Title
Local diffeomorphisms with positive entropy and chaos in the sense of Li-Yorke (Studies on complex dynamics and related topics)

Author(s)
Sumi, Naoya

Citation
数理解析研究所講究録 数学リポジトリ
Local diffeomorphisms with positive entropy and chaos in the sense of Li-Yorke

Naoya Sumi (鶴見 直哉)

Abstract

We show that if f is a C^2-local diffeomorphism with positive entropy on a n-dimensional closed manifold ($n \geq 2$) then f is chaotic in the sense of Li-Yorke.

1 Introduction

We study chaotic properties of dynamical systems with positive entropy. Notions of chaos have been given by Li and Yorke [15], Devaney [5] and others. It is well known that if a continuous map of an interval has positive entropy, then the map is chaotic according to the definition of Li and Yorke (cf. [2]). For invertible maps the following holds: let f be a C^2-diffeomorphism of a closed C^∞-manifold. If the topological entropy of f is positive, then f is chaotic in the sense of Li-Yorke [31].

In this paper we show the following:

Theorem A. Let f be a C^2-local diffeomorphism of a closed C^∞-manifold. If the topological entropy of f is positive, then f is chaotic in the sense of Li-Yorke.

From this theorem we obtain the following corollary.

Corollary B. Let f be a C^2-local diffeomorphism of a closed C^∞-manifold. If f is not invertible, then f is chaotic in the sense of Li-Yorke.

First we shall explain here the definitions and notations used above. Let X be a compact metric space with metric d and let $f : X \to X$ be a continuous map. A subset S of X is a scrambled set of f if there is a positive number $\tau > 0$ such that for any $x, y \in S$ with $x \neq y$,

1. $\limsup_{n \to \infty} d(f^n(x), f^n(y)) > \tau$,
2. $\liminf_{n \to \infty} d(f^n(x), f^n(y)) = 0$.

If there is an uncountable scrambled set S of f, then we say that f is chaotic in the sense of Li-Yorke. Li and Yorke showed in [15] that if $f : [0, 1] \to [0, 1]$ is a continuous map with a periodic point of period 3, then f is chaotic in this sense. Note that any scrambled set contains at most one point x which does not satisfy the following: for any periodic point $p \in X$,

$$\limsup_{n \to \infty} d(f^n(x), f^n(p)) > 0.$$

For another sufficient condition for the chaos in the sense of Li-Yorke, the readers may refer to [4], [7], [8], [9], [10], [11], [19], [20], [34].

Concerning the chaos in the sense of Li-Yorke, Kato introduced the notion of "*-chaos" as follows: let F be a closed subset of X. A map $f : X \to X$ is *-chaotic on F (in the sense of Li-Yorke) if the following conditions are satisfied:

1. there is $\tau > 0$ with the property that for any nonempty open subsets U and V of F with $U \cap V = \emptyset$ and for any natural number N, there is $n \geq N$ such that $d(f^n(x), f^n(y)) > \tau$ for some $x \in U$, $y \in V$, and
2. for any nonempty open subsets \(U, V \) of \(F \) and any \(\varepsilon > 0 \) there is a natural number \(n \geq 0 \) such that \(d(f^n(x), f^n(y)) < \varepsilon \) for some \(x \in U, y \in V. \)

Such a set \(F \) is called a \(\ast \)-chaotic set. If \(S \) is a scrambled set, then the closure of \(S, \bar{S}, \) is a \(\ast \)-chaotic set. In [10] Kato showed that the converse is true. This is stated precisely as follows:

Lemma 1 ([10], Theorem 2.4) Let \(X \) be a compact metric space and let \(F \) be a closed subset of \(X. \) If \(f : X \rightarrow X \) is continuous and is \(\ast \)-chaotic on \(F, \) then there is an \(F_0 \)-set \(S \subset F \) such that \(S \) is a scrambled set of \(f \) and \(\bar{S} = F. \) If \(F \) is perfect (i.e. \(F \) has no isolated points), we can choose \(S \) as a countable union of Cantor sets.

By this lemma, to show the existence of uncountable scrambled sets it suffices to show the existence of perfect \(\ast \)-chaotic sets.

