<table>
<thead>
<tr>
<th>Title</th>
<th>Local diffeomorphisms with positive entropy and chaos in the sense of Li-Yorke (Studies on complex dynamics and related topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sumi, Naoya</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2001, 1220: 54-62</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41284</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Local diffeomorphisms with positive entropy and chaos in the sense of Li-Yorke

Naoya Sumi (鶴見 直哉)

Abstract
We show that if \(f \) is a \(C^2 \)-local diffeomorphism with positive entropy on a \(n \)-dimensional closed manifold (\(n \geq 2 \)) then \(f \) is chaotic in the sense of Li-Yorke.

1 Introduction
We study chaotic properties of dynamical systems with positive entropy. Notions of chaos have been given by Li and Yorke [15], Devaney [5] and others. It is well known that if a continuous map of an interval has positive entropy, then the map is chaotic according to the definition of Li and Yorke (cf. [2]). For invertible maps the following holds: let \(f \) be a \(C^2 \)-diffeomorphism of a closed \(C^\infty \)-manifold. If the topological entropy of \(f \) is positive, then \(f \) is chaotic in the sense of Li-Yorke [31].

In this paper we show the following:

Theorem A. Let \(f \) be a \(C^2 \)-local diffeomorphism of a closed \(C^\infty \)-manifold. If the topological entropy of \(f \) is positive, then \(f \) is chaotic in the sense of Li-Yorke.

From this theorem we obtain the following corollary.

Corollary B. Let \(f \) be a \(C^2 \)-local diffeomorphism of a closed \(C^\infty \)-manifold. If \(f \) is not invertible, then \(f \) is chaotic in the sense of Li-Yorke.

First we shall explain here the definitions and notations used above. Let \(X \) be a compact metric space with metric \(d \) and let \(f : X \to X \) be a continuous map. A subset \(S \) of \(X \) is a scrambled set of \(f \) if there is a positive number \(\tau > 0 \) such that for any \(x, y \in S \) with \(x \neq y \),

1. \(\limsup_{n \to \infty} d(f^n(x), f^n(y)) > \tau \),
2. \(\liminf_{n \to \infty} d(f^n(x), f^n(y)) = 0 \).

If there is an uncountable scrambled set \(S \) of \(f \), then we say that \(f \) is chaotic in the sense of Li-Yorke. Li and Yorke showed in [15] that if \(f : [0, 1] \to [0, 1] \) is a continuous map with a periodic point of period 3, then \(f \) is chaotic in this sense. Note that any scrambled set contains at most one point \(x \) which does not satisfy the following: for any periodic point \(p \in X \),

\[
\limsup_{n \to \infty} d(f^n(x), f^n(p)) > 0.
\]

For another sufficient condition for the chaos in the sense of Li-Yorke, the readers may refer to [4], [7], [8], [9], [10], [11], [19], [20], [34].

Concerning the chaos in the sense of Li-Yorke, Kato introduced the notion of "\(\ast \)-chaos" as follows: let \(F \) be a closed subset of \(X \). A map \(f : X \to X \) is \(\ast \)-chaotic on \(F \) (in the sense of Li-Yorke) if the following conditions are satisfied:

1. there is \(\tau > 0 \) with the property that for any nonempty open subsets \(U \) and \(V \) of \(F \) with \(U \cap V = \emptyset \) and for any natural number \(N \), there is \(n \geq N \) such that \(d(f^n(x), f^n(y)) > \tau \) for some \(x \in U \), \(y \in V \), and
2. for any nonempty open subsets U, V of F and any $\varepsilon > 0$ there is a natural number $n \geq 0$ such that $d(f^n(x), f^n(y)) < \varepsilon$ for some $x \in U, y \in V$.

Such a set F is called a $*$-chaotic set. If S is a scrambled set, then the closure of S, \tilde{S}, is a $*$-chaotic set. In [10] Kato showed that the converse is true. This is stated precisely as follows:

Lemma 1 ([10], Theorem 2.4) Let X be a compact metric space and let F be a closed subset of X. If $f : X \to X$ is continuous and is $*$-chaotic on F, then there is an F_σ-set $S \subset F$ such that S is a scrambled set of f and $\tilde{S} = F$. If F is perfect (i.e. F has no isolated points), we can choose S as a countable union of Cantor sets.

By this lemma, to show the existence of uncountable scrambled sets it suffices to show the existence of perfect $*$-chaotic sets.

