# Local diffeomorphisms with positive entropy and chaos in the sense of Li-Yorke

Naoya Sumi (鷲見 直哉)

#### Abstract

We show that if f is a  $C^2$ -local diffeomorphism with positive entropy on a n-dimensional closed manifold  $(n \ge 2)$  then f is chaotic in the sense of Li-Yorke.

### 1 Introduction

We study chaotic properties of dynamical systems with positive entropy. Notions of chaos have been given by Li and Yorke [15], Devaney [5] and others. It is well known that if a continuous map of an interval has positive entropy, then the map is chaotic according to the definition of Li and Yorke (cf. [2]). For invertible maps the following holds: let f be a  $C^2$ -diffeomorphism of a closed  $C^\infty$ -manifold. If the topological entropy of f is positive, then f is chaotic in the sense of Li-Yorke [31].

In this paper we show the following:

**Theorem A** Let f be a  $C^2$ -local diffeomorphism of a closed  $C^{\infty}$ -manifold. If the topological entropy of f is positive, then f is chaotic in the sense of Li-Yorke.

From this theorem we obtain the following corollary.

Corollary B Let f be a  $C^2$ -local diffeomorphism of a closed  $C^{\infty}$ -manifold. If f is not invertible, then f is chaotic in the sense of Li-Yorke.

First we shall explain here the definitions and notations used above. Let X be a compact metric space with metric d and let  $f: X \to X$  be a continuous map. A subset S of X is a scrambled set of f if there is a positive number  $\tau > 0$  such that for any  $x, y \in S$  with  $x \neq y$ ,

- 1.  $\limsup_{n\to\infty} d(f^n(x), f^n(y)) > \tau$ ,
- 2.  $\liminf_{n\to\infty} d(f^n(x), f^n(y)) = 0$ .

If there is an uncountable scrambled set S of f, then we say that f is chaotic in the sense of Li-Yorke. Li and Yorke showed in [15] that if  $f:[0,1] \to [0,1]$  is a continuous map with a periodic point of period 3, then f is chaotic in this sense. Note that any scrambled set contains at most one point x which does not satisfy the following: for any periodic point  $p \in X$ ,

$$\limsup_{n\to\infty}d(f^n(x),f^n(p))>0.$$

For another sufficient condition for the chaos in the sense of Li-Yorke, the readers may refer to [4], [7], [8], [9], [10], [11], [19], [20], [34].

Concerning the chaos in the sense of Li-Yorke, Kato introduced the notion of "\*-chaos" as follows: let F be a closed subset of X. A map  $f: X \to X$  is \*-chaotic on F (in the sense of Li-Yorke) if the following conditions are satisfied:

1. there is  $\tau > 0$  with the property that for any nonempty open subsets U and V of F with  $U \cap V = \emptyset$  and for any natural number N, there is  $n \geq N$  such that  $d(f^n(x), f^n(y)) > \tau$  for some  $x \in U$ ,  $y \in V$ , and

2. for any nonempty open subsets U, V of F and any  $\varepsilon > 0$  there is a natural number  $n \ge 0$  such that  $d(f^n(x), f^n(y)) < \varepsilon$  for some  $x \in U, y \in V$ .

Such a set F is called a \*-chaotic set. If S is a scrambled set, then the closure of S,  $\bar{S}$ , is a \*-chaotic set. In [10] Kato showed that the converse is true. This is stated precisely as follows:

Lemma 1 ([10], Theorem 2.4) Let X be a compact metric space and let F be a closed subset of X. If  $f: X \to X$  is continuous and is \*-chaotic on F, then there is an  $F_{\sigma}$ -set  $S \subset F$  such that S is a scrambled set of f and  $\overline{S} = F$ . If F is perfect (i.e. F has no isolated points), we can choose S as a countable union of Cantor sets.

By this lemma, to show the existence of uncountable scrambled sets it suffices to show the existence of perfect \*-chaotic sets.

To obtain Theorem A we consider the inverse limit system of f. Let M be a closed  $C^{\infty}$ -manifold and let d be the distance for M induced by a Riemannian metric  $\|\cdot\|$  on TM. Let  $M^{\mathbb{Z}}$  denote the product topological space  $M^{\mathbb{Z}} = \{(x_i) : x_i \in M, i \in \mathbb{Z}\}$ . Then  $M^{\mathbb{Z}}$  is compact. We define a compatible metric  $\tilde{d}$  for  $M^{\mathbb{Z}}$  by

$$ilde{d}((x_i),(y_i)) = \sum_{i=-\infty}^{\infty} rac{d(x_i,y_i)}{2^{|i|}} \quad ((x_i),(y_i) \in M^{\mathbb{Z}}).$$

For  $f: M \to M$  a continuous surjection, we let

$$M_f = \{(x_i) : x_i \in M \text{ and } f(x_i) = x_{i+1}, i \in \mathbb{Z}\}.$$

Then  $M_f$  is a closed subset of  $M^{\mathbb{Z}}$ . The space  $M_f$  is called the *inverse limit space* constructed by f. A homeomorphism  $\tilde{f}: M_f \to M_f$ , which is defined by

$$\tilde{f}((x_i)) = (f(x_i)) \text{ for all } (x_i) \in M_f,$$

is called the *shift map* determined by f. We denote as  $P^0: M_f \to M$  the projection defined by  $(x_i) \mapsto x_0$ . Then  $P^0 \circ \tilde{f} = f \circ P^0$  holds. Remark that f is chaotic in the sense of Li-Yorke if and only if so is  $\tilde{f}$ .

