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Transcendence of the values of certain
lacunary series

BREXRANFH TP HF 28 (Taka-aki Tanaka)
Faculty of Science and Technology, Keio Univ.

1 Introduction.

Let f(z) = Y32, 2% be a power series in the complex variable z with a strictly
increasing sequence {ex}r>0 of exponents. From the Hadamard’s gap theorem, if
liminfi_,o, ex1/€x > 1, then f(z) has the unit circle |z| = 1 as a natural boundary.
The transcendence of the value f(«a) of such a series at a nonzero algebraic number
a inside the unit circle has been investigated by various authors. In 1844, Liouville
proved the transcendency of 32 ,27*, the first example of a transcendental number.
For the case of limsup,_, ., €r41/€x = 00, there were some results on the transcen-
dence of f(a), which are included in the result of Cijsouw and Tijdeman [1]. On the
other hand, only special sequences {ex}+>0 have been treated in the remaining case
of limsup,_, ., ex+1/ex < 00. Let d be an integer greater than 1. In 1929, Mahler (3]
proved that', if ex = d¥, f(a) is transcendental. Mahler's method was generalized
by Loxton and van der Poorten [2], who proved the transcendence of f(a) when
{ek+1/ex}k>0 is a sequence of integers greater than 1. However, for the case that
limg .o €x41/€x = d and {ex41/€x}i>0 is not necessarily a sequence of integers, for
example e, = kd*, no transcendence result had been known. In this paper we prove

the transcendence of f(a) under these conditions.

Theorem 1. Let {ri}i>o be a sequence of positive integers such that
limy o0 Tk41/7k = d, where d is an integer greater than 1. Suppose that there exists
a positive number M such that riyy > driy — M for all k > 0. Let

() =3
k=0

and let a be an algebraic number with 0 < |a| < 1. Then the number f(a) is
transcendental.



EXAMPLE. Let o be an algebraic number with 0 < |a| < 1 and d an integer

greater than 1. Then the numbers

(1) ia"dk, iazkd“’L("d)k, ia[“’dk“’], and ia"'(zkk)
k=0 k=0 k=1

k=0

are transcendental, where w > 0, n > 0, [z] denotes the largest integer not exceeding
a real number z, and (':) is the binomial coefficient.

Applying Mahler’s method, we proved in [5] the transcendence of the number
> ie, a** generated by a linear recurrence {a }x>o of nonnegative integers with a; =
gp* + o(p*), where g > 0 and p > 1, under some additional conditions. However,
the transcendence of the first two numbers in (1) cannot be deduced from our result

in [5] although the sequences of their exponents are linear recurrences.

Theorem 1 can be deduced from Theorem 2 below. We prepare the notation for
stating the theorem. For any algebraic number «, we denote by m the maximum of
the absolute values of the conjugates of @ and by den(«) the smallest positive integer
such that den(a)-a is an algebraic integer. It is easily seen that [ a+ ]S [ e ]+m
and | af | < | e ” B | for any algebraic numbers a and 3. Furthermore, for any

algebraic number a, we define

llal = max{[ « |, den(a)}

Then for any a # 0 we have the inequalities

(2) log o] > —2[Q() : Q]log [|a]
and
(3) log || < 2(Q(a) : Q]log [l

(cf. [4, Lemma 2.10.2}).
Let K be an algebraic number field. We denote by K][[z]] the ring of formal
power series in the variable z with coefficients in K. Let

Fi(2) Za(k) "e K[z]] (k>0)

and let a € K with 0 < |a| < 1. In what follows, ¢;, ¢, . . . denote positive constants
independent of k and depending only on fi(z) (k > 0) and ¢, and if they may depend
also on parameters z as well as y, they will be denoted by c¢;(z), c2(z,y),... . Let

{rk}x>0 be a sequence of positive integers with the following properties:

123



124

(I) ry, — oo as k tends to infinity;
(I1) fe(a™) = axpfo(a) + b (k > 1), where ay, by € K and

log ||ak|| , log [be]| < e1ri;

(II1) for any € > 0 and for any [ > 0, there exists a constant cz(¢,l) > 0 such that
log |o{®|| < eru(1+1)
for all k£ > ¢(e,1);
(IV) for any € > 0 there exists a constant c3(¢) > 0 such that
log |oF)] < erx(1 +1)
for all k > c3(¢) and for any [ > 0.

Let so,s1,... be variables and put F(zjs) = Y282, Then F(z;0)) =
fx(2) (k > 0). We assume that

V) if Py(z;8),...,Py(2;s) are polynomials in z and {s;};>0 with degrees at most
2 > g
p in z and coefficients in K and if we put

E(z;8) = i Pj(2;8)F(z;s) = ZR,(s)zl,
7=0 1=0
then there exists a positive integer I(p), independent of k and depending only
on F(z;s) and p, with the following property. If k is sufficiently large and
Po(z;09), ..., Py(z; o'¥)) are not all zero, then there is an [ such that [ < I(p)
and Rz(d(k)) 75 0.

Theorem 2. If the properties (I) — (V) are satisfied, then the number fo(a) is

transcendental.

