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1 Introduction

We investigate the dynamics of structurally finite transcendental entire func-
tions, which was defined by Taniguchi ([2]). We will show that we can define
an itinerary for the points which remain in some region under iteration and
the set of all points which share the same itinerary forms a curve which goes
to infinity. Also these curves belong to the Julia set and the points on these
curves tend to infinity under iteration. This is a generalization of the result
by Schleicher and Zimmer ([1]) for the exponential family.

2 Structurally finite entire functions

In this section, we make a brief explanation of structurally finite entire
fucntions which was defined by Taniguchi ([2]).

Definition 1 (Maskit surgery by connecting functions)
Let f; : C —» C (j = 1, 2) be two entire functions, and A; be the set of
singular values of f;. ’ '

Assume that there is a cross cut L in C such that

1. both of LN A; and LN A3 are either empty or consist of a single point
20, which is an isolated point of each A;,

2. L separates A; \ {20} from As \ {2}, and
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3. if LN A; = LN Ay = {2}, then {20} is a critical value of each f;: for

a small disk U with center zo such that U N A; = {2}, f;'(U) has
a relatively compact component W; which contains a critical point for
each f;.

Then we say that an entire function f : C — C is constructed from f;
and f2 by Maskit surgery with respect to L if the following assumptions are
satisfied: Let D; be the component of C \ L containing A; \ {20}. Then
there exist

1. components Dy and D, of frY(D,) and fs 1(D,), respectively, such
that f; : D; = Dj_; is biholomorphic and D;nW; #0if LN A;j are
non-empty,

2. a cross cut L in C such that f gives a homeomorphism of L onto L,
and '

3. a conformal map ¢; of C\ Dj onto U; such that f; = fo¢; on C\ Dj,
where U; and U; are components of C \ L.

Definition 2 (structurally finite entire functions)

We say that an entire function is structurally finite if it can be constructed
from a finite number of building blocks by Maskit surgeries. Here, a building
block is either a quadratic block:

at+bz+c:C—>C (a#0)
or an exponential block:

aexp(bz) +c: C—>C (ab#0).

Then the following Representation Theorem holds:

Theorem (Representation Theorem) Every structurally finite entire
function has the form i .
/ P(t)e?®dt

with suitable polynomials P and Q.
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Note that if f is structurally finite, then f belongs to so called the Speiser
class, which is a class of entire functions with only finite number of singular
values.

3 Statement of the result

Let f(z) be a structurally finite transcendental entire function. Since we are
interested in the dynamics of f, by the Representation Theorem and some
suitable linear conjugation, we can assume that f(z) has the following form:

f(z) =a /Oz P(t)e?®dt + b,

where a, b € C and P, () are monic polynomials with degP = p >
0, deg @ = ¢ > 1. In what follows we consider only transcendental case, we
assume here ¢ > 1. Then it is easy to see that f has p critical values and
q asymptotic directions which correspond to some finite asymptotic values.
In particular, f has only finite number of singular values. So we take a disk

D:={z]|z| < C}

which contains all the singular values of f. Then f~!(C\ D) has exactly
q components and each one by one lies in one of the ¢ domains which are
divided by the ¢ asymptotic paths | '

€2k;l"it (tZO)a k=1,2,---,q,

which correspond to some finite asymptotic value. Let I' be one of these
paths, say _
I'(t) :==ed't (t>0)

for example. Then each connected component of f~1(I') is a curve which
tends to oo and its argument tends to one of 2—’;—’1 (k=0,1,---,g—1), which
is the argument of asymptotic paths which corresponds to the asymptotic
value co. Let S be one of the components of f~!(C\ D). Then we make a
partition of S by using f~!(T') so that

S=]] R
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(See Figure 1). For a point z € S such that f"(z) € S for any n € N, we
can define its itinerary S(z) by

S(z):=s=s081+"+8pn---, if f*(z) €R,,.

In what follows, for simplicity, we assume that S is the component of

f~Y(C\ D) which has an intersection with R¥.
0

Figure 1 : Domain S and its partition by f~1(T') (The case ¢ = 3).