We can show that the topological entropy, h(f), of f coincides with that of  $\tilde{f}$ . Indeed, for an f-invariant probability measure  $\nu$ , we can find an  $\tilde{f}$ -invariant probability measure  $\mu$  such that  $\nu(A) = P^0_*\mu(A) (= \mu((P^0)^{-1}A))$  for any Borel set  $A \subset M$  ([18] Lemma IV-8.3). Let us denote as  $h_{\nu}(f)$  and  $h_{\mu}(\tilde{f})$  the metric entropy of  $(M, f, \nu)$  and  $(M_f, \tilde{f}, \mu)$  respectively. Then we have  $h_{\nu}(f) = h_{P^0_*\mu}(f) = h_{\mu}(\tilde{f})$  ([25] Lemma 5.2). Therefore, the conclusion is obtained by the variational principle ([32] Theorem 8.6).

We say that a differentiable map  $f: M \to M$  is a local diffeomorphism if for  $x \in M$  there is an open neighborhood  $U_x$  of x in M such that  $f(U_x)$  is open in M and  $f|_{U_x}: U_x \to f(U_x)$  is a diffeomorphism. Since M is connected, then the cardinal number of  $f^{-1}(x)$  is constant. This constant is called the covering degree of f. If the covering degree of f is greater than one,  $(M_f, M, C, P^0)$  is a fiber bundle where C denotes the Cantor set (see [1] Theorem 6.5.1).

Let  $\mu$  be a Borel probability measure on  $M_f$  and let  $\mathcal{B}$  be the Borel  $\sigma$ -algebra on  $M_f$  completed with respect to  $\mu$ . For  $\xi$  a measurable partition of  $M_f$  and  $\tilde{x} \in M_f$  we denote as  $\xi(\tilde{x})$  the element of the partition  $\xi$  which contains the point  $\tilde{x}$ . Then there exists a family  $\{\mu_{\tilde{x}}^{\xi}|\tilde{x}\in M_f\}$  of Borel probability measures satisfying the following conditions:

- 1. for  $\tilde{x}, \, \tilde{y} \in M_f$  if  $\xi(\tilde{x}) = \xi(\tilde{y})$  then  $\mu_{\tilde{x}}^{\xi} = \mu_{\tilde{y}}^{\xi}$ ,
- 2.  $\mu_{\tilde{x}}^{\xi}(\xi(\tilde{x})) = 1$  for  $\mu$ -almost all  $\tilde{x} \in M_f$ ,
- 3. for  $A \in \mathcal{B}$  a function  $\tilde{x} \mapsto \mu_{\tilde{x}}^{\xi}(A)$  is measurable and  $\mu(A) = \int_{M_{\tilde{x}}} \mu_{\tilde{x}}^{\xi}(A) d\mu(\tilde{x})$ .

The family  $\{\mu_{\tilde{x}}^{\xi} | \tilde{x} \in M_f\}$  is called a canonical system of conditional measures for  $\mu$  and  $\xi$  (see [26] for more details).

To prove Theorem A it suffices to show the following theorem.

**Theorem C** Let f be a  $C^2$ -local diffeomorphism of a closed  $C^{\infty}$ -manifold M and let  $\mu$  be an  $\tilde{f}$ -invariant ergodic Borel probability measure on  $M_f$ .

If the metric entropy of  $\mu$  is positive, then there exists a measurable partition  $\eta$  of  $M_f$  such that  $supp(\mu_{\tilde{x}}^{\eta})$  is a perfect \*-chaotic set for  $\mu$ -almost all  $\tilde{x} \in M_f$ .

Here the support supp $(\nu)$  of a finite measure  $\nu$  is the smallest closed set C with  $\nu(C) = \nu(M_f)$ . Equivalently, supp $(\nu)$  is the set of all  $\tilde{x} \in M_f$  with the property that  $\nu(U) > 0$  for any open U containing  $\tilde{x}$ .

Let us see how Theorem A follows from Theorem C. We know that  $h(\tilde{f}) = \sup\{h_{\mu}(\tilde{f}) : \mu \in \mathcal{M}_{e}(\tilde{f})\}$  where  $\mathcal{M}_{e}(\tilde{f})$  is the set of all  $\tilde{f}$ -invariant ergodic probability measures (cf.[27]). Thus, if  $h(\tilde{f}) = h(f) > 0$ , then we can choose  $\mu \in \mathcal{M}_{e}(\tilde{f})$  with  $h_{\mu}(\tilde{f}) > 0$ . Therefore, by Theorem C and Lemma 1, f is chaotic in the sense of Li-Yorke.

## 2 Key Lemmas

In this section we prepare some lemmas which need to prove Theorem C. Let f be a  $C^2$ -local diffeomorphism of a closed  $C^{\infty}$ -manifold M and  $\mu$  be an  $\tilde{f}$ -invariant ergodic Borel probability measure on  $M_f$  with  $h_{\mu}(\tilde{f}) > 0$ . As in the previous section we denote as  $\mathcal{B}$  the Borel  $\sigma$ -algebra on  $M_f$  completed with respect to  $\mu$ . For  $\mu$ -almost all  $\tilde{x} = (x_i) \in M_f$ , there exist a splitting of the tangent space  $T_{x_0}M = \bigoplus_{i=1}^{s(x_0)} E_i(\tilde{x})$  and real numbers  $\lambda_1(x_0) < \lambda_2(x_0) < \cdots < \lambda_{s(x_0)}(x_0)$  such that

(a) the maps  $\tilde{x} \mapsto E_i(\tilde{x})$ ,  $\lambda_i(x_0)$  and  $s(x_0)$  are measurable, moreover  $E_i(\tilde{f}(\tilde{x})) = D_{x_0} f(E_i(\tilde{x}))$  and  $\lambda_i(x_0)$ ,  $s(x_0)$  are f-invariant  $(i = 1, \dots, s(x_0))$ ,

