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Local diffeomorphisms with positive entropy
and chaos in the sense of Li-Yorke

Naoya Sumi (R E#&k)

Abstract

We show that if f is a C®-local diffeomorphism with positive entropy on a n-
dimensional closed manifold (n > 2) then f is chaotic in the sense of Li-Yorke.

1 Introduction

We study chaotic properties of dynamical systems with positive entropy. Notions of chaos
have been given by Li and Yorke [15], Devaney [5] and others. It is well known that if a
continuous map of an interval has positive entropy, then the map is chaotic according to
the definition of Li and Yorke (cf. [2]). For invertible maps the following holds: let f be
a C?-diffeomorphism of a closed C°-manifold. If the topological entropy of f is positive,
then f is chaotic in the sense of Li-Yorke {31].

In this paper we show the following:

Theorem A Let f be a C?-local diffeomorphism of a closed C*°-manifold. If the topological
entropy of f is positive, then f is chaotic in the sense of Li-Yorke.

From this theorem we obtain the following corollary.

Corollary B Let f be a C?-local diffeomorphism of a closed C*°-manifold. If f is not
invertible, then f is chaotic in the sense of Li- Yorke.

First we shall explain here the definitions and notations used above. Let X be a compact
metric space with metric d and let f : X — X be a continuous map. A subset S of X is a
scrambled set of f if there is a positive number 7 > 0 such that for any z, y € S with z # y,

1. limsup,,_,o, d(f"(2), f"(¥)) >,
2. liminf, ., d(f"(z), f*(y)) =0.

If there is an uncountable scrambled set S of f, then we say that f is chaotic in the sense
of Li-Yorke . Li and Yorke showed in [15] that if f:[0,1] — [0,1] is a continuous map with
a periodic point of period 3, then f is chaotic in this sense. Note that any scrambled set
contains at most one point  which does not satisfy the following: for any periodic point

pEX,
lim sup d(f"(z), f"(p)) > 0.

For another sufficient condition for the chaos in the sense of Li-Yorke, the readers may refer
to [4], (7], (8], [9], [10], [11], [19], [20], [34}.

Concerning the chaos in the sense of Li-Yorke, Kato introduced the notion of ”*-chaos”
as follows: let F be a closed subset of X. A map f : X — X is *-chaotic on F (m the sense
of Li-Yorke) if the following conditions are satisfied:

1. thereis 7 > 0 with the property that for any nonempty open subsets U and V of F' with
UNV = @ and for any natural number N, there is n > N such that d(f"(z), f*(y)) > 7
forsomez € U,y € V, and
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2. for any nonempty open subsets U, V of F and any € > 0 there is a natural number
n > 0 such that d(f™(z), f*(y)) <eforsomez e U,y e V.

Such a set F is called a *-chaotic set. If S is a scrambled set, then the closure of S, S, is
a *-chaotic set. In [10] Kato showed that the converse is true. This is stated precisely as
follows:

Lemma 1 ([10}, Theorem 2.4) Let X be a compact metric space and let F be a closed
subset of X. If f : X = X s continuous and is x-chaotic on F, then there is an F,-set
S C F such that S is a scrambled set of f and S = F. If F is perfect (i.e. F has no isolated
points), we can choose S as a countable union of Cantor sets.

By this lemma, to show the existence of uncountable scrambled sets it suffices to show
the existence of perfect *-chaotic sets.

To obtain Theorem A we consider the inverse limit system of f. Let M be a closed
C*-manifold and let d be the distance for M induced by a Riemannian metric || - || on TM.
Let MZ denote the product topological space M Z = {(z:) : z: € M,i € Z}. Then MZ is
compact. We define a compatible metric d for M2 by

@)=Y T (), 4) € M.

i=-00

For f: M — M a continuous surjection, we let
Mf = {(.’E,‘) :x; € M and f(:r,-) =Zi1,1 € Z}

Then M; is a closed subset of MZ. The space M is called the inverse limit space constructed
by f. A homeomorphism f : My — My, which is defined by

F((:)) = (£ (z:)) for all (z:) € My,

is called the shift map determined by f. We denote as P° : M; — M the projection defined
by (z;) — zo. Then~P0 o f = foP? holds. Remark that f is chaotic in the sense of Li-Yorke
if and only if so is f.