To obtain Theorem A we consider the inverse limit system of \(f. \) Let \(M \) be a closed \(C^\infty \)-manifold and let \(d \) be the distance for \(M \) induced by a Riemannian metric \(\| \cdot \| \) on \(TM. \) Let \(M^Z \) denote the product topological space \(M^Z = \{(x_i) : x_i \in M, i \in \mathbb{Z}\}. \) Then \(M^Z \) is compact. We define a compatible metric \(\tilde{d} \) for \(M^Z \) by

\[
\tilde{d}((x_i), (y_i)) = \sum_{i=-\infty}^{\infty} \frac{d(x_i, y_i)}{2^{|i|}} \quad ((x_i), (y_i) \in M^Z).
\]

For \(f : M \rightarrow M \) a continuous surjection, we let

\[
M_f = \{(x_i) : x_i \in M \text{ and } f(x_i) = x_{i+1}, i \in \mathbb{Z}\}.
\]

Then \(M_f \) is a closed subset of \(M^Z. \) The space \(M_f \) is called the **inverse limit space** constructed by \(f. \) A homeomorphism \(\tilde{f} : M_f \rightarrow M_f, \) which is defined by

\[
\tilde{f}(x_i) = (f(x_i)) \quad \text{for all } (x_i) \in M_f,
\]

is called the **shift map** determined by \(f. \) We denote as \(P^0 : M_f \rightarrow M \) the projection defined by \((x_i) \mapsto x_0. \) Then \(P^0 \circ f = f \circ P^0 \) holds. Remark that \(f \) is chaotic in the sense of Li-Yorke if and only if so is \(\tilde{f}. \)

We can show that the topological entropy, \(h(f), \) of \(f \) coincides with that of \(\tilde{f}. \) Indeed, for an \(f \)-invariant probability measure \(\nu, \) we can find an \(\tilde{f} \)-invariant probability measure \(\mu \) such that \(\nu(A) = P^0_\mu(A)(= \mu((P^0)^{-1}A)) \) for any Borel set \(A \subset M \) ([18] Lemma IV 8.3). Let us denote as \(h_{\nu}(f) \) and \(h_{\mu}(\tilde{f}) \) the metric entropy of \((M, f, \nu) \) and \((M_f, \tilde{f}, \mu) \) respectively. Then we have \(h_{\nu}(f) = h_{P^0 \mu}(f) = h_{\mu}(\tilde{f}) \) ([25] Lemma 5.2). Therefore, the conclusion is obtained by the variational principle ([32] Theorem 8.6).

We say that a differentiable map \(f : M \rightarrow M \) is a **local diffeomorphism** if for \(x \in M \) there is an open neighborhood \(U_x \) of \(x \) in \(M \) such that \(f(U_x) \) is open in \(M \) and \(f|_{U_x} : U_x \rightarrow f(U_x) \) is a homeomorphism. Since \(M \) is connected, then the cardinal number of \(f^{-1}(x) \) is constant. This constant is called the **covering degree** of \(f. \) If the covering degree of \(f \) is greater than one, \((M_f, M, C, P^0) \) is a fiber bundle where \(C \) denotes the Cantor set (see [1] Theorem 6.5.1).

Let \(\mu \) be a Borel probability measure on \(M_f \) and let \(B \) be the Borel \(\sigma \)-algebra on \(M_f \) completed with respect to \(\mu. \) For \(\xi \) a measurable partition of \(M_f \) and \(\tilde{x} \in M_f \) we denote as \(\xi(\tilde{x}) \) the element of the partition \(\xi \) which contains the point \(\tilde{x}. \) Then there exists a family \(\{\mu^\xi_{\tilde{x}} | \tilde{x} \in M_f\} \) of Borel probability measures satisfying the following conditions:

1. for \(\tilde{x}, \tilde{y} \in M_f \) if \(\xi(\tilde{x}) = \xi(\tilde{y}) \) then \(\mu^\xi_{\tilde{x}} = \mu^\xi_{\tilde{y}}; \)
2. \(\mu^\xi_{\tilde{x}}(\xi(\tilde{x})) = 1 \) for \(\mu \)-almost all \(\tilde{x} \in M_f, \)
3. for \(A \subset B \) a function \(\tilde{x} \mapsto \mu^\xi_{\tilde{x}}(A) \) is measurable and \(\mu(A) = \int_{M_f} \mu^\xi_{\tilde{x}}(A) d\mu(\tilde{x}). \)

The family \(\{\mu^\xi_{\tilde{x}} | \tilde{x} \in M_f\} \) is called a **canonical system of conditional measures** for \(\mu \) and \(\xi \) (see [26] for more details).

To prove Theorem A it suffices to show the following theorem.
Theorem C Let f be a C^2-local diffeomorphism of a closed C^∞-manifold M and let μ be an f-invariant ergodic Borel probability measure on M_f.

If the metric entropy of μ is positive, then there exists a measurable partition η of M_f such that $\supp(\mu^\eta)$ is a perfect $*$-chaotic set for μ-almost all $\tilde{x} \in M_f$.

