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Abstract

In this note, we investigate perturbations of parabolic rational maps
on the Riemann sphere, and dynamical stability of their Julia sets. A
rational map $f$ is called parabolic if every critical point is contained in
the Fatou set. If aperturbation of $f$ into another parabolic rational
map is horocyclic, then we can construct asemiconjugacy on their Julia
sets. This means that parabolic rational maps have weak J-stability

1J-stability

Let $f$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ be arational map of degree $d\geq 2$ , and $\mathrm{R}\mathrm{a}\mathrm{t}_{d}$ the space of all
rational maps of degree $d$ . The topology of this space is defined by the uniform
convergence on the sphere measured by the spherical distance $d_{\sigma}(\cdot, \cdot)$ .

In this note, we discuss perturbations of a rational map (especially parabolic
rational map) $f$ within $\mathrm{R}\mathrm{a}\mathrm{t}_{\mathrm{d}}$ , and study the dynamical stability of $f$ on the
Julia set $J(f)$ :That is, structural stability of $f$ restricted on the Julia set.
Here perturbation of $f$ means a family of rational maps $\{f_{\epsilon}\in \mathrm{R}\mathrm{a}\mathrm{t}_{d} : \epsilon\in[0,1]\}$

satisfying $f_{0}=f$ and $d_{\sigma}(f_{\epsilon}, f)arrow \mathrm{O}(\epsilonarrow 0)$ . We represent this family as the
form of convergence, $f_{\epsilon}arrow f$ .

About this, the result below is famous:

Theorem 1.1 ( $\mathrm{M}\mathrm{a}\tilde{\mathrm{n}}\acute{\mathrm{e}}$-Sad-Sullivan[10])1 If f has a connected neighbor-
hood U $\subset \mathrm{R}\mathrm{a}\mathrm{t}_{d}$ w here the number of attracting cycles is locally constant, then
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for each $f_{\epsilon}\in U$ there exists a quasiconforrmal conjugacy $h_{\epsilon}$ : $J(f_{\epsilon})arrow J(f)_{f}$

that is, $h_{\epsilon}\circ f_{\epsilon}=f\circ h_{\epsilon}$ on $J(f_{\epsilon})$ .

This means that the dynamics on the Julia set varies continuously for
any perturbation. We say such arational map $f$ is $J$-stable. For example,
hyperbolic rational maps are J-stable.

2 Parabolic bifurcation
Let $a$ be aparabolic periodic point of period 1with multiplier $(f^{l})’(a)=\lambda$

such that $\lambda^{q}=1$ . Then we can take alocal coordinate near $a$ such that $a$ is
mapped to 0and that

$f^{lq}(z)=z+z^{p+1}+O(z^{p+2})$

where $p$ is amultiple of $q$ and is unique for $a$ . 2 We call $p$ the petal $n$ ember of
$a$ and is denoted by $p(a)$ . Note that $a$ has multiplicity $p+1$ as afixed point of
$f^{lq}$ (See the left figure in Figure 2). Then by a perturbation of $f$ , aparabolic
cycle may split into $p+1$ cycles (maybe attracting, repelling, indifferent) with
multiplicity, and the dynamics may change not only locally but also globally.

For example, let us consider perturbations of aquadratic polynomial $f(z)=$
$z+z^{2}$ , which has a parabolic fixed point with the petal number 1 at the origin.

(1) $f_{\epsilon}(z)=z+z^{2}-\epsilon(\epsilon[searrow] 0)$

(2) $f_{\epsilon}(z)=z+z^{2}+\epsilon(\epsilon[searrow] 0)$

Under the perturbation (1), the parabolic point 0splits into an attracting
fixed point $-\sqrt{\epsilon}$ and arepelling fixed point $\sqrt{\epsilon}$ (In this case, the Julia sets
vary continuously). Note that the number of attracting cycles is locally non-
constant.

Under the perturbation (2), the parabolic point 0splits into apair of
repelling fixed points $\pm\sqrt{\epsilon}i$ . (See Figure 1. In this case, the Julia sets vary
discontinuously! [3] $)$

Then let us consider:

Problem. For a rational map that has parabolic points, find aMSS-like
theorem (or some kind of $J$-stability)by controlling the parabolic bifurcations.

