Such an m, is unique

if v is odd and there are ezactly two such m, if r is even.

‘The automorphism 1, fixes the conformal vectors &', ..., @'*!, and so TC
V7. In particular, 9 is a T-module isomorphism. We have 93(Vp+a) = Vb-»,

and thus Vp_, is isomorphic to Vp;) as a T-module. If D+ # D— ), the fixed
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point subspace (Vp4a@Vp-a)*t in Vpa@®Vp_, is equal to {v+45(v) |v € Vbsa}
and it is isomorphic to Vp,,. '
D+ A= D-—Afor X = A(ms,...,m_z,n), then mg, ..., my_p, and n

satisfy the conditions in Lemma 4.3. In this case (4.5) is in the following form:

Voir =VE® Vaystbsys ® - @ Vgt

with b; € {0,1} for3<i<l-1landb =0orb € {0,1} depending on

whether [ is odd or even.

For ¢ = (e, €3,...,&) with &; = + or —, set
(2.9) Vo =Vg' ® 7?3+b3‘73 ®---Q V;’;1+5171' |
Then
(2.10) Vg...,\ = ®5V5+,\a
where ¢ runs over all € = (e, €3,...,&) such that even number of ¢;’s are —.

We divide a complete system of representatives of the cosets of D in L into
three subsets A;, Az, and —Aj so that D + A = D — ) if and only if A € A;.
Then

VL = (@AEAIVD+A) & (®AEA2VD+A) @ (GB,\eAgVD-,\)-

By the above argument, we conclude that
Theorem 2.7 (Dong at.el. [4]). As T-modules,

VL+ = (@,\GAx VB-+,\) @ (EBA€A2VD+A)'V

Furthermore, the decomposition of V3 v A E A, and Vpyy, A € Ay, into a
direct sum of irreducible T-modules is given by (4.5) through (4.10) and (5.1)
through (5.7).

By the same method, we also have the decomposition of V;” 2 (¢4, Vo )®

(Dxrea; Vp+a) into a direct sum of irreducible T-modules.



3. COSET CONSTRUCTION OF VERTEX OPERATOR ALGEBRA

In this section, we shall use the decomposition obtained in the last section
and the coset construction to construct some vertex operator algebras. First,
we shall recall the definition of commutant (or coset) subalgebras of a vertex

operator algebra (cf. [7]).

Definition 3.1. Let (V,Y,w, 1) be a vertex operator algebra and (W,Y,u’, 1)
be a vertex operator subalgebra of V. Note that the Virasoro elements of V'

and W are different. The commutant of W in V is defined to be the subspace
We={veV|w,w=0, forall we W and n > 0}

Similarly, for any V-module M, the commutant of W in M is defined to be
M° = {u € M|w,u=0, for all w € W and n > 0}

The following facts are well-known in the theory of vertex operator algebra

(cf. [7], for example).

Proposition 3.2. (W¢,Y,w", 1) is a verter operator algebra where w" = w—w'

and M€ is a W¢-module for any V-module M.
Now, let L} = }7 + N be defined as in Section 1. Denote
M={veVy|(whv=(hv="= (w')v =0},

where w', i = 0,...,7, are defined as in (2.3). Note that M? is a VOA and

M i=0,...,7, are M°-modules.

For any § = (8y,...,0,) € Z3, we define

M= é)M"-'.

=1
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For any Zg code D, define

Mp =€9M5.

éeD

Theorem 3.3. If D is a doubly even Zg code, then Mp is a vertex operator

algebra.

Proof. Let D be a doubly even Zg code. Then Lp is an even lattice and
Vio =P (Vgsr ® -+ ® Vysn)
éeD

is a VOA (cf. Section 1). Note that
Mp = {veVy,| (@ =@"v="-(@)w=0},

where ' = w'®1® - ®1+1QwW' R+ -®1l+---+1®1®---®uw',i=1,...,1

Thus, Mp is a vertex operator subalgebra of V. O

Remark 3.4. As in [8, 11], one can define the so-called coordinate automor-
phisms for Mp as follows:

For any o € (Z3)",
oa(u) = £y for u € Mp,

where ¢ is a primitive 8-th root of unity and Z§ = {1,3,5,7} is the units of
the ring Zg.

4. THE CASEFOR [ =3

In this section, we shall explain the above construction for the case [ = 3 in
more details. The other cases, in principle, can Be done in a similar way.

Let L = Za; & Zay ® Zaz and N = Zf’ =1 Z(o; £ o). Moreover, we shall
denote E = Z(a; — a2) ® Z(az — a3) and F = Zry, where v = a; + a3 + as.