Here the support $\supp(\nu)$ of a finite measure ν is the smallest closed set C with $\nu(C) = \nu(M_f)$. Equivalently, $\supp(\nu)$ is the set of all $\tilde{x} \in M_f$ with the property that $\nu(U) > 0$ for any open U containing \tilde{x}.

Let us see how Theorem A follows from Theorem C. We know that $h(\tilde{f}) = \sup\{h_\nu(\tilde{f}) : \nu(\mathcal{M}_e(\tilde{f}))\}$ where $\mathcal{M}_e(\tilde{f})$ is the set of all \tilde{f}-invariant ergodic probability measures (cf. [27]). Thus, if $h(\tilde{f}) = h(f) > 0$, then we can choose $\mu \in \mathcal{M}_e(\tilde{f})$ with $h_\mu(\tilde{f}) > 0$. Therefore, by Theorem C and Lemma 1, f is chaotic in the sense of Li-Yorke.

2 Key Lemmas

In this section we prepare some lemmas which need to prove Theorem C. Let f be a C^2-local diffeomorphism of a closed C^∞-manifold M and μ be an f-invariant ergodic Borel probability measure on M_f with $h_\mu(f) > 0$. As in the previous section we denote as B the Borel σ-algebra on M_f completed with respect to μ. For μ-almost all $\tilde{x} = (x_i) \in M_f$, there exist a splitting of the tangent space $T_{x_0}M = \oplus_{i=1}^\epsilon E_i(\tilde{x})$ and real numbers $\lambda_1(x_0) < \cdots < \lambda_\epsilon(x_0)$ such that

(a) the maps $\tilde{x} \mapsto E_i(\tilde{x})$, $\lambda_i(x_0)$ and $s(x_0)$ are measurable, moreover $E_i(f(\tilde{x})) = D_{x_0}f(E_i(\tilde{x}))$ and $\lambda_i(x_0), s(x_0)$ are f-invariant ($i = 1, \cdots, s(x_0)$),

(b) $\lim_{n \to \pm \infty} \frac{1}{n} \log |(D_{x_0}f^{|n|})^{\pm 1}(v)| = \lambda_i(x_0)$ ($0 \neq v \in E_i(\tilde{x})$, $i = 1, \cdots, s(x_0)$) and

(c) $\lim_{n \to \pm \infty} \frac{1}{n} \log |\det(D_{x_0}f^{|n|})^{\pm 1}| = \sum_{i=1}^{s(x_0)} \lambda_i(x_0) \dim E_i(\tilde{x})$.

([21], [33], [29], [30]). The numbers $\lambda_1(x_0), \cdots, \lambda_\epsilon(x_0)$ are called Lyapunov exponents of f at x_0. Since μ is ergodic, we can put $s = s(x_0)$, $\lambda_i = \lambda_i(x_0)$ and $m_i = \dim E_i(\tilde{x})$ ($i = 1, \cdots, s$) for μ-almost all $\tilde{x} = (x_i) \in M_f$.

A well-known theorem of Margulis and Ruelle [28] says that entropy is always bounded above by the sum of positive Lyapunov exponents; i.e. $h_{\mu}(f) \leq \sum_{\lambda_i > 0} \lambda_i m_i$. Since \tilde{f} has positive entropy, we have $0 < h_{\mu}(\tilde{f}) = h_{\mu}(f) \leq \max(\lambda_1) = \lambda_s$. Fix $0 < \lambda < \min(\lambda_i : \lambda_i > 0)$. From [24], [29] and [30] there are measurable functions $\tilde{\beta} > \tilde{\alpha} > 0$ and $\tilde{\gamma} > 1$ with the following properties: For $\tilde{x} = (x_i) \in M_f$ we put

$$W_{loc}^u(\tilde{x}) = \{y = (y_i) \in M_f : d(x_0, y_0) \leq \tilde{\alpha} (\tilde{x}), d(x_i, y_i) \leq \tilde{\beta}(\tilde{x}) e^{-\lambda_i} (i \geq 1)\}.$$

Then

(a) the map P^0 restricted to $W_{loc}^u(\tilde{x})$ is injective,

(b) $P^0(W_{loc}^u(\tilde{x}))$ is a C^2-submanifold of the ball $\{y \in M : d(x_0, y) \leq \tilde{\alpha}(\tilde{x})\}$,

(c) $T_{x_0}P^0(W_{loc}^u(\tilde{x})) = \oplus_{\lambda_i > 0} E_i(\tilde{x})(\neq \{0\})$ for μ-almost all $\tilde{x} \in M_f$,

(d) $d(y_i, z_i) \leq \tilde{\gamma}(\tilde{x}) d(y_0, x_0) e^{-\lambda i}$ for $(y_n), (z_n) \in W_{loc}^u(\tilde{x})$.