(b) 
$$\lim_{n\to\pm\infty}\frac{1}{n}\log\|(D_{x_0}f^{|n|})^{\pm 1}(v)\|=\lambda_i(x_0)$$
  $(0\neq v\in E_i(\tilde{x}),\ i=1,\cdots,s(x_0))$  and

$$(c) \lim_{n \to \pm \infty} \frac{1}{n} \log |\det(D_{x_0} f^{|n|})^{\pm 1}| = \sum_{i=1}^{s(x_0)} \lambda_i(x_0) \dim E_i(\tilde{x})$$

([21], [33], [29], [30]). The numbers  $\lambda_1(x_0), \dots, \lambda_{s(x_0)}(x_0)$  are called Lyapunov exponents of f at  $x_0$ . Since  $\mu$  is ergodic, we can put  $s = s(x_0)$ ,  $\lambda_i = \lambda_i(x_0)$  and  $m_i = \dim E_i(\tilde{x})$   $(i = 1, \dots, s)$  for  $\mu$ -almost all  $\tilde{x} = (x_i) \in M_f$ .

A well-known theorem of Margulis and Ruelle [28] says that entropy is always bounded above by the sum of positive Lyapunov exponents; i.e.  $h_{P_{\bullet}^{0}\mu}(f) \leq \sum_{\lambda_{i}>0} \lambda_{i}m_{i}$ . Since  $\tilde{f}$  has positive entropy, we have  $0 < h_{\mu}(\tilde{f}) = h_{P_{\bullet}^{0}\mu}(f) \leq \max\{\lambda_{i}\} = \lambda_{\bullet}$ . Fix  $0 < \lambda < \min\{\lambda_{i} : \lambda_{i} > 0\}$ . From [24], [29] and [30] there are measurable functions  $\tilde{\beta} > \tilde{\alpha} > 0$  and  $\tilde{\gamma} > 1$  with the following properties: For  $\tilde{x} = (x_{i}) \in M_{f}$  we put

$$\tilde{W}^{u}_{loc}(\tilde{x}) = \{\tilde{y} = (y_i) \in M_f : d(x_0, y_0) \leq \tilde{\alpha}(\tilde{x}), \ d(x_i, y_i) \leq \tilde{\beta}(\tilde{x})e^{-i\lambda} \ (i \geq 1)\}.$$

Then

- (a) the map  $P^0$  restricted to  $\tilde{W}^u_{loc}(\tilde{x})$  is injective,
- (b)  $P^0(\tilde{W}^u_{loc}(\tilde{x}))$  is a  $C^2$ -submanifold of the ball  $\{y \in M: d(x_0, y) \leq \tilde{\alpha}(\tilde{x})\}$ ,
- (c)  $T_{x_0}P^0(\tilde{W}^u_{loc}(\tilde{x}))=\oplus_{\lambda_i>0}E_i(\tilde{x})(\neq\{0\})$  for  $\mu$ -almost all  $\tilde{x}\in M_f$ ,
- (d)  $d(y_i, z_i) \leq \tilde{\gamma}(\tilde{x})d(y_0, z_0)e^{-i\lambda}$  for  $(y_n), (z_n) \in \tilde{W}^u_{loc}(\tilde{x})$ .

For the case when f is invertible we may refer to [6], [22] and [23].

Let  $\xi$  and  $\eta$  be measurable partitions of  $M_f$ . Put  $\tilde{f}^n\xi = \{\tilde{f}^nC : C \in \xi\}$  for  $n \in \mathbb{Z}$  and then  $(\tilde{f}^n\xi)(\tilde{x}) = \tilde{f}^n(\xi(\tilde{f}^{-n}(\tilde{x})))$  for  $\tilde{x} \in M_f$ .  $\eta \leq \xi$  means that for  $\mu$ -almost all  $\tilde{x} \in M_f$  one has  $\xi(\tilde{x}) \subset \eta(\tilde{x})$ .

**Lemma 2** Let f and  $\mu$  be as above. Then there exists a measurable partition  $\xi$  of  $M_f$  such

- (a)  $\xi \leq \tilde{f}^{-1}\xi$ ,
- (b) for  $\mu$ -almost all  $\tilde{x} \in M_f$ ,  $\xi(\tilde{x}) \subset \tilde{W}^u_{loc}(\tilde{x})$  and  $\xi(\tilde{x})$  contains a neighborhood of  $\tilde{x}$  open in  $\tilde{W}^u_{loc}(\tilde{x})$ ,
- (c)  $\bigvee_{n=0}^{\infty} \tilde{f}^{-n}\xi$  is the partition into points.

This lemma is similar to [13] Proposition 3.1, [16] Proposition 5.2 and [17] Lemma 2.2. So we omit the proof.