To obtain Theorem A we consider the inverse limit system of f. Let M be a closed C^∞-manifold and let d be the distance for M induced by a Riemannian metric $\| \cdot \|$ on TM. Let M^Z denote the product topological space $M^Z = \{(x_i) : x_i \in M, i \in \mathbb{Z}\}$. Then M^Z is compact. We define a compatible metric \tilde{d} for M^Z by

$$\tilde{d}((x_i), (y_i)) = \sum_{i=-\infty}^{\infty} \frac{d(x_i, y_i)}{2|i|} \quad ((x_i), (y_i) \in M^Z).$$

For $f : M \to M$ a continuous surjection, we let

$$M_f = \{(x_i) : x_i \in M \text{ and } f(x_i) = x_{i+1}, i \in \mathbb{Z}\}.$$

Then M_f is a closed subset of M^Z. The space M_f is called the inverse limit space constructed by f. A homeomorphism $\tilde{f} : M_f \to M_f$, which is defined by

$$\tilde{f}(x_i) = (f(x_i)) \text{ for all } (x_i) \in M_f,$$

is called the shift map determined by f. We denote as $P^0 : M_f \to M$ the projection defined by $(x_i) \mapsto x_0$. Then $P^0 \circ \tilde{f} = f \circ P^0$ holds. Remark that f is chaotic in the sense of Li-Yorke if and only if so is \tilde{f}.

We can show that the topological entropy, $h(f)$, of f coincides with that of \tilde{f}. Indeed, for an f-invariant probability measure ν, we can find an \tilde{f}-invariant probability measure μ such that $\nu(A) = P^0_\nu(A) = \mu((P^0)^{-1}(A))$ for any Borel set $A \subset M$ ([18] Lemma IV.8.3). Let us denote as $h_\nu(f)$ and $h_\mu(\tilde{f})$ the metric entropy of (M, f, ν) and (M_f, \tilde{f}, μ) respectively. Then we have $h_\nu(f) = h_{P^0\nu}(f) = h_\mu(\tilde{f})$ ([25] Lemma 5.2). Therefore, the conclusion is obtained by the variational principle ([32] Theorem 8.6).

We say that a differentiable map $f : M \to M$ is a local diffeomorphism if for $x \in M$ there is an open neighborhood U_x of x in M such that $f(U_x)$ is open in M and $f|_{U_x} : U_x \to f(U_x)$ is a diffeomorphism. Since M is connected, then the cardinal number of $f^{-1}(x)$ is constant. This constant is called the covering degree of f. If the covering degree of f is greater than one, (M_f, M, C, P^0) is a fiber bundle where C denotes the Cantor set (see [1] Theorem 6.5.1). Let μ be a Borel probability measure on M_f and let B be the Borel σ-algebra on M_f completed with respect to μ. For ξ a measurable partition of M_f and $\tilde{z} \in M_f$ we denote as $\xi(\tilde{z})$ the element of the partition ξ which contains the point \tilde{z}. Then there exists a family $\{\mu^z_\xi | \tilde{z} \in M_f\}$ of Borel probability measures satisfying the following conditions:

1. for $\tilde{z}, \tilde{y} \in M_f$ if $\xi(\tilde{z}) = \xi(\tilde{y})$ then $\mu^z_\xi = \mu^y_\xi$,
2. $\mu^z_\xi(\xi(\tilde{z})) = 1$ for μ-almost all $\tilde{z} \in M_f$,
3. for $A \in B$ a function $\tilde{z} \mapsto \mu^z_\xi(A)$ is measurable and $\mu(A) = \int_{M_f} \mu^z_\xi(A) d\mu(\tilde{z})$.

The family $\{\mu^z_\xi | \tilde{z} \in M_f\}$ is called a canonical system of conditional measures for μ and ξ (see [26] for more details).

To prove Theorem A it suffices to show the following theorem.
Theorem C Let \(f \) be a \(C^2 \)-local diffeomorphism of a closed \(C^\infty \)-manifold \(M \) and let \(\mu \) be an \(f \)-invariant ergodic Borel probability measure on \(M_f \).

If the metric entropy of \(\mu \) is positive, then there exists a measurable partition \(\eta \) of \(M_f \) such that \(\text{supp}(\mu^2_{\xi}) \) is a perfect \(* \)-chaotic set for \(\mu \)-almost all \(\hat{x} \in M_f \).

Here the support \(\text{supp}(\nu) \) of a finite measure \(\nu \) is the smallest closed set \(C \) with \(\nu(C) = \nu(M_f) \). Equivalently, \(\text{supp}(\nu) \) is the set of all \(\hat{x} \in M_f \) with the property that \(\nu(U) > 0 \) for any open \(U \) containing \(\hat{x} \).

Let us see how Theorem A follows from Theorem C. We know that \(h(\tilde{f}) = \sup\{ h_{\mu}(\tilde{f}) : \mu \in \mathcal{M}_e(\tilde{f}) \} \) where \(\mathcal{M}_e(\tilde{f}) \) is the set of all \(\tilde{f} \)-invariant ergodic probability measures (cf. [27]). Thus, if \(h(\tilde{f}) = h(f) > 0 \), then we can choose \(\mu \in \mathcal{M}_e(\tilde{f}) \) with \(h_{\mu}(\tilde{f}) > 0 \). Therefore, by Theorem C and Lemma 1, \(f \) is chaotic in the sense of Li-Yorke.