For the case when f is invertible we may refer to [6], [22] and [23].

Let ξ and η be measurable partitions of M_f. Put $f^n \xi = \{f^nC : C \in \xi\}$ for $n \in \mathbb{Z}$ and then $(f^n \xi)(\tilde{x}) = \tilde{f}(\xi(f^{-n}(\tilde{x})))$ for $\tilde{x} \in M_f$. $\eta \leq \xi$ means that for μ-almost all $\tilde{x} \in M_f$ one has $\xi(\tilde{x}) \subset \eta(\tilde{x})$.

Lemma 2 Let f and μ be as above. Then there exists a measurable partition ξ of M_f such
(a) $\xi \leq \tilde{f}^{-1}\xi$,

(b) for μ-almost all $\tilde{x} \in M_f$, $\xi(\tilde{x}) \subset \tilde{W}^u_{loc}(\tilde{x})$ and $\xi(\tilde{x})$ contains a neighborhood of \tilde{x} open in $\tilde{W}^u_{loc}(\tilde{x})$,

(c) $\sqrt[\infty]{\lim_{n \to \infty} \tilde{f}^{-n}\xi}$ is the partition into points.

This lemma is similar to [13] Proposition 3.1, [16] Proposition 5.2 and [17] Lemma 2.2. So we omit the proof.

Let \mathcal{C} denote the family of all nonempty closed subsets of M_f and define a metric d_H by

$$d_H(A, B) = \max\{\sup_{b \in B} d(A, b), \sup_{a \in A} d(a, B)\} \quad (A, B \subset C)$$

where $d(A, b) = \inf\{d(a, b) : a \in A\}$. Then it is known that (\mathcal{C}, d_H) is a compact metric space (cf.[12]). If ξ is a measurable partition, then $\tilde{x} \mapsto \xi(\tilde{x}) \in \mathcal{C}$ is measurable. Indeed, this follows from [3] Theorems III.2, III.9, III.22 and the fact that $\{(\tilde{x}, \xi(\tilde{x})) : \tilde{x} \in M_f\}$ is a Borel subset of $M_f \times M_f$. For $A \subset M_f$ we put $\text{diam}(A) = \sup\{d(\tilde{x}, \tilde{y}) : \tilde{x}, \tilde{y} \in A\}$. Then we have $\text{diam}(A) = \text{diam}(A)$. Since $\tilde{x} \mapsto \xi(\tilde{x}) \subset C$ is measurable, $\tilde{x} \mapsto \text{diam}(\xi(\tilde{x}))$ is also a measurable function. By Lemma 2 (c) we have that for μ-almost all $\tilde{x} \in M_f$

$$\text{diam}(\tilde{f}^{-n}\xi(\tilde{x})) \to 0 \quad (1)$$

as $n \to \infty$.

Let ξ and η be measurable partitions of M_f and let $\{\mu_{\tilde{x}}\mid \tilde{x} \in M_f\}$ be a canonical system of conditional measures for μ and ξ. The mean conditional entropy of η with respect to ξ is defined by

$$H_\mu(\eta|\xi) = \int -\log \mu_{\tilde{x}}^\xi(\eta(\tilde{x})) d\mu(\tilde{x})$$

(see [27] for details).

Lemma 3 Let f and μ be as above and let ξ be as in Lemma 2. Then,

$$h_\mu(\tilde{f}) = H_\mu(\tilde{f}^{-1}\xi|\xi).$$

For the case when f is invertible this lemma is proved by Ledrappier and Young [14]. We recall that if the covering degree of f is greater than one, then (M_f, M, C, P^∞) is a fiber bundle where C denotes the Cantor set. In view of this fact, the above lemma can be proved by almost the same arguments as the proof of [14] Corollary 5.3 and [16] Corollary 7.1 with some slight modifications. Here we omit the proof.

By Lemma 2(a) we have that $\xi \geq \tilde{f}_n\xi \geq \tilde{f}^2\xi \geq \cdots$. Let us introduce a measurable partition defined by $\eta = \bigwedge_{n=0}^\infty \tilde{f}^n\xi$. Then we have $\tilde{f}\eta = \eta$. For simplicity put

$$\mu_{\tilde{x}} = \mu_{\tilde{x}}^\xi \quad \text{and} \quad \mu_{\tilde{x}}^n = \mu_{\tilde{x}}^{\tilde{f}^n\xi} \quad (n \in \mathbb{Z}).$$