Let  $\mathcal C$  denote the family of all nonempty closed subsets of  $M_f$  and define a metric  $d_H$  by

$$d_H(A,B) = \max \{ \sup_{b \in B} d(A,b), \sup_{a \in A} d(a,B) \} \quad (A,B \subset \mathcal{C})$$

where  $d(A,b)=\inf\{d(a,b):a\in A\}$ . Then it is known that  $(\mathcal{C},d_H)$  is a compact metric space (cf.[12]). If  $\xi$  is a measurable partition, then  $\tilde{x}\mapsto\overline{\xi(\tilde{x})}\in\mathcal{C}$  is measurable. Indeed, this follows from [3] Theorems III.2, III.9, III.22 and the fact that  $\{(\tilde{x},\xi(\tilde{x})):\tilde{x}\in M_f\}$  is a Borel subset of  $M_f\times M_f$ . For  $A\subset M_f$  we put  $\operatorname{diam}(A)=\sup\{d(\tilde{x},\tilde{y}):\tilde{x},\tilde{y}\in A\}$ . Then we have  $\operatorname{diam}(A)=\operatorname{diam}(\bar{A})$ . Since  $\tilde{x}\mapsto\overline{\xi(\tilde{x})}\in\mathcal{C}$  is measurable,  $\tilde{x}\mapsto\operatorname{diam}(\xi(\tilde{x}))$  is also a measurable function. By Lemma 2 (c) we have that for  $\mu$ -almost all  $\tilde{x}\in M_f$ 

$$\operatorname{diam}((\tilde{f}^{-n}\xi)(\tilde{x})) \to 0 \tag{1}$$

as  $n \to \infty$ 

Let  $\xi$  and  $\eta$  be measurable partitions of  $M_f$  and let  $\{\mu_{\tilde{x}}^{\xi} | \tilde{x} \in M_f\}$  be a canonical system of conditional measures for  $\mu$  and  $\xi$ . The mean conditional entropy of  $\eta$  with respect to  $\xi$  is defined by

$$H_{\mu}(\eta|\xi) = \int -\log \mu_{ ilde{x}}^{\xi}(\eta( ilde{x})) d\mu( ilde{x})$$

(see [27] for details).

Lemma 3 Let f and  $\mu$  be as above and let  $\xi$  be as in Lemma 2. Then,

$$h_{\mu}(\tilde{f}) = H_{\mu}(\tilde{f}^{-1}\xi|\xi).$$

For the case when f is invertible this lemma is proved by Ledrappier and Young [14]. We recall that if the covering degree of f is greater than one, then  $(M_f, M, C, P^0)$  is a fiber bundle where C denotes the Cantor set. In view of this fact, the above lemma can be proved by almost the same arguments as the proof of [14] Corollary 5.3 and [16] Corollary 7.1 with some slight modifications. Here we omit the proof.

By Lemma 2(a) we have that  $\xi \geq \tilde{f}\xi \geq \tilde{f}^2\xi \geq \cdots$ . Let us introduce a measurable partition defined by  $\eta = \bigwedge_{i=0}^{\infty} \tilde{f}^i\xi$ . Then we have  $\tilde{f}\eta = \eta$ . For simplicity put

$$\mu_{ ilde{x}} = \mu_{ ilde{x}}^{\eta} \quad ext{ and } \quad \mu_{ ilde{x}}^n = \mu_{ ilde{x}}^{ ilde{f}^n \xi} \quad (n \in \mathbb{Z}).$$

By Doob's theorem it follows that for a  $\mu\text{-integrable function }\psi:M_f\to\mathbb{R}$ 

$$\int \psi d\mu_{\bar{x}} = \lim_{n \to \infty} \int \psi d\mu_{\bar{x}}^n \tag{2}$$

for  $\mu$ -almost all  $\tilde{x}$ . Since  $\tilde{f}\eta = \eta$  and  $\tilde{f}_*\mu = \mu$ , by the uniqueness of a canonical system of conditional measures (cf. [26]) we have that for  $\mu$ -almost all  $\tilde{x}$ 

$$\tilde{f}_*\mu_{\tilde{x}} = \mu_{\tilde{f}\tilde{x}} \quad \text{and} \quad \tilde{f}_*\mu_{\tilde{x}}^n = \mu_{\tilde{f}\tilde{x}}^{n+1} \quad (n \in \mathbb{Z}).$$
 (3)

Here  $(\tilde{f}_*\nu)(A) = \nu(\tilde{f}^{-1}A)$  for a Borel probability measure  $\nu$  on  $M_f$  and  $A \in \mathcal{B}$ .

Let  $C(M_f)$  be the Banach space of continuous real-valued functions of  $M_f$  with the sup norm  $|\cdot|_{\infty}$ , and let  $\mathcal{M}(M_f)$  be a set of all Borel probability measures on  $M_f$  with the weak

topology. Since  $C(M_f)$  is separable, there exists a countable set  $\{\varphi_1, \varphi_2, \dots\}$  which is dense in  $C(M_f)$ . For  $\nu, \nu' \in \mathcal{M}(M_f)$  define

$$\rho(\nu,\nu') = \sum_{n=1}^{\infty} \frac{|\int \varphi_n d\nu - \int \varphi_n d\nu'|}{2^n |\varphi_n|_{\infty}}.$$

Then  $\rho$  is a compatible metric for  $\mathcal{M}(M_f)$  and  $(\mathcal{M}(M_f), \rho)$  is compact (cf.[18]). Since (2) holds for  $\{\varphi_i\}$ , we have

$$\mu_{\tilde{x}} = \lim_{n \to \infty} \mu_{\tilde{x}}^n \tag{4}$$

for  $\mu$ -almost all  $\tilde{x}$ . For  $\nu \in \mathcal{M}(M_f)$  and a measurable partition  $\xi$ , by the definition of conditional measures  $\{\nu_{\tilde{x}}^{\xi}\}$ , the map

$$M_f 
i ilde{x} \mapsto \int arphi_n d
u_{ ilde{x}}^{\xi}$$

is measurable for  $n \geq 1$  and thus  $\tilde{x} \mapsto \nu_{\tilde{x}}^{\xi} \in \mathcal{M}(M_f)$  is measurable.