$2\mathrm{S}\mathrm{e}\mathrm{e}$ [ $1$ , II.5] for basic properties of parabolic points
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Figure 1: $\mathrm{T}1_{1}\mathrm{e}^{s}$, Julia sets of $z+z^{\underline{\lambda}}$

.
a11 $z+z^{2}+().()\mathrm{t}\mathrm{I}1$ .

3Parabolic rational maps and horocyclic pcr-
turbation

For $\mathrm{t}1_{1}\mathrm{e}$ problem, let us introduce the $\mathrm{s}\mathrm{i}_{111}1^{\mathrm{J}}1\mathrm{c}^{1}\mathrm{s}\mathrm{t}$ class of rational maps $\mathrm{t}1_{11}\dot{‘}\mathrm{t}$ have
parabolic points. $f$ is called $p(\iota r.abolic$, if all critical points of $f$

. are contained in
$F(f)$ . By Sullivan’s classification of Fatou $(j011\downarrow 1)\mathrm{O}\mathrm{U}^{\cdot}$ellts and their properties,
aparabolic rational map can have $(\mathrm{s}\mathrm{u}\mathrm{I})\mathrm{c}^{1}\mathrm{r})\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}^{1}\mathrm{t}\mathrm{i}_{1\mathrm{l}}\mathrm{g}$ alld parabolic basins, but
no Siegel disks or He rman rings. Especially, hyPe rbolic rational maps $\mathrm{a}1^{\cdot}(^{\backslash }$

parabolic. Note that ally orbit of $z\in F(f)$ is attracted to an attracting or
parabolic cycle.

Next, to control the parabolic bifurcations, let us introduce some conditions
for perturbations. Tllcll we will be able $|_{1}0$ control the parabolic bifurcation so
tllat the local dynamics $\mathrm{n}\mathrm{t}^{\mathrm{J}},\mathrm{a}\mathrm{I}^{\cdot}$ parabolic points change gently.

Aperturbation is horocyclic if each parabolic point $a$ of $f$
. satisfies following

($j011(1\mathrm{i}1.\mathrm{i}\iota)\mathrm{n}.\mathrm{s}^{\backslash }$:

$(i\iota)$ If $‘\iota$ is period $l$ and $11i\iota \mathrm{s}$.
$l^{l}$ $1$ )( $\}\mathrm{t}\dot{‘}\iota \mathrm{l}\mathrm{s}$ , its l1lllltil)lit:r $(f^{l})’(‘\iota)=\lambda$ is aprimitive

$p\succ \mathrm{t}1_{1}$ root of llllity;

(1) $)$
$\mathrm{T}11\mathrm{t}^{\backslash },1^{\cdot}\mathrm{t}^{1}$. are fixed points $a_{\epsilon}()\mathrm{f}f_{\epsilon}^{l}.\mathrm{w}\mathrm{i}\mathrm{t}]_{1111}\mathrm{m}\mathrm{u}1\mathrm{t}\mathrm{i}\mathrm{p}1\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{s}$ $(f_{\epsilon}^{l}.)’(a_{\epsilon})=\lambda_{\epsilon}$ satisfying
$‘\iota_{\epsilon}arrow‘\iota\dot{\mathrm{e}}\iota 1\mathrm{l}\mathrm{d}$ $\lambda_{\epsilon}arrow\lambda$ ; allCl

(c) If we set $\mathrm{c}\mathrm{x}\mathrm{l}$ ) $(L_{\epsilon}+i\theta_{\iota}):=\lambda_{\epsilon}/\lambda$ , which tends to 1, then $\theta_{\epsilon}^{2}=o(L_{\mathrm{t}})’$ .

Horocyclic perturbation is originally defined by C. $\mathrm{M}\mathrm{c}\mathrm{j}\mathrm{M}\mathrm{u}11\mathrm{c}_{\mathrm{J}}^{1}11$ as horocyclic
$conve7^{\backslash }/‘ er\iota ce$ of rational lllal)$\mathrm{s}$ [ $\mathrm{J}$ , j7-9]. He defined it under more general can-
ditions than the definition above. (For instance, under the original definition,
we need not assume that the multiplier of aparabolic point of $f$ with $p$ petal is

130



aprimitive $p$-th root of unity.) Though we use the stronger conditions for sim-
plicity, we can prove the main theorem in the next section under the original
definition.

Let us consider the effects of horocyclic perturbations on the local dynamics
near $a$ , and their representation.