2 Key Lemmas

In this section we prepare some lemmas which need to prove Theorem C. Let \(f \) be a \(C^2 \)-local diffeomorphism of a closed \(C^\infty \)-manifold \(M \) and \(\mu \) be an \(f \)-invariant ergodic Borel probability measure on \(M_f \) with \(h_{\mu}(f) > 0 \). As in the previous section we denote as \(\mathcal{B} \) the Borel \(\sigma \)-algebra on \(M_f \) completed with respect to \(\mu \). For \(\mu \)-almost all \(\hat{x} = (x_i) \in M_f \), there exist a splitting of the tangent space \(T_{x_0}M = \oplus_{i=1}^\epsilon E_i(\hat{x}) \) and real numbers \(\lambda_1(x_0) < \cdots < \lambda_{\epsilon}(x_0) \) such that

(a) the maps \(\hat{x} \mapsto E_i(\hat{x}) \), \(\lambda_1(x_0) \) and \(s(x_0) \) are measurable, moreover \(E_i(f(\hat{x})) = D_{x_0}f(E_i(\hat{x})) \)
and \(\lambda_i(x_0), s(x_0) \) are \(f \)-invariant (\(i = 1, \cdots, s(x_0) \)) and

(b) \(\lim_{n \to \pm \infty} \frac{1}{n} \log \| (D_{x_0}f^{|n|})^{\pm 1}(v) \| = \lambda_i(x_0) \) (\(0 \neq v \in E_i(\hat{x}), i = 1, \cdots, s(x_0) \)) and

(c) \(\lim_{n \to \pm \infty} \frac{1}{n} \log \| \text{det}(D_{x_0}f^{|n|})^{\pm 1} \| = \sum_{i=1}^{s(x_0)} \lambda_i(x_0) \dim E_i(\hat{x}) \)

([21], [33], [29], [30]). The numbers \(\lambda_1(x_0), \cdots, \lambda_{\epsilon}(x_0) \) are called Lyapunov exponents of \(f \) at \(x_0 \). Since \(\mu \) is ergodic, we can put \(s = s(x_0) \), \(\lambda_i = \lambda_i(x_0) \) and \(m_i = \dim E_i(\hat{x}) \) (\(i = 1, \cdots, s \)) for \(\mu \)-almost all \(\hat{x} = (x_i) \in M_f \).

A well-known theorem of Margulis and Ruelle [28] says that entropy is always bounded above by the sum of positive Lyapunov exponents; i.e. \(h_{\mu}(f) \leq \sum_{i > 0} \lambda_i m_i \). Since \(\bar{f} \) has positive entropy, we have \(0 < h_{\mu}(f) = h_{\mu}(\tilde{f}) \leq \max(\lambda_i) = \lambda_\epsilon \). Fix \(0 < \lambda < \min(\lambda_i : \lambda_i > 0) \). From [24], [29] and [30] there are measurable functions \(\tilde{\beta} > \tilde{\alpha} > 0 \) and \(\tilde{\gamma} > 1 \) with the following properties: For \(\hat{x} = (x_i) \in M_f \) we put

\[
\tilde{W}_\text{loc}^u(\hat{x}) = \{ \tilde{y} = (y_i) \in M_f : d(x_0, y_0) \leq \tilde{\alpha}(\hat{x}), d(x_i, y_i) \leq \tilde{\beta}(\hat{x}) e^{-\lambda i} (i \geq 1) \}.
\]

Then

(a) the map \(P^0 \) restricted to \(\tilde{W}_\text{loc}^u(\hat{x}) \) is injective,

(b) \(P^0(\tilde{W}_\text{loc}^u(\hat{x})) \) is a \(C^2 \)-submanifold of the ball \(\{ y \in M : d(x_0, y) \leq \tilde{\alpha}(\hat{x}) \} \),

(c) \(T_{x_0}P^0(\tilde{W}_\text{loc}^u(\hat{x})) = \oplus_{i > 0} E_i(\hat{x})(\neq \{0\}) \) for \(\mu \)-almost all \(\hat{x} \in M_f \),

(d) \(d(y_i, z_i) \leq \tilde{\gamma}(\hat{x}) d(y_0, z_0) e^{-\lambda i} \) for \((y_n), (z_n) \in \tilde{W}_\text{loc}^u(\hat{x}) \).

For the case when \(f \) is invertible we may refer to [6], [22] and [23].

Let \(\xi \) and \(\eta \) be measurable partitions of \(M_f \). Put \(f^n \xi = \{ f^n C : C \in \xi \} \) for \(n \in \mathbb{Z} \) and then \((f^n \xi)(\hat{x}) = f^n (\xi(f^{-n}(\hat{x}))) \) for \(\hat{x} \in M_f \). \(\eta \leq \xi \) means that for \(\mu \)-almost all \(\hat{x} \in M_f \) one has \(\xi(\hat{x}) \subset \eta(\hat{x}) \).