**Lemma 4** Let f,  $\mu$  and  $\{\mu_{\tilde{x}} | \tilde{x} \in M_f\}$  be as above. Then for  $\varepsilon > 0$  there exists a closed set  $F_{\varepsilon}$  with  $\mu(F_{\varepsilon}) \geq 1 - \varepsilon$  satisfying the map

$$F_{\varepsilon}\ni \tilde{x}\mapsto \mu_{\tilde{x}}\in \mathcal{M}(M_f)$$

is continuous.

**Proof.** Let  $\{\varphi_1, \varphi_2, \dots\}$  be as above and let  $\varepsilon > 0$ . Since  $\tilde{x} \mapsto \int \varphi_i d\nu_{\tilde{x}}^{\xi}$  is measurable for  $i \geq 1$ , by Lusin's theorem there exists a closed set  $F_i$   $(i \geq 1)$  with  $\mu(F_i) \geq 1 - \varepsilon/2^i$  satisfying

$$F_i \ni \tilde{x} \mapsto \int \varphi_i d\mu_{\tilde{x}} : \text{continuous.}$$

Then  $F_{\varepsilon} = \bigcap_{i=1}^{\infty} F_i$  has the desired property.

For  $\nu \in \mathcal{M}(M_f)$  and  $E \in \mathcal{B}$  let  $\nu|_E$  denote the restriction of  $\nu$  to E, i.e.  $\nu|_E(A) = \nu(A \cap E)$  for  $A \in \mathcal{B}$ . Clearly  $\nu|_E$  is a finite measure. We denote as  $B(\tilde{x}, r)$  and  $U(\tilde{x}, r)$  the closed and open balls in  $M_f$  with center  $\tilde{x} \in M_f$  and radius r > 0 respectively. Let  $\{\varphi_1, \varphi_2, \cdots\}$  be as above and let  $\nu \in \mathcal{M}(M_f)$ . For  $\tilde{x} \in \text{supp}(\nu)$  and  $\varepsilon > 0$  we can find i such that

$$\int_{U(\tilde{x},\varepsilon)} \varphi_i d\nu > \int \varphi_i d\nu - \varepsilon.$$

Since the inequality holds for  $\nu'$  sufficiently close to  $\nu$ , we can easily prove that

$$\mathcal{M}(M_f) \ni \nu \mapsto \operatorname{supp}(\nu) \in \mathcal{C}$$

is lower semi-continuous and so the map is measurable ([3] Corollary III.3). Since  $\nu \mapsto \text{diam}(\text{supp}(\nu))$  is lower semi-continuous,

$$\mathcal{P}(M_f) = \{ \nu \in \mathcal{M}(M_f) : \nu \text{ is a point measure} \}$$
$$= \{ \nu \in \mathcal{M}(M_f) : \operatorname{diam}(\operatorname{supp}(\nu)) = 0 \}$$

is a closed set of  $\mathcal{M}(M_f)$ . Since  $(\tilde{f}^n\xi)(\tilde{x})\subset \eta(\tilde{x})$ , we have

$$\operatorname{supp}(\mu_{\tilde{x}}^n) \subset \operatorname{supp}(\mu_{\tilde{x}}) \quad (n \in \mathbf{Z})$$

for  $\mu$ -almost all  $\tilde{x} \in M_f$ .

**Lemma 5** Let f,  $\mu$  and  $\{\mu_{\tilde{x}}|\tilde{x}\in M_f\}$  be as above. Then for  $\mu$ -almost all  $\tilde{x}\in M$ , supp $(\mu_{\tilde{x}})$  has no isolated points.

**Proof.** Let  $\xi$  and  $\mu_{\bar{x}}^n$  be as above. Then it is easily checked that for  $n \in \mathbb{Z}$ 

$$P_n = \{\tilde{x} \in M_f : \mu_{\tilde{x}}^n \in \mathcal{P}(M_f)\} \supset \{\tilde{x} \in M_f : \mu_{\tilde{x}}|_{(\tilde{f}^n\xi)(\tilde{x})} \text{ is a point measure}\}.$$

If this lemma is false, then there exists a measurable set with positive measure such that for any  $\tilde{x}$  belonging to the set,  $\operatorname{supp}(\mu_{\tilde{x}})$  has an isolated point. Since  $\operatorname{diam}((\tilde{f}^{-k}\xi)(\tilde{x})) \to 0$   $(k \to \infty)$  by (1), we have  $\mu(P_{-k}) > 0$  for k large enough. Put  $P = \bigcap_{j \ge 1} \bigcup_{n \ge j} \tilde{f}^n P_{-k}$  and then  $\mu(P) = 1$  because  $\mu$  is ergodic.

By (3) we have

$$\tilde{f}^{n}(P_{-k}) = \{\tilde{f}^{n}(\tilde{x}) \in M_{f} : \mu_{\tilde{x}}^{-k} \in \mathcal{P}(M)\} 
= \{\tilde{x} \in M_{f} : \tilde{f}_{*}^{n} \mu_{\tilde{f}^{-n}\tilde{x}}^{-k} \in \mathcal{P}(M)\} 
= \{\tilde{x} \in M_{f} : \mu_{\tilde{x}}^{n-k} \in \mathcal{P}(M_{f})\} 
= P_{n-k} (n \in \mathbb{Z}),$$

and so  $P = \bigcap_{j \geq 1} \bigcup_{n \geq j} P_{n-k}$ . Thus, for  $\tilde{x} \in P$  there exists an increasing sequence  $\{n_i\}_{i \geq 0}$  such that  $\tilde{x} \in P_{n_i}$  for  $i \geq 0$ . Since  $\mu_{\tilde{x}} = \lim_{i \to \infty} \mu_{\tilde{x}}^{n_i}$  (by (4)) and  $\mu_{\tilde{x}}^{n_i} \in \mathcal{P}(M_f)$  for i, we have  $\mu_{\tilde{x}} \in \mathcal{P}(M_f)$  for  $\tilde{x} \in P$ .