We can show that the topological entropy, h(f), of f coincides with that of f. Indeed, for
an f-invariant probability measure v, we can find an f-invariant probability measure p such
that v(A) = P?u(A)(= p((P°)~'A)) for any Borel set A C M ([18] Lemma IV 8.3). Let us
denote as h, (f) and h,( f) the metric entropy of (M, f,v) and (M 3 f, ) respectively. Then
we have h,(f) = hpo,(f) = hu( f) ([25] Lemma 5.2). Therefore, the conclusion is obtained
by the variational principle ([32] Theorem 8.6).

We say that a differentiable map f: M — M is a local diffeomorphism if for x € M there
is an open neighborhood U, of  in M such that f(U,) is open in M and f|y, : U, = f(U,)
is a diffeomorphism. Since M is connected, then the cardinal number of f~!(z) is constant.
This constant is called the covering degree of f. If the covering degree of f is greater than
one, (My, M, C, P°) is a fiber bundle where C denotes the Cantor set (see [1] Theorem 6.5.1).

Let p be a Borel probability measure on My and let B be the Borel o-algebra on My
completed with respect to u. For ¢ a measurable partition of My and £ € My we denote as

(:1:) the element of the partition £ which contains the point Z. Then there exists a family
{u | € M;} of Borel probability measures satisfying the following conditions:

1. for Z, §j € My if £(Z) = £(7) then ui = Il;,,
2. & (£(F)) =1 for p-almost all & € My,
3. for A € B a function % -+ uf(A) is measurable and u(A) = | M, pé (A)du(E).

The family {pf-,]:i: € My} is called a canonical system of conditional measures for p and €
see [26] for more details).
To prove Theorem A it suffices to show the following theorem.
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Theorem C Let f be a C?-local diffeomorphism of a closed C*°-manifold M and let p be
an f-invariant ergodic Borel probability measure on Mjy.

If the metric entropy of p is positive, then there exists a measurable partition n of My
such that supp(u?) is a perfect x-chaotic set for u-almost all & € M;.

Here the support supp(v) of a finite measure v is the smallest closed set C with v(C) =
v(My). Equivalently, supp(v) is the set of all # € M; with the property that »(U) > 0 for
any open U containing Z.

Let us see how Theorem A follows from Theorem C. We know that h(f) = sup{h,(f) :
€ M( f)} where M. (f) is the set of all f-invariant ergodic probability measures (cf.[27]).
Thus, if A(f) = h(f) > 0, then we can choose u € M.(f) with hu(f) > 0. Therefore, by
Theorem C and Lemma 1, f is chaotic in the sense of Li-Yorke.

2 Key Lemmas

In this section we prepare some lemmas which need to prove Theorem C. Let f be a C2-
local diffeomorphism of a closed C*°-manifold M and px be an f-invariant ergodic Borel
probability measure on My with h,(f) > 0. As in the previous section we denote as B
the Borel o-algebra on M; completed with respect to u. For u-almost all £ = (z;) € My,

there exist a splitting of the tangent space To, M = @!°°) E;() and real numbers \; (zo) <
A2(Zo) < *+ - < Ag(zo)(Zo) such that

(a) the maps % — E;(Z), \i(zo) and s(zo) are measurable, moreover E;(f(%)) = D, f(E:i(%))
and Ai(zo), 8(zo) are f-invariant (i =1,---, s(zo)),

(4) lim = 10g|(Deof™)* @)l = Milzo) (0# v € Ei(#), =1, 3(z0)) and

’ s(zo)
(o) llm —log |det(D,, fI"h)*!| = z Ai(zo)dimE; (%)

=1
([21], [33], [29], [30]). The numbers A;(Zo)," -, As(zo)(Z0) are called Lyapunov exponents
of f at a:o Since p is ergodic, we can put s = 8(zo), Ai = Xi(zo) and m; = dimE;(%)

(¢=1,---,8) for py-almost all Z = (z;) € My.

A well-known theorem of Margulis and Ruelle [28] says that entropy is always bounded
above by the sum of positive Lyapunov exponents; i.e. hpo,(f) < 3°5,50 Aim;. Since f has

positive entropy, we have 0 < hu(f) = hpo,(f) < max{X\;} = A,. Fix 0 < A < min{); :
A; > 0}. From [24], [29] and [30] there are measurable functions 3 > & > 0 and 7 > 1 with
the following properties: For # = (z;) € My we put

Wi (%) = {5 = (1) € My : d(0,30) < &(&), d(z:,%:) < B(&)e™™ (i > 1)}.
Then
(a) the map PP restricted to W (%) is injective,
(b) PY(W (%)) is a C?-submanifold of the ball {y € M : d(zo,y) < &(%)},
(©) TeoPOU(WE,(5)) = 2,0 E+(3)(# {0}) for p-almost all & € My,
(d) d(yi, %) < ¥(&)d(yo, 20)e™™ for (yn), (2n) € Wi (2).