By Doob's theorem it follows that for a μ-integrable function $\psi : M_f \to \mathbb{R}$

$$\int \psi d\mu_{\tilde{x}} = \lim_{n \to \infty} \int \psi d\mu_{\tilde{x}}^n \quad (2)$$

for μ-almost all \tilde{x}. Since $\tilde{f}\eta = \eta$ and $\tilde{f}_n\mu = \mu$, by the uniqueness of a canonical system of conditional measures (cf.[26]) we have that for μ-almost all \tilde{x}

$$\tilde{f}_n\mu_{\tilde{x}} = \mu_{\tilde{x}}^n \quad \text{and} \quad \tilde{f}_n\mu_{\tilde{x}}^n = \mu_{\tilde{x}}^{\tilde{f}^n\xi} \quad (n \in \mathbb{Z}).$$

(3)

Here $(\tilde{f}, \nu)(A) = \nu(\tilde{f}^{-1}A)$ for a Borel probability measure ν on M_f and $A \in B$.

Let $\mathcal{C}(M_f)$ be the Banach space of continuous real-valued functions of M_f with the sup norm $|\cdot|_\infty$, and let $\mathcal{M}(M_f)$ be a set of all Borel probability measures on M_f with the weak
topology. Since $C(M_f)$ is separable, there exists a countable set \{\varphi_1, \varphi_2, \cdots\} which is dense in $C(M_f)$. For $\nu, \nu' \in \mathcal{M}(M_f)$ define

$$
\rho(\nu, \nu') = \sum_{n=1}^{\infty} \frac{|\int \varphi_n d\nu - \int \varphi_n d\nu'|}{2^n |\varphi_n|_{\infty}}.
$$

Then ρ is a compatible metric for $\mathcal{M}(M_f)$ and $(\mathcal{M}(M_f), \rho)$ is compact (cf.[18]). Since (2) holds for \{\varphi_i\}, we have

$$
\mu_{\tilde{\varphi}} = \lim_{n \to \infty} \mu_{\varphi}^n
$$

for μ-almost all \tilde{x}.

Lemma 4 Let f, μ and $\{\mu_\varphi | \varphi \in M_f\}$ be as above. Then for $\epsilon > 0$ there exists a closed set F_ϵ with $\mu(F_\epsilon) \geq 1 - \epsilon$ satisfying the map

$$
F_\epsilon \ni \tilde{x} \mapsto \int \varphi_n d\mu_{\varphi}^\epsilon
$$

is measurable for $n \geq 1$ and thus $\tilde{x} \mapsto \nu_{\varphi}^\epsilon \in \mathcal{M}(M_f)$ is measurable.

Proof. Let $\{\varphi_1, \varphi_2, \cdots\}$ be as above and let $\epsilon > 0$. Since $\tilde{x} \mapsto \int \varphi_n d\mu_{\varphi}^\epsilon$ is measurable for $i \geq 1$, by Lusin's theorem there exists a closed set F_i $(i \geq 1)$ with $\mu(F_i) \geq 1 - \epsilon/2^i$ satisfying

$$
F_i \ni \tilde{x} \mapsto \int \varphi_n d\mu_{\varphi}^\epsilon : \text{continuous}.
$$

Then $F_\epsilon = \bigcap_{i=1}^{\infty} F_i$ has the desired property.

\[\Box\]

For $\nu \in \mathcal{M}(M_f)$ and $E \in B$ let $\nu|_E$ denote the restriction of ν to E, i.e. $\nu|_E(A) = \nu(A \cap E)$ for $A \in B$. Clearly $\nu|_E$ is a finite measure. We denote as $B(\tilde{x}, r)$ and $U(\tilde{x}, r)$ the closed and open balls in M_f with center $\tilde{x} \in M_f$ and radius $r > 0$ respectively. Let $\{\varphi_1, \varphi_2, \cdots\}$ be as above and let $\nu \in \mathcal{M}(M_f)$. For $\tilde{x} \in \text{supp}(\nu)$ and $\epsilon > 0$ we can find i such that

$$
\int_{U(\tilde{x}, \epsilon)} \varphi_i d\nu > \int \varphi_i d\nu - \epsilon.
$$

Since the inequality holds for ν' sufficiently close to ν, we can easily prove that

$$
\mathcal{M}(M_f) \ni \nu \mapsto \text{supp}(\nu) \in \mathcal{C}
$$

is lower semi-continuous and so the map is measurable ([3] Corollary III.3). Since $\nu \mapsto \text{diam}(\text{supp}(\nu))$ is lower semi-continuous,

$$
\mathcal{P}(M_f) = \{\nu \in \mathcal{M}(M_f) : \nu \text{ is a point measure}\}
= \{\nu \in \mathcal{M}(M_f) : \text{diam}(\text{supp}(\nu)) = 0\}
$$

is a closed set of $\mathcal{M}(M_f)$. Since $(\tilde{\varphi})^n(\tilde{x}) \subset \eta(\tilde{x})$, we have

$$
\text{supp}(\mu_{\tilde{\varphi}}^n) \subset \text{supp}(\mu_{\tilde{\varphi}}) \quad (n \in \mathbb{Z})
$$

for μ-almost all $\tilde{x} \in M_f$.