Lemma 2 Let \(f \) and \(\mu \) be as above. Then there exists a measurable partition \(\xi \) of \(M_f \) such
(a) $\xi \leq \tilde{f}^{-1}\xi$,

(b) for μ-almost all $\tilde{x} \in M_f$, $\xi(\tilde{x}) \subset \tilde{W}^u_{\mathrm{loc}}(\tilde{x})$ and $\xi(\tilde{x})$ contains a neighborhood of \tilde{x} open in $\tilde{W}^u_{\mathrm{loc}}(\tilde{x})$,

(c) $\bigvee_{n=0}^{\infty} \tilde{f}^{-n}\xi$ is the partition into points.

This lemma is similar to [13] Proposition 3.1, [16] Proposition 5.2 and [17] Lemma 2.2. So we omit the proof.

Let C denote the family of all nonempty closed subsets of M_f and define a metric d_H by

$$d_H(A, B) = \max\{\sup_{b \in B} d(a, b), \sup_{a \in A} d(a, B)\} \quad (A, B \subset C)$$

where $d(a, b) = \inf\{d(a, b) : a \in A\}$. Then it is known that (C, d_H) is a compact metric space (cf.[12]). If ξ is a measurable partition, then $\tilde{x} \mapsto \xi(\tilde{x}) \in C$ is measurable. Indeed, this follows from [3] Theorems III.2, III.9, III.22 and the fact that $\{(\tilde{x}, \xi(\tilde{x})) : \tilde{x} \in M_f\}$ is a Borel subset of $M_f \times M_f$. For $A \subset M_f$ we put $\diam(A) = \sup\{d(\tilde{x}, \tilde{y}) : \tilde{x}, \tilde{y} \in A\}$. Then we have $\diam(A) = \diam(A)$. Since $\tilde{x} \mapsto \xi(\tilde{x}) \in C$ is measurable, $\tilde{x} \mapsto \diam(\xi(\tilde{x}))$ is also a measurable function. By Lemma 2 (c) we have that for μ-almost all $\tilde{x} \in M_f$

$$\diam(\tilde{f}^{-n}\xi(\tilde{x})) \to 0 \quad (1)$$

as $n \to \infty$.

Let ξ and η be measurable partitions of M_f and let $\{\mu_{\tilde{x}}^\xi : \tilde{x} \in M_f\}$ be a canonical system of conditional measures for μ and ξ. The mean conditional entropy of η with respect to ξ is defined by

$$H_\mu(\eta|\xi) = \int -\log \mu_{\tilde{x}}^\xi(\eta(\tilde{x})) d\mu(\tilde{x})$$

(see [27] for details).

Lemma 3 Let f and μ be as above and let ξ be as in Lemma 2. Then,

$$h_\mu(\tilde{f}) = H_\mu(\tilde{f}^{-1}\xi|\xi).$$

For the case when f is invertible this lemma is proved by Ledrappier and Young [14]. We recall that if the covering degree of f is greater than one, then (M_f, M, C, P^μ) is a fiber bundle where C denotes the Cantor set. In view of this fact, the above lemma can be proved by almost the same arguments as the proof of [14] Corollary 5.3 and [16] Corollary 7.1 with some slight modifications. Here we omit the proof.

By Lemma 2(a) we have that $\xi \geq \tilde{f}\xi \geq \tilde{f}^2\xi \geq \cdots$. Let us introduce a measurable partition defined by $\eta = \bigwedge_{i=0}^{\infty} \overline{f}^i\xi$. Then we have $\tilde{f}\eta = \eta$. For simplicity put

$$\mu_{\tilde{x}} = \mu_{\tilde{x}}^\eta \quad \text{and} \quad \mu_{\tilde{x}}^n = \mu_{\tilde{x}}^{\tilde{f}^n\xi} \quad (n \in \mathbb{Z}).$$

By Doob's theorem it follows that for a μ-integrable function $\psi : M_f \to \mathbb{R}$

$$\int \psi d\mu_{\tilde{x}} = \lim_{n \to \infty} \int \psi d\mu_{\tilde{x}}^n \quad (2)$$

for μ-almost all \tilde{x}. Since $\tilde{f}\eta = \eta$ and $\tilde{f}\mu = \mu$, by the uniqueness of a canonical system of conditional measures (cf.[26]) we have that for μ-almost all \tilde{x}

$$\tilde{f}\mu_{\tilde{x}} = \mu_{\tilde{x}} \quad \text{and} \quad \tilde{f}\mu_{\tilde{x}}^n = \mu_{\tilde{x}}^{\tilde{f}^n\xi} \quad (n \in \mathbb{Z}).$$

(3)

Here $(\tilde{f}, \nu)(A) = \nu(\tilde{f}^{-1}A)$ for a Borel probability measure ν on M_f and $A \in B$.