For the case when f is invertible we may refer to [6], [22] and [23].
Let £ and 7 be measurable partitions of M;. Put fre = {f"C C €€} forn € Zand
then (f*€)(2) = f*(€(f"(%))) for # € Ms. n < € means that for y-almost all # € M; one

has §(2) C n(2)

Lemma 2 Let f and p be as above. Then there exists a measurable partition £ of My such



(a) €< 771

(b) for p-almost all & € My, £(%) C W (%) and £(Z) contains a neighborhood of & open
in W2, (@),

(c) V2, f "¢ is the partition into points.

This lemma is similar to [13] Proposition 3.1, [16] Proposition 5.2 and [17] Lemma 2.2.
So we omit the proof. '
Let C denote the family of all nonempty closed subsets of My and define a metric dy by

du(A, B) = max{supd(A4,b), supd(a,B)} (A,BCC()
beB acA

where d(A,b) = inf{d(a,b) : a € A}. Then it is known that (C,dy) is a compact metric
space (cf.[12]). If £ is a measurable partition, then £ — &(%) € C is measurable. Indeed,
this follows from [3] Theorems IIL.2, I11.9, II1.22 and the fact that {(£,£(%)) : £ € My} is a
Borel subset of My x My. For A C My we put diam(A) = sup{d(&,§) : %,§ € A}. Then
we have diam(A) = diam(A). Since  +» £(Z) € C is measurable, Z — diam(£(Z)) is also a
measurable function. By Lemma 2 (c) we have that for y-almost all £ € M;

diam((f~"€)(z)) = 0 (1)

as n — 0o.

Let ¢ and n be measurable partitions of M; and let {u$|% € M;} be a canonical system
of conditional measures for 2 and £. The mean conditional entropy of n with respect to £ is
defined by

H1le) = [ - log st (0()du(2)
(see [27] for details).

Lemma 3 Let f and u be as above and let € be as in Lemma 2. Then,

hu(f) = Hu(F71€19).

For the case when f is invertible this lemma is proved by Ledrappier and Young [14].
We recall that if the covering degree of f is greater than one, then (M, M, C, P°) is a fiber
bundle where C denotes the Cantor set. In view of this fact, the above lemma can be proved
by almost the same arguments as the proof of [14] Corollary 5.3 and [16] Corollary 7.1 with
some slight modifications. Here we omit the proof.

By Lemma 2(a) we have that ¢ > fe > f?¢ > ---. Let us introduce a measurable
partition defined by n = A2, f i¢. Then we have fn = 7. For simplicity put

pz=pl and pf=pl"t (nez)

By Doob’s theorem it follows that for a u-integrable function ¢ : My —+ R

[ vz = i [ vz (2)

for p-almost all Z. Since fn = 5 and fopu = p, by the uniqueness of a canonical system of
conditional measures (cf.[26]) we have that for u-almost all &

fomz =pj; and  fopl=p (neZ). 3)
Here (f.v)(A) = v(f~1A) for a Borel probability measure v on M sand A € B.

Let C'(My) be the Banach space of continuous real-valued functions of My with the sup
norm |- |, and let M(My) be a set of all Borel probability measures on My with the weak
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topology. Since C(Mjy) is separable, there exists a countable set {¢1, 2, - -} which is dense
in C(My). For v, v' € M(My) define :

= | f pndv — [ pndv/|
p(v,v') = .
( "Z_:l 2"|pn|oo

Then p is a compatible metric for M(My) and (M(My), p) is compact (cf.[18]). Since (2)
holds for {y;}, we have
pz = lim pf 4)

n-—o0o0

for u-almost all Z. For » € M(My) and a measurable partition £, by the definition of
conditional measures {~{}, the map

M;a:’é'—)/cpndug

is measurable for n > 1 and thus Z — v§ € M(M;) is measurable.