REMARK. If the constant c;(¢,!) in the property (III) does not depend on .
then the property (IV) is satisfied by the property (III). This is the very case that
Loxton and van der Poorten [2] dealt with.
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2 Proof of the theorems.

Proof of Theorem 1. We may assume that ro = 1, replacing ro,7r;,72,... by
1,7ro,71,... if necessary. Define
e o] " " .
fi(z) =3 ammrmmed® 4 (k> 0).
h=0
Then

(4)

and fo(a) = Y2, a™ = f(a), which is transcendental by Theorem 2 if the proper-
ties (I) — (V) are satisfied.

The sequence {ri}s>o obviously has the property (I). Let K = Q(a). Then
fr(z) € K[[2]] (k > 0) and

O_(k) _ arh-f-k—rkdh (l — dh)
: 0 (otherwise)

00 k-1
fk(a’"") = Z arh“‘ = fo(a) - Z a™.
h=0 h=0

Since riy; > 7 for all sufficiently large k£ by the assumption, there is a constant
C > 1 such that maxo<p<k—17n < Cry for all £ > 1. Hence

k-1
— Th < <
log ’;)a <logk + (Ogrhnsa]zc_l rh> log ||a|| < 1%,

and the property (II) is satisfied.
Using (3), we have

(5) log [la™#+=" | < 2K : Q]|rnsx — red*|log |la] .

By (4), (5), and ]|0|| = 1, in order to prove that the property (III) is satisfied,
it suffices to show that for any ¢ > 0 and for any A > 0, there exists a constant
¢2(e,h) > 0 such that

rhak — red"| < erid

for all £ > c2(5,h). If h = 0, this inequality holds for all £ > 0. Since
limy_ oo Thy1 /T = d, for any € > 0 and for any h > 1, there exists a constant
ca(g, h) > 0 such that

€ Tk41 1>
1 1
1ok < ~ T xo0R
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for all k£ > cy(e, k). Then

|Thak — red"| Tk+h Tkt " lj-e
= .. -1 < < =e€.
rirdh drk+h_1 dry z 6)h -1~ lie €
Next we prove that the property (IV) is satisfied. Since
Thk — Thd® = (Phgn — drieno1) + d(Thghor — drignos) + - + d* N (regq — dre)

> -M(1+d+---+d*)

by the assumption in the theorem,

- h _
M(d" - 1) log la] < —M(1 4 d*)log |al.

log Io'g;)l = (rpk — deh) log |a| < — 1

Then for any € > 0 there exists a constant c3(¢) > 0 such that ery > —M log || for
all k > c3(¢), and the property (IV) is fulfilled.

Finally we show that the property (V) is satisfied by the same way as in the
proof of Theorem 2.10.1 in [4]. Choose a positive integer A(p), depending on p, such
that

Ap)
Orgjaé’degzP (2;8) < d™P.

Suppose that Py(z;0¥)),..., P,(2;0%)) are not all zero and put
= p'(k) = max{j | P(z;0™) #0},  a=a(k)=deg, Py(z;0™).

Then
E(z;0%)) = EP z;08) fi(z 1—21{, *)),

We prove that Rj(o*)) # 0 for some I. This can be done by choosing

l=a+ pz d\p+m
‘m=1
and considering the d-adic expansion of the positive integer ! in place of the
{dy,d;,...}-adic expansion in the proof of Theorem 2.10.1 in [4]. Since a(k) < d*)
and p'(k) < p for any k, we can take I(p) = dMP*P+1 and the property (V) is ful-
filled. Then by Theorem 2, f(«) is transcendental, and the proof of the theorem is
completed.
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We prove Theorem 2 by the method of Loxton and van der Poorten {2] and
Nishioka [4].

Proof of Theorem 2. We assume on the contrary that fo(a) is algebraic. We
may suppose fo(a) € K.

Proposition 1 (Loxton and van der Poorten [2], see also Nishioka {4, Proposi-
tion 2.9.2]). Let m be a nonnegative integer. There exists an infinite subset A(m)
of the set IN of positive integers such that for any polynomial P(so,...,Sm) €

K[sg,-..,8m] the following two properties are equivalent:
(1) P(a((,k), ..., a®)) =0 for infinitely many k € A(m).

(ii) P(e$®, ..., o)) =0 for all k € A(m).

Let m be a nonnegative integer and put

V(m) = {P(s0,...,5m) € K[s0, ... 5m] | P(c,...,6®) =0 for all k € A(m)}.

Then V(m) is a prime ideal of K|so,...,s,] by Proposition 1.

Proposition 2 (Loxton and van der Poorten [2], see also Nishioka [4,
Proposition 2.9.3]). For any positive integer p, there ezist p + 1 polynomials
Po(2580, -+ 15p2 )5y Pp(2; S0y - -y 8p2) € K[z, 50,...,5,2] with degrees at most p in
z such that the function

4 ) 00
Ey(z;8) =Y Pi(z;50,...,8,2)F(z;8) = Y Ry(s)7
Jj=0 - I=0

has the following two properties: .