Let $C(M_f)$ be the Banach space of continuous real-valued functions of M_f with the sup norm $| \cdot |_\infty$, and let $\mathcal{M}(M_f)$ be a set of all Borel probability measures on M_f with the weak
topology. Since $C(M_f)$ is separable, there exists a countable set $\{\varphi_1, \varphi_2, \cdots\}$ which is dense in $C(M_f)$. For $\nu, \nu' \in M(M_f)$ define

$$
\rho(\nu, \nu') = \sum_{n=1}^{\infty} \frac{|\int \varphi_n d\nu - \int \varphi_n d\nu'|}{2^n|\varphi_n|_{\infty}}.
$$

Then ρ is a compatible metric for $M(M_f)$ and $(M(M_f), \rho)$ is compact (cf.[18]). Since (2) holds for $\{\varphi_i\}$, we have

$$
\mu_{\tilde{x}} = \lim_{n \to \infty} \mu_{\tilde{x}}^n
$$

for μ-almost all \tilde{x}. For $\nu \in M(M_f)$ and a measurable partition ξ, by the definition of conditional measures $\{\nu_{\tilde{x}}^\xi\}$, the map

$$
M_f \ni \tilde{x} \mapsto \int \varphi_n d\nu_{\tilde{x}}^\xi
$$

is measurable for $n \geq 1$ and thus $\tilde{x} \mapsto \nu_{\tilde{x}}^\xi \in M(M_f)$ is measurable.

Lemma 4 Let f, μ and $\{\mu_{\tilde{x}}|\tilde{x} \in M_f\}$ be as above. Then for $\epsilon > 0$ there exists a closed set F_ϵ with $\mu(F_\epsilon) \geq 1 - \epsilon$ satisfying the map

$$
F_\epsilon \ni \tilde{x} \mapsto \mu_{\tilde{x}} \in M(M_f)
$$

is continuous.

Proof. Let $\{\varphi_1, \varphi_2, \cdots\}$ be as above and let $\epsilon > 0$. Since $\tilde{x} \mapsto \int \varphi_n d\nu_{\tilde{x}}^\xi$ is measurable for $i \geq 1$, by Lusin's theorem there exists a closed set F_i ($i \geq 1$) with $\mu(F_i) \geq 1 - \epsilon/2^i$ satisfying

$$
F_i \ni \tilde{x} \mapsto \int \varphi_i d\mu_{\tilde{x}}^\xi : \text{continuous}.
$$

Then $F_\epsilon = \bigcap_{i=1}^{\infty} F_i$ has the desired property.

For $\nu \in M(M_f)$ and $E \in B$ let $\nu|_E$ denote the restriction of ν to E, i.e. $\nu|_E(A) = \nu(A \cap E)$ for $A \in B$. Clearly $\nu|_E$ is a finite measure. We denote as $B(\tilde{x}, r)$ and $U(\tilde{x}, r)$ the closed and open balls in M_f with center $\tilde{x} \in M_f$ and radius $r > 0$ respectively. Let $\{\varphi_1, \varphi_2, \cdots\}$ be as above and let $\nu \in M(M_f)$. For $\tilde{x} \in \text{supp}(\nu)$ and $\epsilon > 0$ we can find i such that

$$
\int_{U(\tilde{x}, \epsilon)} \varphi_i d\nu > \int \varphi_i d\nu - \epsilon.
$$

Since the inequality holds for ν' sufficiently close to ν, we can easily prove that

$$
M(M_f) \ni \nu \mapsto \text{supp}(\nu) \in \mathcal{C}
$$

is lower semi-continuous and so the map is measurable ([3] Corollary III.3). Since $\nu \mapsto \text{diam}(\text{supp}(\nu))$ is lower semi-continuous,

$$
\mathcal{P}(M_f) = \{ \nu \in M(M_f) : \nu \text{ is a point measure} \}
$$

$$
= \{ \nu \in M(M_f) : \text{diam}(\text{supp}(\nu)) = 0 \}
$$

is a closed set of $M(M_f)$. Since $(\tilde{f}^n \xi)(\tilde{x}) \subset \eta(\tilde{x})$, we have

$$
\text{supp}(\mu_{\tilde{x}}^\xi) \subset \text{supp}(\mu_{\tilde{x}}) \quad (n \in \mathbb{Z})
$$

for μ-almost all $\tilde{x} \in M_f$.