Lemma 4 Let f, u and {uz|E € My} be as above. Then for € > 0 there exists a closed set
F, with u(F.) > 1 — £ satisfying the map

F,2>%w- p; € M(My)
18 continuous.

Proof. Let {¢;, 2, -} be as above and let € > 0. Since & — [ <p,-du§ is measurable for
i > 1, by Lusin’s theorem there exists a closed set F; (i > 1) with u(F;) > 1 —¢/2! satisfying

F;32%w / pidp;z : continuous.

Then F, = (N2, F: has the desired property.
’ a

For v € M(Mjy) and E € B let v|g denote the restriction of v to E, i.e. v|g(A) = v(ANE)
for A € B. Clearly v|g is a finite measure. We denote as B(Z,r) and U(Z,r) the closed and
open balls in M; with center £ € My and radius r > 0 respectively. Let {¢;,p2,---} be as
above and let v € M(Mjy). For & € supp(v) and € > 0 we can find i such that

/ pidv > /(p,-du —E&.
U(z,)

Since the inequality holds for v' sufficiently close to v, we can easily prove that
“M(Mjg)d v+ supp(v) €C

is lower semi-continuous and so the map is measurable ([3] Corollary III.3). Since v —
diam(supp(v)) is lower semi-continuous,

P(My) {v € M(Mjy) : v is a point measure}

{v € M(Mjy) : diam(supp(v)) = 0}

is a closed set of M(Mj). Since (f"€)(£) C n(%), we have
supp(pz) C supp(pz) (n € Z)
for p-almost all £ € My.

Lemma 5 Let f, u and {usz|& € My} be as above. Then for pu-almost all £ € M, supp(uz)
has no tsolated points.
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Proof. Let £ and p? be as above. Then it is easily checked that for n € Z
P, ={Z € Mj:pu; € P(Mf)} D {% € My : B3| fng)(z) 1S & point measure}.

If this lemma is false, then there exists a measurable set with positive measure such that
for any # belonging to the set, supp(uz) has an isolated point. Since diam((f ‘kg)(:i:)) -0
(k — 00) by (1), we have p(P_i) > O for k large enough. Put P = ;5 U,>; f"P-x and
then u(P) = 1 because u is ergodic. -

By (3) we have

n2j

A (Pox) ={f"(&) € My : p;* € P(M)}
={z € My : fruzk,, e P(M)}
= {Z € My : p7™* € P(M;y)}
=P, (n€Z),

and so P =();5; U,>; Pa—k- Thus, for Z € P there exists an increasing sequence {n;};>o
such that £ € P, for i > 0. Since pz = lim;_,o p3* (by (4)) and uZ' € P(M;) for i, we
have pz € P(M;) for € P.
Since { > n and p, is a point measure for p-almost all Z € My, so is ,uf-,. Thus
tS((F1€)(£)) = 1 for p-almost all Z. Therefore
L

hu() = Hu(F1el6) = [ ~log b (F€)(@)dutz) = 0

by Lemma 3. This is a contradiction.

3 Proof of Theorem C

In this section we will prove Theorem C. Let fy m, n and {puz|T € My} be as in §2. By
Lemma, 5, supp(pz) is perfect for p-almost all & € My. Therefore, to obtain the conclusion
it suffices to show the following.

Proposition 1 If uz is not a point measure for p-almost all £ € My, then supp(pz) is a
*-chaotic set for p-almost all & € Mj .

Proof. The proof of this proposition is similar to that of [31] Proposition 2. However,
for completeness we give the proof.

Fix 0 < € < 1 and let F; be as in Lemma 4. By assumption we can take and fix
Zo € supp(p|F;) such that usz, is not a point measure. Choose two distinct points §;, %> €
supp(psz,) and put 7 = d(g,92)/2(> 0). For 0 < r < 7/2 we can take § = §(r) > 0 with

pa(U(gir)) > 6 (i=1,2).