Theorem 4.1 (Kitazume at.el. [9]). Let
3
N =Y Z(e; + a;) @ V2D; = v24;.
i,j=1

Then

Vv (Vi eV e (Vi 8 Vi) @ (vwwl-ﬁ,m ®Vyar),
(i ov) o (v 0V2).
( ® (VE ® Vz+p) (VE+\/§(ﬂ1—ﬁz)/3 ® V§+F) ,
Viren & (VT_ VT”) ® ( ® Vi~ )
= (VFeVr)e(VzeVr)e (VE+\/§(ﬁl—ﬂz)/3 ® V%+F)’
Vipn = (VE- 0V @ (Vi 0 VR),
v

VE 8Vi,r) @ (Vi ©Viir) @ (Vervaposuys ® Visr)
Viyn & (V'T, ® VI~ ) (erm ® V}"’*) ,

where Vg = S(f); " )®T is a ,-twisted module of Vg and T is an irreducible
E/K module such thate®*-t =t forac E,t € T, and K = {xet|b€ 2E} is a
central estension of 2E, and Vi and V7 are the two inequivalent irreducible

Y -twisted modules for V.
Theorem 4.2 (cf. [9]). Let

= {v € Vi | (w')1v = (w?)1v =0}, and

W= {veVy|(w)v=0and (w?)v= :35-'0}

Then, M° is a simple VOA and M* and W* are irreducible M°-modules.
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Moreover, by Theorem 4.1,

M° = (L(%,O) ® v;) ® (L(§,3)®VF‘) ® (L(é,g) ®V§+F) )

M! = (L(é, 1)®VT1 ') (L(4 13)®VT"+)

(L( 0) ®V1+F) ® (L( ,3) ®V1+F) (L(g,g) ®V%+F) ,
M3 = (L( = T””) ea( & 13 Ve~ )

(L(4 0)®VF) & | L(= 3)®VF) ® (L(g,g) ®Vg+p) )

e )@le+)@(1:(4 Devi),

21 4 1
5 T11+ Tl
we° = L( ’_40)®VF )@( (5 40)®V )
Wé=|L 7 %% L L4 ! |%
= I( ,g)® 347 ) © ( )® 1+F (5 15)@ 14 F

3]
[unre

Mo = EL(%,O) ® v%—w) ® (L( 3)® 1+F) ® (L(g, ) ®V%+p) ,
M = (L(%,%)@V}"m ) (L(4 13)®VT”+),
wo=(1dDovi)e (. Devr) e (LG8 Vr),
Wi = <L(§,Z—%) ® Vg"‘) ® ( (g o) OV +)
W = (L(%, g) ® v;+F) (L(— 3 e V1+F) & (L(‘; 115) ® V1+F) ,
W? = (L(%,%)@V}’“) (L(5 o) O Ve -)
W = (L(g g)®VF) L(4 2)®v+> (L(3 15)®V1+F)
4
5
:
( 4

4 1
4 Ty,— o+
L(5,—4O)®VF )GB(L(5 40)®V )
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as L(4/5,0) ® Vi -modules.

Remark 4.3. In fact, one can show that M* and W*¢, i =0,...,7, are exactly
all the inequivalent irreducible modules for M°. Moreover, the fusion rules for

MDY-modules are given as:

M x MP = M+,

M x Wi =W,

W x W= M* + W,
where 1, j € Zs.

Now, let us discuss the construction some irreducible Mp-modules using

induced modules.

Let U =U% ® --- ® U% be an irreducible (M°)®"-module such that U% =
M or W%, 4§, =0,1,...,7.
Define
Ind°U =P U @---@U=te),

a€D
where Uait8 = Mai+di ( or Weité respectively) if U% = M® (or W% respec-

tively). Ind® U is called an induced module.
Theorem 4.4. If (§, D) = 0, then Ind® U is an Mp-module.

Proof. First, we shall note that U = U®* ® --- ® U’ can be considered as a
subset of Vi, = Q1 ,V;s for any 0 € Z§. Therefore,

nd?U = @ (U @ --- @ U+ C Vg, .

a€D
If (0, D) =0, then (Lp, Lsyp) C Z. Thus, Vi, , is a Vi ,-module. Note that
Mp is a subVOA of Vi, and the action of Mp on IndP U is closed. Thus,
IndP U is a Mp-module. O
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Remark 4.5. If (8, D) # 0, we believe that Ind” U will still define a g-twisted

module of Mp, where g is an automorphism of Mp such that

g(u) = €0y, forue M, and a € D,

and £ is a primitive 8-th root of unity.

Remark 4.6. Suppose VI is rational. Then one can show that Ind® U is an

irreducible Mp-module. Moreover, all irreducible Mp-modules are induced

modules and Mp is rational (cf. [9]).

10.
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