Lemma 5 Let f, μ and $\{\mu_{\tilde{x}}|\tilde{x} \in M_f\}$ be as above. Then for μ-almost all $\tilde{x} \in M$, $\text{supp}(\mu_{\tilde{x}})$ has no isolated points.
Proof. Let \(\xi \) and \(\mu_{\overline{x}}^{n} \) be as above. Then it is easily checked that for \(n \in \mathbb{Z} \)

\[
P_{n} = \{ \tilde{x} \in M_{f} : \mu_{\overline{x}}^{n} \in \mathcal{P}(M_{f}) \} \supset \{ \tilde{x} \in M_{f} : \mu_{\tilde{x}}|_{\tilde{f}^{-1}\xi}(\tilde{x}) \text{ is a point measure} \}.
\]

If this lemma is false, then there exists a measurable set with positive measure such that for any \(\tilde{x} \) belonging to the set, \(\text{supp}(\mu_{\tilde{x}}) \) has an isolated point. Since \(\text{diam}(\tilde{f}^{-k}\xi)(\tilde{x})) \to 0 \) \((k \to \infty)\) by (1), we have \(\mu(P_{-k}) > 0 \) for \(k \) large enough. Put \(P = \bigcap_{j \geq 1} \bigcup_{n \geq j} P_{n-k} \) and then \(\mu(P) = 1 \) because \(\mu \) is ergodic.

By (3) we have

\[
\tilde{f}^{n}(P_{-k}) = \{ \tilde{x} \in M_{f} : \mu_{\overline{x}}^{-k} \in \mathcal{P}(M) \}
= \{ \tilde{x} \in M_{f} : \tilde{f}_{*}^{n} \mu_{\overline{x}}^{-k} \in \mathcal{P}(M) \}
= \{ \tilde{x} \in M_{f} : \mu_{\overline{x}}^{-k} \in \mathcal{P}(M) \}
= P_{n-k} \quad (n \in \mathbb{Z}),
\]

and so \(P = \bigcap_{j \geq 1} \bigcup_{n \geq j} P_{n-k} \). Thus, for \(\tilde{x} \in P \) there exists an increasing sequence \(\{ n_{i} \}_{i \geq 0} \) such that \(\tilde{x} \in P_{n_{i}} \) for \(i \geq 0 \). Since \(\mu_{\tilde{x}} = \lim_{n \to \infty} \mu_{\overline{x}}^{n} \) (by (4)) and \(\mu_{\tilde{x}}^{0} \in \mathcal{P}(M_{f}) \) for \(i \), we have \(\mu_{\tilde{x}} \in \mathcal{P}(M_{f}) \) for \(\tilde{x} \in P \).

Since \(\xi \geq \eta \) and \(\mu_{\tilde{x}} \) is a point measure for \(\mu \)-almost all \(\tilde{x} \in M_{f} \), so is \(\mu_{\tilde{x}}^{\xi} \). Thus \(\mu_{\tilde{x}}^{\xi}((\tilde{f}^{-1}\xi)(\tilde{x})) = 1 \) for \(\mu \)-almost all \(\tilde{x} \). Therefore

\[
h_{\mu}(\tilde{f}) = H_{\mu}(\tilde{f}^{-1}\xi|\xi) = \int -\log \mu_{\tilde{x}}^{\xi}((\tilde{f}^{-1}\xi)(\tilde{x})) d\mu_{\overline{x}}(\tilde{x}) = 0
\]

by Lemma 3. This is a contradiction. \(\square \)

3 Proof of Theorem C

In this section we will prove Theorem C. Let \(f, \mu, \eta \) and \(\{ \mu_{\tilde{x}}| \tilde{x} \in M_{f} \} \) be as in §2. By Lemma 5, \(\text{supp}(\mu_{\tilde{x}}) \) is perfect for \(\mu \)-almost all \(\tilde{x} \in M_{f} \). Therefore, to obtain the conclusion it suffices to show the following.

Proposition 1 If \(\mu_{\tilde{x}} \) is not a point measure for \(\mu \)-almost all \(\tilde{x} \in M_{f} \), then \(\text{supp}(\mu_{\tilde{x}}) \) is a \(* \)-chaotic set for \(\mu \)-almost all \(\tilde{x} \in M_{f} \).

Proof. The proof of this proposition is similar to that of [31] Proposition 2. However, for completeness we give the proof.

Fix \(0 < \epsilon < 1 \) and let \(F_{\epsilon} \) be as in Lemma 4. By assumption we can take and fix \(\tilde{x}_{0} \in \text{supp}(\mu|F_{\epsilon}) \) such that \(\mu_{\tilde{x}_{0}} \) is not a point measure. Choose two distinct points \(\tilde{y}_{1}, \tilde{y}_{2} \) in \(\text{supp}(\mu_{\tilde{x}_{0}}) \) and put \(r = d(\tilde{y}_{1}, \tilde{y}_{2})/2(>0) \). For \(0 < r < \tau/2 \) we can take \(\delta = \delta(r) > 0 \) with

\[
\mu_{\tilde{x}_{0}}(U(\tilde{y}_{i}, r)) > \delta \quad (i = 1, 2).
\]