Since U (§;,r) are open, there exists a large integer m' = m'(r) > 0 such that if p(v, usz,) <
1/m' (v € M(Mjy)), then

v(U(@s,r)) >6=46(r) (:=1,2). (5)
By Lemma 4 we can find ¢ = €/(r) > 0 such that for £ € U(Zo, ') N F;

Pps, pzo) < 1/2m’ = 1/2m’(r). (6)
Remark that

d(U(ﬂl,T),U(gg,r)) = lnf{d(j’ g) : d(i’ gl) <r, d(g’ 372) < 1’} >T.
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Let € be as in Lemma 2 and put

P pz) < 1/m, | }

m ={ieM
B {xe /| diam((G-++#/g)(F-*5)) < 1m (k2 n)

for n,m > 1. Then Bp(n) C Bu(n +1) and p(Unp—g Bm(n)) = 1 by (1) and (4), and so
there exists an increasing sequence {n,,} such that p(Bm(nm.)) > 1 - 1/2mt1 (m > 1).
Since (N, Bk (nk)) > 1—1/2™ for m > 1, we can find Dy, € B with (D) >1—-2"m/2

satisfying
pz(N . Be(nk)) > 1—2"™/2 (% € Dp). (7)

For 0 < r < 7/2 we put
=N U (ﬂ U f_t(U(io,E'(r))ﬂanDm)).
k=1m=k \n=0{(=n

Since p(U(zo,e (r)) N F. N Dy) > p(U(Zo,€'(r)) N F) — 2-™/2 > 0 for m sufficiently large,
we have u(K,) = 1 (0 < r < 7/2) by the ergodicity of . Therefore, to obtain the conclusion
it suffices to show that supp(uz) is a *-chaotic set for £ € K = Np>1K1/n-
To do this fix Z € K, (r = 1/n,n > 1) and suppose that nonempty open sets U, and U,
satisfy
Ul n U2 5‘6 0: UJ' n supp(l‘i) # 0 (] = 1) 2)

Choose mg > 0 with
0< 2 ™/2 < min{p:(U;) : j = 1,2} and mg > 2m'.

Since # € K., by the definition of K, there exist m; > mo and a sequence of positive
integers {fi}x with £ > ni such that

ft(z) € U(Zo,€'(r)) N FoN Dy, (k> 1). (8)
Thus, by (3) and (7) we have
pa(f~% (Be(n)) > pa(f~5 (N2, Be(n4)))

= B 5)(MRZm, Br(nk))
>1-27™/2>1-27™ (k2>my),

and so pz(U; N f~t(Bk(ns))) > p2(U;) — 27™/2 > 0. Therefore we can choose
%; = z;(k) € U; N f~% (Bi(n)) N n(2)

for j =1,2 and k > m;.
Since f%(%;) € Bi(n) N f* (n(£)) C Bi(8e) N0(f* (%)), we have

[x/
p(l‘if:,,/(z )’I‘fl;.(i)) = P(I‘f:,,(zi’,)’l‘fln(zj)) <1/k < 1/mo < 1/2m/,

diam((f~%+%/21g)(2;)) < 1/k
for j = 1,2 and k > m;. By use of (6) and (8)
p(#ﬁf}‘,,/(?j),ueo) < p(u[;,",,/g,_), Bie(z) + P je z)r Bzo)
<1/2m' +1/2m' = 1/m/,
and so py * A (f-0U (§i;,7)) = u[,'z"..’f] ,U@i;r)) > 8 by (5). Thus we have

(fotl /Ay (z;) N F%U (i ) # 0
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for 1 <4,j <2 and k > m;. Since Z; € Uj;, by (9) we may assume
7 € (f0H72g)(35) C U;
for k large enough. Therefore |
U N f4 U@, r) o (F 440 () n F4U@ir) #£ 0

for 1 <4,j <2 and k large enough.
Now we take b; ; = b; j(k) € U; N f~*U(§;,r) for 1 < i,j < 2 and then

bi; €U; (1<14,j<2), :
d(f% (b1,0), % (b22)) > AU 1, ), UG, ) > 7 and
d(f% (b1,1), F* (b1,2)) < diam(U (§1,r)) = 2r = 2/n.

This implies that supp(uz) is a *-chaotic set for Z € K = Np>1 K /-

References

[1] N. Aoki and K. Hiraide, Topological theory of dynamical systems. Recent advancés,
North-Holland Mathematical Library, 52. North-Holland Publishing Co., Amsterdam,
1994.

[2] L.S. Block and W.A. Coppel, Dynamics in One Dimension, Lecture Notes in Math.
1513, Springer, Berlin, 1992.

[3] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture
Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977.

[4] Y.M. Chung, Shadowing property of non-invertible maps with hyperbolic measures,
Tokyo J. Math. 22 (1999), no. 1, 145-166.

[5] R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Reading,
MA, 2nd ed., 1989.