Since  $\xi \geq \eta$  and  $\mu_x$  is a point measure for  $\mu$ -almost all  $\tilde{x} \in M_f$ , so is  $\mu_{\tilde{x}}^{\xi}$ . Thus  $\mu_{\tilde{x}}^{\xi}((\tilde{f}^{-1}\xi)(\tilde{x})) = 1$  for  $\mu$ -almost all  $\tilde{x}$ . Therefore

$$h_{\mu}(\tilde{f}) = H_{\mu}(\tilde{f}^{-1}\xi|\xi) = \int -\log \mu_{\tilde{x}}^{\xi}((\tilde{f}^{-1}\xi)(\tilde{x}))d\mu(\tilde{x}) = 0$$

by Lemma 3. This is a contradiction.

# 3 Proof of Theorem C

In this section we will prove Theorem C. Let f,  $\mu$ ,  $\eta$  and  $\{\mu_{\tilde{x}}|\tilde{x}\in M_f\}$  be as in §2. By Lemma 5,  $\operatorname{supp}(\mu_{\tilde{x}})$  is perfect for  $\mu$ -almost all  $\tilde{x}\in M_f$ . Therefore, to obtain the conclusion it suffices to show the following.

Proposition 1 If  $\mu_{\tilde{x}}$  is not a point measure for  $\mu$ -almost all  $\tilde{x} \in M_f$ , then  $supp(\mu_{\tilde{x}})$  is a \*-chaotic set for  $\mu$ -almost all  $\tilde{x} \in M_f$ .

**Proof.** The proof of this proposition is similar to that of [31] Proposition 2. However, for completeness we give the proof.

Fix  $0 < \varepsilon < 1$  and let  $F_{\varepsilon}$  be as in Lemma 4. By assumption we can take and fix  $\tilde{x}_0 \in \operatorname{supp}(\mu|F_{\varepsilon})$  such that  $\mu_{\tilde{x}_0}$  is not a point measure. Choose two distinct points  $\tilde{y}_1, \tilde{y}_2 \in \operatorname{supp}(\mu_{\tilde{x}_0})$  and put  $\tau = d(\tilde{y}_1, \tilde{y}_2)/2(>0)$ . For  $0 < r < \tau/2$  we can take  $\delta = \delta(r) > 0$  with

$$\mu_{\tilde{x}_0}(U(\tilde{y}_i,r)) > \delta \quad (i=1,2).$$

Since  $U(\tilde{y}_i, r)$  are open, there exists a large integer m' = m'(r) > 0 such that if  $\rho(\nu, \mu_{\tilde{x}_0}) < 1/m'$   $(\nu \in \mathcal{M}(M_f))$ , then

$$\nu(U(\tilde{y}_i, r)) > \delta = \delta(r) \quad (i = 1, 2). \tag{5}$$

By Lemma 4 we can find  $\epsilon' = \epsilon'(r) > 0$  such that for  $\tilde{x} \in U(\tilde{x}_0, \epsilon') \cap F_{\epsilon}$ 

$$\rho(\mu_{\tilde{x}}, \mu_{\tilde{x}_0}) < 1/2m' = 1/2m'(r). \tag{6}$$

Remark that

$$d(U(\tilde{y}_1, r), U(\tilde{y}_2, r)) = \inf\{d(\tilde{x}, \tilde{y}) : d(\tilde{x}, \tilde{y}_1) < r, \ d(\tilde{y}, \tilde{y}_2) < r\} > \tau.$$

Let  $\xi$  be as in Lemma 2 and put

$$B_m(n) = \left\{ \tilde{x} \in M_f \middle| \begin{array}{l} \rho(\mu_{\tilde{x}}^{[k/2]}, \mu_{\tilde{x}}) < 1/m, \\ \operatorname{diam}((\tilde{f}^{-k+[k/2]}\xi)(\tilde{f}^{-k}\tilde{x})) < 1/m \quad (k \ge n) \end{array} \right\}$$

for  $n, m \geq 1$ . Then  $B_m(n) \subset B_m(n+1)$  and  $\mu(\bigcup_{n=0}^{\infty} B_m(n)) = 1$  by (1) and (4), and so there exists an increasing sequence  $\{n_m\}$  such that  $\mu(B_m(n_m)) \geq 1 - 1/2^{m+1}$   $(m \geq 1)$ . Since  $\mu(\bigcap_{k=m}^{\infty} B_k(n_k)) \geq 1 - 1/2^m$  for  $m \geq 1$ , we can find  $D_m \in \mathcal{B}$  with  $\mu(D_m) \geq 1 - 2^{-m/2}$  satisfying

$$\mu_{\tilde{x}}(\cap_{k=m}^{\infty} B_k(n_k)) \ge 1 - 2^{-m/2} \quad (\tilde{x} \in D_m).$$
 (7)

For  $0 < r < \tau/2$  we put

$$K_r = \bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} \left( \bigcap_{n=0}^{\infty} \bigcup_{\ell=n}^{\infty} \tilde{f}^{-\ell}(U(\tilde{x}_0, \varepsilon'(r)) \cap F_{\varepsilon} \cap D_m) \right).$$

Since  $\mu(U(\tilde{x}_0, \varepsilon'(r)) \cap F_{\varepsilon} \cap D_m) \ge \mu(U(\tilde{x}_0, \varepsilon'(r)) \cap F_{\varepsilon}) - 2^{-m/2} > 0$  for m sufficiently large, we have  $\mu(K_r) = 1$   $(0 < r < \tau/2)$  by the ergodicity of  $\mu$ . Therefore, to obtain the conclusion it suffices to show that  $\operatorname{supp}(\mu_{\tilde{x}})$  is a \*-chaotic set for  $\tilde{x} \in K = \bigcap_{n \ge 1} K_{1/n}$ .