Lemma 5 Let f, μ and $\{\mu_{\tilde{\varphi}} | \tilde{x} \in M_f\}$ be as above. Then for μ-almost all $\tilde{x} \in M$, $\text{supp}(\mu_{\tilde{\varphi}})$ has no isolated points.
Proof. Let ξ and $\mu_{\tilde{x}}^n$ be as above. Then it is easily checked that for $n \in \mathbb{Z}$

$$P_n = \{\tilde{x} \in M_f : \mu_{\tilde{x}}^n \in \mathcal{P}(M_f)\} \supset \{\tilde{x} \in M_f : \mu_{\tilde{x}}|_{f^n(\xi)}(\tilde{x}) \text{ is a point measure}\}.$$

If this lemma is false, then there exists a measurable set with positive measure such that for any \tilde{x} belonging to the set, $\text{supp}(\mu_{\tilde{x}})$ has an isolated point. Since $\text{diam}((f^{-k}\xi)(\tilde{x})) \to 0$ \((k \to \infty)\) by (1), we have $\mu(P_{-k}) > 0$ for k large enough. Put $P = \bigcap_{j \geq 1} \bigcup_{n \geq j} f^n P_{-k}$ and then $\mu(P) = 1$ because μ is ergodic.

By (3) we have

$$\tilde{f}^n(P_{-k}) = \{\tilde{f}^n(\tilde{x}) \in M_f : \mu_{\tilde{x}}^{-k} \in \mathcal{P}(M)\} = \{\tilde{x} \in M_f : \tilde{f}^n \mu_{\tilde{x}}^{-k} \in \mathcal{P}(M)\} = P_{n-k} \quad (n \in \mathbb{Z}),$$

and so $P = \bigcap_{j \geq 1} \bigcup_{n \geq j} P_{n-k}$. Thus, for $\tilde{x} \in P$ there exists an increasing sequence \({n_i}\)\(_\geq 0\) such that $\tilde{x} \in P_{n_i}$ for $i \geq 0$. Since $\mu_{\tilde{x}} = \lim_{i \to \infty} \mu_{\tilde{x}}^{n_i}$ (by (4)) and $\mu_{\tilde{x}}^{n_i} \in \mathcal{P}(M_f)$ for i, we have $\mu_{\tilde{x}} \in \mathcal{P}(M_f)$ for $\tilde{x} \in P$.

Since $\xi \geq \eta$ and $\mu_{\tilde{x}}$ is a point measure for μ-almost all $\tilde{x} \in M_f$, so is $\mu_{\tilde{x}}^\xi$. Thus

$$\mu_{\tilde{x}}^\xi((\tilde{f}^{-1}\xi)(\tilde{x})) = 1 \text{ for } \mu\text{-almost all } \tilde{x}.$$ Therefore

$$h_\mu(\tilde{f}) = H_\mu((\tilde{f}^{-1}\xi)\xi) = \int -\log \mu_{\tilde{x}}^\xi((\tilde{f}^{-1}\xi)(\tilde{x})) d\mu(\tilde{x}) = 0$$

by Lemma 3. This is a contradiction.

\[\square\]

3 Proof of Theorem C

In this section we will prove Theorem C. Let f, μ, η and $\{\mu_{\tilde{x}}|\tilde{x} \in M_f\}$ be as in §2. By Lemma 5, supp($\mu_{\tilde{x}}$) is perfect for μ-almost all $\tilde{x} \in M_f$. Therefore, to obtain the conclusion it suffices to show the following.

Proposition 1 If $\mu_{\tilde{x}}$ is not a point measure for μ-almost all $\tilde{x} \in M_f$, then supp($\mu_{\tilde{x}}$) is a \ast-chaotic set for μ-almost all $\tilde{x} \in M_f$.

Proof. The proof of this proposition is similar to that of [31] Proposition 2. However, for completeness we give the proof.