[6] A. Fathi, M.R. Herman and J-C. Yoccoz, A proof of Pesin’s stable ‘manifold theorem,
Geometric Dynamics (J. Palis, Jr., Ed.), Lecture Notes in Math., 1007, Springer, Berlin,
1983, 177-215.

[7] M. Hata, Scrambled sets on compact metric spaces, J. Math. Kyoto Univ., 24-4 (1984),
689-698.

(8] H. Kato, Chaotic continua of (continuum-wise) expansive homeomorphisms and chaos
in the sense of Li and Yorke, Fund. Math., 145 (1994), 261-279.

[9] H. Kato, Everywhere chaotic homeomorphisms on manifolds and k-dimensional Menger
manifolds, Topology Appl:, 72 (1996), 1-17.

[10] H. Kato, On scrambled sets and a theorem of Kuratowski on independent sets, Proc.
Amer. Math. Soc., 126 (1998), 2151-2157.

[11] A. Katok, Lyapunov ezponents, entropy and periodic orbits for dzﬁ'eomorphzsms, Publ.
Math. LH.E.S., 51 (1980), 137-174.

[12] K. Kuratowski, Topology, Academic Press, New York, 1968.

[13] F. Ledrappier and J. M Strelcyn, A proof of the estzmat:on from below in Pesin’s entropy
formula, Ergod. Th. & Dynam. Sys., 2 (1982), 203-219.



[14] F. Ledrappier and L.S. Young, The metric entropy of diffeomorphisms, Ann. of Math.,
122 (1985), 509-574.

[15] T.Y. Li and J.A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975),
985-992.

(16] P.D. Liu and M. Qian, Smooth ergodic theory of random dynamical systems. Lecture
Notes in Mathematics, 1606. Springer-Verlag, Berlin, 1995.

[17] P.D. Liu, Pesin’s entropy formula for endomorphisms, Nagoya Math. J. 150 (1998),
197-209.

[18] R. Maiié, Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987.

[19] F.R. Marotto, Snap-back repellers imply chaos in R*, J. Math. Analysis and Appl., 63
(1978), 199-223.

[20] M. Misiurewicz and J. Smital, Smooth chaotic maps with zero topological entropy, Er-
god. Th. & Dynam. Sys., 8 (1988), 421-424.

[21] V.I. Oseledec, A multiplicative ergodic theorem, Lyapunov characteristic numbers for
dynamical systems, Trans. Mosc. Math. Soc., 19 (1968), 197-231.

[22] Y.B. Pesin, Families of invariant manifolds corresponding to non-zero characteristic
ezponents, Math. of the USSR, Izvestija, 10 (1978), 1261-1305.

[23] Y.B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math.
Surveys, 32:4 (1977), 55-114.

[24] C. Pugh and M. Shub, Ergodic attractors, Trans. Amer. Math. Soc., 312 (1989), 1-54.

[25) M. Qian and Z. Zhang, Ergodic theory for aziom A endomorphisms, Ergod. Th. and
Dynam. Sys. 15 (1995), 161-174.

[26] V.A. Rohlin, On the fundamental ideas of measure theory, A.M.S. Transl., (1) 10 (1962),
1-52.

[27] V.A. Rohlin, Lectures on the theory of entropy of transformations with invariant mea-
sures, Russ. Math. Surveys, 22:5 (1967), 1-54.

[28] D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Math.,
9 (1978), 83-87.

[29] D. Ruelle and M. Shub, Stable manifolds for maps, Global theory of dynamical systems
(Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), pp. 389-392, Lecture
Notes in Math., 819, Springer, Berlin, 1980.

[30] D. Ruelle, Characteristic ezponents and invariant manifolds in Hilbert space, Ann. of
Math. (2) 115 (1982), no. 2,-243-290.

[31] N. Sumi, Stable and unstable manifolds of diffeomorphisms with positive entropy, Singu-
lar phenomena of dynamical systems (Kyoto, 1999). Siirikaisekikenkyiisho Kokyiiroku
No. 1118 (1999), 13-26.

[32] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, 79.
Springer-Verlag, New York-Berlin, 1982.

[33] P. Walters, A dynamical proof of the multiplicative ergodic theorem, Trans. Amer. Math.
Soc. 335 (1993), no. 1, 245-257.

[34] J. Xiong and Z. Yang, Chaos caused by a topologically mizing map, World Scientific,
Advanced Series in Dynamical Systems Vol 9 (1991), 550-572.

62