Since \(U(\tilde{y}_{i}, r) \) are open, there exists a large integer \(m' = m'(r) > 0 \) such that if \(\rho(\nu, \mu_{\tilde{x}_{0}}) < 1/m' \) \((\nu \in \mathcal{M}(M_{f})) \), then

\[
\nu(U(\tilde{y}_{i}, r)) > \delta = \delta(r) \quad (i = 1, 2).
\]

By Lemma 4 we can find \(\epsilon' = \epsilon'(r) > 0 \) such that for \(\tilde{x} \in U(\tilde{x}_{0}, \epsilon') \cap F_{\epsilon} \)

\[
\rho(\mu_{\tilde{x}}, \mu_{\tilde{x}_{0}}) < 1/2m' = 1/2m'(r).
\]

Remark that

\[
d(U(\tilde{y}_{1}, r), U(\tilde{y}_{2}, r)) = \inf\{d(\tilde{x}, \tilde{y}) : d(\tilde{x}, \tilde{y}_{1}) < r, d(\tilde{y}, \tilde{y}_{2}) < r \} > \tau.
\]
Let \(\xi \) be as in Lemma 2 and put
\[
B_m(n) = \left\{ \tilde{x} \in M_f \middle| \begin{array}{c}
\rho(\mu_{\tilde{x}}^{[k/2]}, \mu_{\tilde{x}}) < 1/m, \\
\operatorname{diam}(\hat{f}^{-k+[k/2]}(\xi) \cap \hat{f}^{-k}\tilde{x})) < 1/m \end{array} \right\}
\]
for \(n, m \geq 1 \). Then \(B_m(n) \subset B_m(n+1) \) and \(\mu(\bigcap_{n=0}^\infty B_m(n)) = 1 \) by (1) and (4), and so there exists an increasing sequence \(\{n_m\} \) such that \(\mu(B_m(n_m)) \geq 1 - 1/2^{m+1} \) \((m \geq 1) \). Since \(\mu(\bigcap_{k=m}^\infty B_k(n_k)) \geq 1 - 1/2^m \) for \(m \geq 1 \), we can find \(D_m \in B \) with \(\mu(D_m) \geq 1 - 2^{-m/2} \) satisfying
\[
\mu_{\tilde{x}}(\bigcap_{k=m}^\infty B_k(n_k)) \geq 1 - 2^{-m/2} \quad (\tilde{x} \in D_m).
\]
For \(0 < r < \tau/2 \) we put
\[
K_r = \bigcap_{k=1}^\infty \bigcup_{m=k}^\infty \left(\bigcap_{n=0}^\infty \hat{f}^{-\ell}(U(\tilde{x}_0, \epsilon'(r)) \cap F_\epsilon \cap D_m) \right).
\]
Since \(\mu(U(\tilde{x}_0, \epsilon'(r)) \cap F_\epsilon \cap D_m) \geq \mu(U(\tilde{x}_0, \epsilon'(r)) \cap F_\epsilon) - 2^{-m/2} > 0 \) for \(m \) sufficiently large, we have \(\mu(K_r) = 1 \) \((0 < r < \tau/2) \) by the ergodicity of \(\mu \). Therefore, to obtain the conclusion it suffices to show that \(\operatorname{supp}(\mu_{\tilde{x}}) \) is \(\ast \)-chaotic for \(\tilde{x} \in K = \bigcap_{n \geq 1} K_{1/n} \).

To do this fix \(\tilde{x} \in K_r \) \((r = 1/n, n \geq 1) \) and suppose that nonempty open sets \(U_1 \) and \(U_2 \) satisfy
\[
U_1 \cap U_2 \neq \emptyset, \quad U_j \cap \operatorname{supp}(\mu_{\tilde{x}}) \neq \emptyset \quad (j = 1, 2).
\]
Choose \(m_0 > 0 \) with
\[
0 < 2^{-m_0/2} < \min\{\mu_{\tilde{x}}(U_j) : j = 1, 2\} \quad \text{and} \quad m_0 \geq 2m'.
\]
Since \(\tilde{x} \in K_r \), by the definition of \(K_r \), there exist \(m_1 > m_0 \) and a sequence of positive integers \(\{\ell_k\}_k \) with \(\ell_k > n_k \) such that
\[
\hat{f}^{\ell_k}(\tilde{x}) \in U(\tilde{x}_0, \epsilon'(r)) \cap F_\epsilon \cap D_m \quad (k \geq 1).
\]
Thus, by (3) and (7) we have
\[
\mu_{\tilde{x}}(\hat{f}^{-\ell_k}(B_k(n_k))) \geq \mu_{\tilde{x}}(\hat{f}^{-\ell_k}(\bigcap_{k=m_1}^\infty B_k(n_k)))
= \mu_{\hat{f}^{\ell_k}(\tilde{x})}(\bigcap_{k=m_1}^\infty B_k(n_k))
\geq 1 - 2^{-m_1} \geq 1 - 2^{-m_0/2} \quad (k \geq m_1),
\]
and so \(\mu_{\tilde{x}}(U_j \cap \hat{f}^{-\ell_k}(B_k(n_k))) \geq \mu_{\tilde{x}}^\ast(U_j) - 2^{-m_0/2} > 0 \). Therefore we can choose
\[
\tilde{z}_j = \tilde{z}_j(k) \in U_j \cap \hat{f}^{-\ell_k}(B_k(n_k)) \cap \eta(\tilde{x})
\]
for \(j = 1, 2 \) and \(k \geq m_1 \).