Fix $0 < \varepsilon < 1$ and let F_ε be as in Lemma 4. By assumption we can take and fix $\tilde{x}_0 \in \text{supp}(\mu|F_\varepsilon)$ such that $\mu_{\tilde{x}_0}$ is not a point measure. Choose two distinct points $\tilde{y}_1, \tilde{y}_2 \in \text{supp}(\mu_{\tilde{x}_0})$ and put $\tau = d(\tilde{y}_1, \tilde{y}_2)/2 > 0$. For $0 < \tau < \tau/2$ we can take $\delta = \delta(\tau) > 0$ with

$$\mu_{\tilde{x}_0}(U(\tilde{y}_i, \tau)) > \delta \quad (i = 1, 2).$$

Since $U(\tilde{y}_i, \tau)$ are open, there exists a large integer $m' = m'(\tau) > 0$ such that if $\rho(\nu, \mu_{\tilde{x}_0}) < 1/m'$ ($\nu \in \mathcal{M}(M_f)$), then

$$\nu(U(\tilde{y}_i, \tau)) > \delta = \delta(\tau) \quad (i = 1, 2).$$

By Lemma 4 we can find $\varepsilon' = \varepsilon'(r) > 0$ such that for $\tilde{x} \in U(\tilde{x}_0, \varepsilon') \cap F_\varepsilon$

$$\rho(\mu_{\tilde{x}}, \mu_{\tilde{x}_0}) < 1/2m' = 1/2m'(r).$$

Remark that

$$d(U(\tilde{y}_1, \tau), U(\tilde{y}_2, \tau)) = \inf\{d(\tilde{x}, \tilde{y}) : d(\tilde{x}, \tilde{y}_1) < \tau, d(\tilde{y}, \tilde{y}_2) < \tau\} > \tau.$$
Let ξ be as in Lemma 2 and put

$$B_m(n) = \left\{ \tilde{x} \in M | \frac{\rho(\mu_{\overline{x}}^{\ell_k/2}, \mu_{\tilde{x}})}{m} < 1/m, \right. $$

$$\left. \text{diam}(\tilde{f}^{-k}[\ell_k/2] \xi(\tilde{f}^{-k}\tilde{x})) < 1/m \right\}$$

for $n, m \geq 1$. Then $B_m(n) \subset B_m(n + 1)$ and $\mu(\bigcup_{n=0}^{\infty} B_m(n)) = 1$ by (1) and (4), and so there exists an increasing sequence $\{n_m\}$ such that $\mu(B_m(n_m)) \geq 1 - 1/2^{m+1}$ ($m \geq 1$).

Since $\mu(\bigcap_{k=m}^{\infty} B_k(n_k)) \geq 1 - 1/2^{m+1}$ for $m \geq 1$, we can find $D_m \in \mathcal{B}$ with $\mu(D_m) \geq 1 - 2^{-m/2}$ satisfying

$$\mu_{\tilde{x}}(\bigcap_{k=m}^{\infty} B_k(n_k)) \geq 1 - 2^{-m/2} \quad (\tilde{x} \in D_m). \quad (7)$$

For $0 < r < \tau/2$ we put

$$K_r = \bigcap_{k=m}^{\infty} \bigcup_{n=0}^{\infty} \left(\bigcap_{n=m}^{\infty} \tilde{f}^{-\ell_k}(U(\tilde{x}_0, \epsilon'(r)) \cap F_{\epsilon} \cap D_{m}) \right).$$

Since $\mu(U(\tilde{x}_0, \epsilon'(r)) \cap F_{\epsilon} \cap D_m) \geq \mu(U(\tilde{x}_0, \epsilon'(r)) \cap F_{\epsilon}) - 2^{-m/2} > 0$ for m sufficiently large, we have $\mu(K_r) = 1$ ($0 < r < \tau/2$) by the ergodicity of μ. Therefore, to obtain the conclusion it suffices to show that $\text{supp}(\mu_{\tilde{x}})$ is a \ast-chaotic set for $\tilde{x} \in K = \bigcap_{n \geq 1} K_{1/n}$.

To do this fix $\tilde{x} \in K$, ($r = 1/n, n \geq 1$) and suppose that nonempty open sets U_1 and U_2 satisfy

$$U_1 \cap U_2 \neq \emptyset, \quad U_j \cap \text{supp}(\mu_{\tilde{x}}) \neq \emptyset \quad (j = 1, 2).$$

Choose $m_0 > 0$ with

$$0 < 2^{-m_0/2} < \min\{\mu_{\tilde{x}}(U_j) : j = 1, 2\} \quad \text{and} \quad m_0 \geq 2m'.$$

Since $\tilde{x} \in K_r$, by the definition of K_r, there exist $m_1 > m_0$ and a sequence of positive integers $\{\ell_k\}_k$ with $\ell_k > n_k$ such that

$$\tilde{f}^\ell\tilde{x}(\tilde{x}) \in U(\tilde{x}_0, \epsilon'(r)) \cap F_{\epsilon} \cap D_{m_1} \quad (k \geq 1). \quad (8)$$