To do this fix  $\tilde{x} \in K_r$   $(r = 1/n, n \ge 1)$  and suppose that nonempty open sets  $U_1$  and  $U_2$  satisfy

$$U_1 \cap U_2 \neq \emptyset$$
,  $U_j \cap \text{supp}(\mu_{\tilde{x}}) \neq \emptyset$   $(j = 1, 2)$ .

Choose  $m_0 > 0$  with

$$0 < 2^{-m_0/2} < \min\{\mu_{\tilde{x}}(U_j) : j = 1, 2\}$$
 and  $m_0 \ge 2m'$ .

Since  $\tilde{x} \in K_r$ , by the definition of  $K_r$ , there exist  $m_1 > m_0$  and a sequence of positive integers  $\{\ell_k\}_k$  with  $\ell_k > n_k$  such that

$$\tilde{f}^{\ell_k}(\tilde{x}) \in U(\tilde{x}_0, \varepsilon'(r)) \cap F_{\varepsilon} \cap D_{m_1} \quad (k \ge 1). \tag{8}$$

Thus, by (3) and (7) we have

$$\mu_{\tilde{x}}(\tilde{f}^{-\ell_k}(B_k(n_k))) \geq \mu_{\tilde{x}}(\tilde{f}^{-\ell_k}(\cap_{k=m_1}^{\infty} B_k(n_k)))$$

$$= \mu_{\tilde{f}^{\ell_k}(\tilde{x})}(\cap_{k=m_1}^{\infty} B_k(n_k))$$

$$\geq 1 - 2^{-m_1/2} \geq 1 - 2^{-m_0/2} \quad (k \geq m_1),$$

and so  $\mu_{\tilde{x}}(U_j \cap \tilde{f}^{-\ell_k}(B_k(n_k))) \ge \mu_{\tilde{x}}^u(U_j) - 2^{-m_0/2} > 0$ . Therefore we can choose

$$\tilde{z}_j = \tilde{z}_j(k) \in U_j \cap \tilde{f}^{-\ell_k}(B_k(n_k)) \cap \eta(\tilde{x})$$

for j = 1, 2 and  $k \geq m_1$ .

Since  $\tilde{f}^{\ell_k}(\tilde{z}_i) \in B_k(n_k) \cap \tilde{f}^{\ell_k}(\eta(\tilde{x})) \subset B_k(\ell_k) \cap \eta(\tilde{f}^{\ell_k}(\tilde{x}))$ , we have

$$\rho(\mu_{\tilde{f}^{\ell_{k}}(\tilde{z}_{j})}^{[\ell_{k}/2]}, \mu_{\tilde{f}^{\ell_{k}}(\tilde{x})}) = \rho(\mu_{\tilde{f}^{\ell_{k}}(\tilde{z}_{j})}^{[\ell_{k}/2]}, \mu_{\tilde{f}^{\ell_{k}}(\tilde{z}_{j})}) < 1/k \le 1/m_{0} \le 1/2m',$$

$$\operatorname{diam}((\tilde{f}^{-\ell_{k} + [\ell_{k}/2]}\xi)(\tilde{z}_{j})) < 1/k$$
(9)

for j = 1, 2 and  $k \ge m_1$ . By use of (6) and (8)

$$\rho(\mu_{\tilde{f}^{\ell_{k}}(\tilde{z}_{j})}^{[\ell_{k}/2]}, \mu_{\tilde{x}_{0}}) \leq \rho(\mu_{\tilde{f}^{\ell_{k}}(\tilde{z}_{j})}^{[\ell_{k}/2]}, \mu_{\tilde{f}^{\ell_{k}}(\tilde{x})}) + \rho(\mu_{\tilde{f}^{\ell_{k}}(\tilde{x})}, \mu_{\tilde{x}_{0}}) \\
< 1/2m' + 1/2m' = 1/m',$$

and so  $\mu_{\tilde{z}_i}^{-\ell_k+[\ell_k/2]}(\tilde{f}^{-\ell_k}U(\tilde{y}_i,r)) = \mu_{\tilde{f}^{\ell_k}(\tilde{z}_i)}^{[\ell_k/2]}(U(\tilde{y}_i,r)) > \delta$  by (5). Thus we have

$$(\tilde{f}^{-\ell_k + [\ell_k/2]} \xi)(\tilde{z}_i) \cap \tilde{f}^{-\ell_k} U(\tilde{y}_i, r) \neq \emptyset$$

for  $1 \le i, j \le 2$  and  $k \ge m_1$ . Since  $\tilde{z}_i \in U_i$ , by (9) we may assume

$$\tilde{z}_j \in (\tilde{f}^{-\ell_k + [\ell_k/2]} \xi)(\tilde{z}_j) \subset U_j$$

for k large enough. Therefore

$$U_i \cap \tilde{f}^{-\ell_k}U(\tilde{y}_i, r) \supset (\tilde{f}^{-\ell_k + [\ell_k/2]}\xi)(\tilde{z}_i) \cap \tilde{f}^{-\ell_k}U(\tilde{y}_i, r) \neq \emptyset$$

for  $1 \leq i, j \leq 2$  and k large enough. Now we take  $b_{i,j} = b_{i,j}(k) \in U_j \cap \tilde{f}^{-\ell_k}U(\tilde{y}_i,r)$  for  $1 \leq i, j \leq 2$  and then

$$\begin{split} &b_{i,j} \in U_j \quad (1 \leq i,j \leq 2), \\ &d(\tilde{f}^{\ell_k}(b_{1,1}), \tilde{f}^{\ell_k}(b_{2,2})) > d(U(\tilde{y}_1,r), U(\tilde{y}_2,r)) > \tau \quad \text{ and } \\ &d(\tilde{f}^{\ell_k}(b_{1,1}), \tilde{f}^{\ell_k}(b_{1,2})) \leq \operatorname{diam}(U(\tilde{y}_1,r)) = 2r = 2/n. \end{split}$$