Main Theorem Let f be a structurally finite transcendental entire func-
tion. For an itinerary s = sp81---5y--- satisfying |s,| < F™(z), where
z > 0 is some constant and

F(z) = Z lan|2",  f(2) = Zanz",
there exists a continuous curve
ho(t) C S (t > o)

such that |
(1) All the points hy(t) for fixed ¢ has the itinerary s.
(2) f™(hs(t)) € S for every n.
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(3) f™(hs(t)) = o0 (n — 00). In particular, hy(t) € J(f).
(4) lim hy(t) =

t—o0

(5) hs(t) is injective with respect to t.

4 Preliminaries

Proposition 1 If

2 | ‘ |
zE.S'O:——-{z‘‘argz—-£7£ <_7r_ k=0,---',q—1}
q 4q’

and |z| is sufficiently large, then the féllowing estimates hold:
(1) f(z)= qZ” e (14 0(2| ™).

|2/ )

7

exp(|z]|?*¢) for a small € > 0.

2|2+t exp(E

2) If(2) 2

a
®) (@ =27
(4) Let gs, be the branch of f~! which takes values in R,,. Then

195,(2)] > (log |2])7 —e.

Define _ ‘
h’g(t) 1= g5, 005, 00 gs, (F"(t)) € R,

F(z): Z lan|2",  f(2) = Zanzn.

where

Proposition 2

)] 2 (%)qt-—s.

Proposition 3
1
195, ()] < 12l v
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Now hj3(t) can be written as follows:

n-1
h2(t) = hY(8) + ) (RET1(t) — RE(E)).
k=1
Then we have an estimate
BEL() - )] < suplal, () Ik (F®) = BEQ(F ),

where 2 runs on the line segment L between h{j(g)(F (t)) and hﬁ(;(F (t)). By
Proposition 2, both points satisfy

HIE (%)%Fm—e

Since all the components of f~!(I') in S have the same asymptotics, we have
R, N{|z| > M} C {z I |arg z| < :—q}
So we have

in |2| > 1 %t € u
min |z —— - COS —.
z€eL - \/i ! 8¢q

From the above estimate and Proposition 3, we have

sup |g;, (2)|
z€L

< ml(GRin-9=g) ™

Repeating this procedure, we have

|hg+(t) — hy ()]
1 1,1 T\ 2l+e
< (-9 ™)
X |Pgn(y (F™(t)) = hgn(e) (F™(2))]

_ (H . *) [9oura (F™1(1))) — F™(0)].

k=1
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In order to get an estimate for the term |g,,,, (F"*1(t))) — F™(t)|, we n
the following propositions:

Proposition 4 ¢;; : R; — R; is well-defined by the formula
fpij(2)) = f(2), 2z € R;
for z with |z| large enough and satisfies

2(j — i)mv/—1 '11+0( 1 )

q 29"

pij(z) = z +

Proposition 5

95:(F(2)) — 2| <

if z€ Ry and F(2) € S.

2(85 — i])ﬂ\/—l te

By Propostion 5, we have the following estimate:

70 - 1) B
< (fiA((ong) ™)« (250

where t; := F¥(t). Hence we have

g5 (t) — agg(t)
locally uniformly for ¢ > ¢y(> ).

5 Outline of proof of the Main Theorem

Now the proof of (1) and (2) are trivial.
(3) Since f(h7(t)) = h™ 1(F(t)), we have

o(s)
f (hg(t)) = ha(ﬁ)(F (t))
by taking a limit. In general we have

FP(hs(t)) = hon(e) (F™(t)) > (%) %F"(t) —e.
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Hence we have,
f™(hs(t)) = 0o (n — 00).

Since it is well known that functions of finite type can have neither Baker
domains nor wandering domains, this implies that

g-_‘l_(t) € J(f) |

(4) Since

ol > (55) 't

from Proposition 2, we have

Therefore
lim hy(t) = oo.

t—00

(5) Suppose that hg(t) is not injective. Then
hy(t1) = hy(t2)

for some t; < t2. Hence we have

" (ha(t1)) = [ (hs(t2)),
that is,
han(ﬁ) (Fn(tl)) = han(g)(Fn(t2)).
On the other hand, it turns out that

28,/ —1

+ €

1
|F™(te) |7~

for k=1, 2. Then g,n()(F"(tx)) — F™(tx) are bounded for k£ =1, 2 and
hence

homie) (F™(t0)) — F™(t8)] <

(Gomie (F(02)) = F*(t1)) — (g (F™(22)) — F"(22))
= F"(t2) — F_"(tl)

is also bounded, which is impossible.
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