(i) Ri(s) = Ri(So0,---,852) € V(p*) for all | with | < p?;

(i) there ezists a positive integer I(p), independent of k and depending only on
F(z;s) and p, such that ord,—oE,(z;0®)) < I(p) for all sufficiently large k €
A(p?).

Proposition 3. For any positive integer p and any positive number €, if k >
ca(e,p), then
log "Ep(a”‘; a("))“ < erges(p) + cerip.



Proof. By the property (III), "a,(k)" < e (4D for all k > cy(e,1). Let
Pi(2;80,---18p2) = Yo Qii(S0,---,802)2'. Since Qji(s0,---,8,2) € Kl[so,-..,55],

we have
"Qﬂ a(()k), . (k) " < ¢ p)eersz(P)

for all £ > maxo<i<p2 c2(€,1). Since

p .
E(a™;0®) = Y Pia™;ap),...,0)F(am;o®y

- iPJa o), 0B f(am

j=0

= EP(a”‘ o® S))(akfo(a)+bk)j

=0

4 14 R
=3 (Z Qila?,.. ,a,‘,’:’)a'*') (axfola) + bi)?,

7=0 \|=0

noting that ||a™| < cg*, we obtain

"Ep(a'*;a("))" < clo(p)eﬂ‘kcu(l’)cgk?( 2e1mk(|| fola)|| + 1))”
for k > maxo<i<p2 c2(€, 1), which implies the proposition.

Proposition 4. For any positive integer p and any positive number ¢, there ezist
infinitely many k € A(p?) such that E,(a™;0®) # 0 and

log |Ep(a™; oM < —crrip?® + errcs(p).

Proof. In what follows, we always assume that k € A(p?). By the property (i)
of Proposition 2,
E,(a™;o) = 3" Ri(a®))a,
I1>p?
Let
n = min{l | R;(c®)) #£ 0} (k > 0).

By the property (ii) of Proposition 2, there is an [ such that I < I(p) and R;(c'®)) # 0
for all sufficiently large k. Hence there exists an integer N such that ny = N for
infinitely many k. If n, = N,

(6) |Ep(a™;0®)) — Ry(6®)a™| < 37 |Ri(a®)a™!|.
I=N+1
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Pi(z;80,--,82) =Y Qji(s0,- - -, 8p2)2, F(z;s) = Z G(s)2".
1=0
Then by the property (IV),

IQ]I(O‘(()k)’ 70();))1 S cg(p)eerkcm(p).

and
|Gﬂ(‘7(k))| = Z a,(f) x “Tz(,k) < (14 1)esm D
[1+-"+Ij=l
for k£ > ¢3(e). Therefore
(7) |Ri(c®)] < cll(p)esrkcl2(1’)(l 4 1)Pesme(p+D

for k > c3(¢). On the other hand, noting that N < I(p), we obtain
(8) , "RN(a(k))" < erg(p)esmen®

for k > ¢15(e, p). By (7)

log [Ri(e®)a™!| < logein(p) + erciz(p) + plog(l + 1) + erv(p + 1) + rillog |a|
<

ericie(p) + (1 — caze)rillog |

if k> c18(¢,p). Choose ¢ so small that 1 — ¢;7¢ > 0. Then for k > ci5(e, p),

. )
(9) } Z IRI(U(k))arkl] < e”"cw(p)Clge(l—c17€)r"(N+1)105|°‘I,
I=N+1

By (2), (8), and (9), if k¥ > cyo(e,p) and ny = N, then

log > |Ri(e™)a™!|/|Rn(c®)aV|
I=N+1

erxers(p) +log crg + (1 — cize)ri(N + 1) log|al

+2[K : Q]log c13(p) + 2[K : Q]erch( ) —riNlog|a|

= logecs + 2[K : Qllog c13(p) ‘

+7% (e(cm(p) + 2[K : Qlera(p) — c17(N + 1) log [a|) + log |a|).

AN

Noting that N < I(p), we have

(crs(p) + 2[K : Qlera(p) — err(N + 1) log a]) +logla] < 0
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if € < ¢31(p). Hence we have

Z lRl(a(k))a”‘l|/|RN(0'(k))Ol”‘N| =0 as k — oo (nk _ N)
I=N+1

Therefore by (6)
E,(a™;0%))/Ry(a®))a™*N — 1 as k — oo (ny = N).

Noting that N > p? and using (7), we obtain the assertions of the proposition.
g p g

Now we complete the proof of the theorem by choosing p > 2[K : Q]cg/c7. By
Proposition 3, 4, and (2), for infinitely many k € A(p?), we have

—corip’ + erxcs(p) > log|Ey(a™; a(k))|
> —2[K :Q]log "E,,(a"‘;a(k))“
> —2[K : Q|(erres(p) + ceTp).

Dividing both sides by r, we get
—cp® + eca(p) 2 —2(K : Q)(ecs(p) + cop)-

Letting ¢ tend to 0, we obtain
2 -
—crp” 2 —2[K : Q]esp,

which contradicts the choice of p, and the proof of the theorem is completed.
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