Thus, by (3) and (7) we have

$$\mu_{\tilde{x}}(\tilde{f}^{-\ell_k}(B_k(n_k))) \geq \mu_{\tilde{x}}(\tilde{f}^{-\ell_k}(\bigcap_{k=m_1}^{\infty} B_k(n_k)))$$

$$= \mu_{\tilde{f}^{\ell_k}\tilde{x}(\tilde{x})}(\bigcap_{k=m_1}^{\infty} B_k(n_k))$$

$$\geq 1 - 2^{-m_1/2} \geq 1 - 2^{-m_0/2} \quad (k \geq m_1),$$

and so $\mu_{\tilde{x}}(U_j \cap \tilde{f}^{-\ell_k}(B_k(n_k))) \geq \mu_{\tilde{x}}(U_j) - 2^{-m_0/2} > 0$. Therefore we can choose

$$\tilde{z}_j = \tilde{z}_j(k) \in U_j \cap \tilde{f}^{-\ell_k}(B_k(n_k)) \cap \eta(\tilde{x})$$

for $j = 1, 2$ and $k \geq m_1$.

Since $\tilde{f}^\ell\tilde{z}_j \in B_k(n_k) \cap \tilde{f}^\ell(\eta(\tilde{x})) \subset B_k(\ell_k) \cap \eta(\tilde{f}^\ell(\tilde{x}))$, we have

$$\rho(\mu_{\tilde{f}^{[\ell_k/2]}(\tilde{z}_j)}, \mu_{\tilde{f}^{[\ell_k/2]}(\tilde{z}_j)}) = \rho(\mu_{\tilde{f}^{[\ell_k/2]}(\tilde{z}_j)}, \mu_{\tilde{f}^{[\ell_k/2]}(\tilde{z}_j)}) < 1/k \leq 1/m_0 \leq 1/2m',$$

$$\text{diam}(\tilde{f}^{-\ell_k+[\ell_k/2]}(\tilde{z}_j)) < 1/k$$

for $j = 1, 2$ and $k \geq m_1$. By use of (6) and (8)

$$\rho(\mu_{\tilde{f}^{[\ell_k/2]}(\tilde{z}_j)}, \mu_{\tilde{f}^{[\ell_k/2]}(\tilde{z}_j)}, \mu_{\tilde{f}^{[\ell_k/2]}(\tilde{z}_j)}) < 1/2m' + 1/2m' = 1/m',$$

and so $\mu_{\tilde{z}_j}^{-\ell_k+[\ell_k/2]}(\tilde{f}^{-\ell_k}U(\tilde{y}_i, r)) = \mu_{\tilde{f}^{[\ell_k/2]}(\tilde{z}_j)}(U(\tilde{y}_i, r)) > \delta$ by (5). Thus we have

$$\tilde{f}^{-\ell_k+[\ell_k/2]}(\tilde{z}_j) \cap \tilde{f}^{-\ell_k}U(\tilde{y}_i, r) \neq \emptyset$$
for $1 \leq i,j \leq 2$ and $k \geq m_1$. Since $\tilde{z}_j \in U_j$, by (9) we may assume

$$\tilde{z}_j \in (\tilde{f}^{-\ell_k + [\ell_k/2]} \xi)(\tilde{z}_j) \subset U_j$$

for k large enough. Therefore

$$U_j \cap \tilde{f}^{-\ell_k} U(\tilde{y}_1, r) \supset (\tilde{f}^{-\ell_k + [\ell_k/2]} \xi)(\tilde{z}_j) \cap \tilde{f}^{-\ell_k} U(\tilde{y}_1, r) \neq \emptyset$$

for $1 \leq i,j \leq 2$ and k large enough.

Now we take $b_{i,j} = b_{i,j}(k) \in U_j \cap \tilde{f}^{-\ell_k} U(\tilde{y}_1, r)$ for $1 \leq i,j \leq 2$ and then

$$b_{i,j} \in U_j \quad (1 \leq i,j \leq 2),$$

$$d(\tilde{f}^{\ell_k}(b_{1,1}), \tilde{f}^{\ell_k}(b_{2,2})) > d(U(\tilde{y}_1, r), U(\tilde{y}_2, r)) > \tau$$

and

$$d(\tilde{f}^{\ell_k}(b_{1,1}), \tilde{f}^{\ell_k}(b_{1,2})) \leq \text{diam}(U(\tilde{y}_1, r)) = 2r = 2/n.$$

This implies that $\text{supp}(\mu_{\tilde{x}})$ is a $*$-chaotic set for $\tilde{x} \in K = \cap_{n \geq 1} K_{1/n}$. \hfill \square

References