Since \(\hat{f}^{\ell_k}(\tilde{z}_j) \in B_k(n_k) \cap \hat{f}^{\ell_k}(\eta(\tilde{x})) \subset B_k(\ell_k) \cap \eta(\hat{f}^{\ell_k}(\tilde{x})) \), we have
\[
\rho(\mu_{\hat{f}^{\ell_k}(\tilde{z}_j)}^{[\ell_k/2]}, \mu_{\hat{f}^{\ell_k}(\tilde{z}_j)}) \leq \rho(\mu_{\hat{f}^{\ell_k}(\tilde{z}_j)}^{[\ell_k/2]}, \mu_{\hat{f}^{\ell_k}(\tilde{z}_j)}, \mu_{\hat{f}^{\ell_k}(\tilde{z}_j)}) < 1/k \leq 1/m_0 \leq 1/2m',
\]
\[
\operatorname{diam}(\hat{f}^{-\ell_k+[\ell_k/2]}(\xi)(\tilde{z}_j)) < 1/k
\]
for \(j = 1, 2 \) and \(k \geq m_1 \). By use of (6) and (8)
\[
\rho(\mu_{\hat{f}^{\ell_k}(\tilde{z}_j)}^{[\ell_k/2]}, \mu_{\tilde{x}_0}) \leq \rho(\mu_{\hat{f}^{\ell_k}(\tilde{z}_j)}^{[\ell_k/2]}, \mu_{\hat{f}^{\ell_k}(\tilde{z}_j)}) + \rho(\mu_{\hat{f}^{\ell_k}(\tilde{z}_j)}, \mu_{\tilde{x}_0})
< 1/2m' + 1/2m' = 1/m',
\]
and so \(\mu_{\tilde{x}_0}^{-[\ell_k+[\ell_k/2]}(\hat{f}^{-\ell_k}U(\tilde{y}_i, r)) = \mu_{\hat{f}^{\ell_k}(\tilde{z}_j)}^{[\ell_k/2]}(U(\tilde{y}_i, r)) > \delta \) by (5). Thus we have
\[
(\hat{f}^{-\ell_k+[\ell_k/2]}(\xi)(\tilde{z}_j) \cap \hat{f}^{-\ell_k}U(\tilde{y}_i, r) \neq \emptyset)
\]
for $1 \leq i,j \leq 2$ and $k \geq m_1$. Since $\tilde{z}_j \in U_j$, by (9) we may assume
\[\tilde{z}_j \in (\tilde{f}^{-t^k + [t^k/2]} \xi)(\tilde{z}_j) \subset U_j \]
for k large enough. Therefore
\[U_j \cap \tilde{f}^{-t^k} U(\tilde{y}_1, r) \supset (\tilde{f}^{-t^k + [t^k/2]} \xi)(\tilde{z}_j) \cap \tilde{f}^{-t^k} U(\tilde{y}_1, r) \neq \emptyset \]
for $1 \leq i,j \leq 2$ and k large enough. Therefore

Now we take $b_{i,j} = b_{i,j}(k) \in U_j \cap \tilde{f}^{-t^k} U(\tilde{y}_1, r) \cap \tilde{f}^{-t^k} U(\tilde{y}_2, r) \neq \emptyset \cap \overline{f}^{-\ell_k}[\ell_k/2] \xi(\tilde{z}_j) \cap \tilde{f}^{-\ell_k} U(\tilde{y}_1, r)$ for $1 \leq i,j \leq 2$ and then
\[b_{i,j} \in U_j \quad (1 \leq i,j \leq 2), \]
\[d(f^{t_k}(b_{1,1}), f^{t_k}(b_{2,2})) > d(U(\tilde{y}_1, r), U(\tilde{y}_2, r)) > \tau \quad \text{and} \]
\[d(f^{t_k}(b_{1,1}), f^{t_k}(b_{1,2})) \leq \text{diam}(U(\tilde{y}_1, r)) = 2r = 2/n. \]
This implies that support($\mu_\tilde{x}$) is a $*$-chaotic set for $\tilde{x} \in K = \cap_{n \geq 1} K_{1/n}$. \qed

References