This implies that  $supp(\mu_{\tilde{x}})$  is a \*-chaotic set for  $\tilde{x} \in K = \bigcap_{n \geq 1} K_{1/n}$ .

#### References

- [1] N. Aoki and K. Hiraide, Topological theory of dynamical systems. Recent advances, North-Holland Mathematical Library, 52. North-Holland Publishing Co., Amsterdam, 1994.
- [2] L.S. Block and W.A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, Berlin, 1992.
- [3] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977.
- [4] Y.M. Chung, Shadowing property of non-invertible maps with hyperbolic measures, Tokyo J. Math. 22 (1999), no. 1, 145-166.
- [5] R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Reading, MA, 2nd ed., 1989.
- [6] A. Fathi, M.R. Herman and J-C. Yoccoz, A proof of Pesin's stable manifold theorem, Geometric Dynamics (J. Palis, Jr., Ed.), Lecture Notes in Math., 1007, Springer, Berlin, 1983, 177-215.
- [7] M. Hata, Scrambled sets on compact metric spaces, J. Math. Kyoto Univ., 24-4 (1984), 689-698.
- [8] H. Kato, Chaotic continua of (continuum-wise) expansive homeomorphisms and chaos in the sense of Li and Yorke, Fund. Math., 145 (1994), 261-279.
- [9] H. Kato, Everywhere chaotic homeomorphisms on manifolds and k-dimensional Menger manifolds, Topology Appl., 72 (1996), 1-17.
- [10] H. Kato, On scrambled sets and a theorem of Kuratowski on independent sets, Proc. Amer. Math. Soc., 126 (1998), 2151-2157.
- [11] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. I.H.E.S., 51 (1980), 137-174.
- [12] K. Kuratowski, Topology, Academic Press, New York, 1968.
- [13] F. Ledrappier and J.M. Strelcyn, A proof of the estimation from below in Pesin's entropy formula, Ergod. Th. & Dynam. Sys., 2 (1982), 203-219.

- [14] F. Ledrappier and L.S. Young, The metric entropy of diffeomorphisms, Ann. of Math., 122 (1985), 509-574.
- [15] T.Y. Li and J.A. Yorke, *Period three implies chaos*, Amer. Math. Monthly, 82 (1975), 985-992.
- [16] P.D. Liu and M. Qian, Smooth ergodic theory of random dynamical systems. Lecture Notes in Mathematics, 1606. Springer-Verlag, Berlin, 1995.
- [17] P.D. Liu, Pesin's entropy formula for endomorphisms, Nagoya Math. J. 150 (1998), 197-209.
- [18] R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987.
- [19] F.R. Marotto, Snap-back repellers imply chaos in R<sup>k</sup>, J. Math. Analysis and Appl., 63 (1978), 199-223.
- [20] M. Misiurewicz and J. Smital, Smooth chaotic maps with zero topological entropy, Ergod. Th. & Dynam. Sys., 8 (1988), 421-424.
- [21] V.I. Oseledec, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems, Trans. Mosc. Math. Soc., 19 (1968), 197-231.
- [22] Y.B. Pesin, Families of invariant manifolds corresponding to non-zero characteristic exponents, Math. of the USSR, Izvestija, 10 (1978), 1261-1305.
- [23] Y.B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys, 32:4 (1977), 55-114.
- [24] C. Pugh and M. Shub, Ergodic attractors, Trans. Amer. Math. Soc., 312 (1989), 1-54.
- [25] M. Qian and Z. Zhang, Ergodic theory for axiom A endomorphisms, Ergod. Th. and Dynam. Sys. 15 (1995), 161-174.
- [26] V.A. Rohlin, On the fundamental ideas of measure theory, A.M.S. Transl., (1) 10 (1962), 1-52.
- [27] V.A. Rohlin, Lectures on the theory of entropy of transformations with invariant measures, Russ. Math. Surveys, 22:5 (1967), 1-54.
- [28] D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Math., 9 (1978), 83-87.
- [29] D. Ruelle and M. Shub, Stable manifolds for maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), pp. 389-392, Lecture Notes in Math., 819, Springer, Berlin, 1980.
- [30] D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. (2) 115 (1982), no. 2, 243-290.
- [31] N. Sumi, Stable and unstable manifolds of diffeomorphisms with positive entropy, Singular phenomena of dynamical systems (Kyoto, 1999). Sūrikaisekikenkyūsho Kōkyūroku No. 1118 (1999), 13-26.
- [32] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.
- [33] P. Walters, A dynamical proof of the multiplicative ergodic theorem, Trans. Amer. Math. Soc. 335 (1993), no. 1, 245-257.
- [34] J. Xiong and Z. Yang, Chaos caused by a topologically mixing map, World Scientific, Advanced Series in Dynamical Systems Vol 9 (1991), 550-572.