By the condition (b) of horocyclic perturbation, if $\epsilon$ is sufficiently small, $a$

is perturbed into aperiodic point $a_{\epsilon}$ of $f_{\epsilon}$ with the same period $l$ and $a_{\epsilon}arrow a$ .
Moreover, the multiplier $(f_{\epsilon}^{l})’(a_{\epsilon})=\lambda_{\epsilon}$ converges to A.

As $f_{\epsilon}$ converges uniformly to $f$ near $a$ , for each $f_{\epsilon}$ , we can take alocal
coordinate which maps $a_{\epsilon}$ to 0and converges uniformly to that of $f$ . Thus we
obtain alocal representation of the convergence;

$f_{\epsilon}^{lq}(z)=\lambda_{\epsilon}z+A_{\epsilon}z^{r}+O(z^{r+1})$

$arrow f^{lq}(z)=z+z^{p+1}+O(z^{p+2})$ $(\epsilonarrow 0)$

where $2\leq r\leq p$ and $A_{\epsilon}arrow \mathrm{O}$ .
Now let us consider acoordinate change by

$\zeta=\phi_{\epsilon}(z)=z-B_{\epsilon}z^{r}$ , $B_{\epsilon}= \frac{A_{\epsilon}}{\lambda_{\epsilon}(\lambda_{\epsilon}^{r-1}-1)}$ .

By the condition (a) of horocyclic convergence (the multiplier Ais aprimitive
$P$-th root of unity), we obtain $\lambda_{\epsilon}^{r-1}\neq 1$ for all $\epsilon<<1$ . Thus we may suppose
that $\phi_{\epsilon}arrow id$ uniformly near the origin. For each $\epsilon$ , changing the coordinate
by $\phi_{\epsilon}$ , we obtain

$\phi_{\epsilon}\mathrm{o}f_{\epsilon}\mathrm{o}\phi_{\epsilon}^{-1}(\zeta)=\lambda_{\epsilon}\zeta+O(\zeta^{r+1})$.

So we can continue the discussion replacing $r$ with $r+1$ until $r\leq p$ . By com-
position of the finite number of coordinate changes, we obtain the normalized
form of convergence:

$f_{\epsilon}^{lp}(z)=\lambda_{\epsilon}^{p}z+z^{p+1}+O(z^{p+2})arrow f^{lp}(z)=z+z^{p+1}+O(z^{p+2})$ . (2.1)

This property is important to keep the symmetry of the dynamics for each
petals.

Remark $3.\mathrm{a}$ We can obtain $[perp] \mathrm{u}\mathrm{h}\mathrm{e}$ normalized form as (2.1) even if Ais not a
primitive $p$-th root of unity: In fact, if $A_{\epsilon}/(\lambda_{\epsilon}^{p}-1)=O(1)$ then $B_{\epsilon}$ does not
diverges and thus we can apply this discussion. See [9, \S 7].

Next we consider the condition (c) of horocyclic perturbation. Let us set
$\lambda_{\epsilon}/\lambda=\exp(L_{\epsilon}+i\theta_{\epsilon})$ . The geometric meaning of the relation $\theta_{\epsilon}^{2}=o(L_{\epsilon})$ is as
follows: If we fix apair of arbitrary small closed disks which are tangent to the
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imaginary axis at the origin for the both sides of the axis, then they contain
$L_{\epsilon}+i\theta_{\epsilon}$ for all $\epsilon\ll 1$ . By this relation, $L_{\epsilon}=0$ implies $\theta_{\epsilon}=0$ . Equivalently, if
$|\lambda_{\epsilon}/\lambda|=1$ then $a_{\epsilon}$ is aparabolic point of $f_{\epsilon}$ with the same multiplier Aas $a$ .
Thus $f_{\epsilon}$ can not have irrationally indifferent periodic points.

By solving the equation $f_{\epsilon}^{lp}(z)=z$ near the origin, we obtain following
three cases:

(1) $a_{\epsilon}$ is aparabolic point with $p$ petals and the multiplier $\lambda_{\epsilon}=\lambda$ ;or

(2) $a_{\epsilon}$ is an attracting point, and there are $p$ symmetrically arrayed repelling
points near $a_{\epsilon}$ ;or

(3) $a_{\epsilon}$ is arepelling point, and there are $p$ symmetrically arrayed attracting
points near $a_{\epsilon}$ .

Figure 2: Horocyclic perturbation of aparabolic fixed point of $f^{lp}$ with $p=3$

petals. The left figure shows the case (1) and the right one shows the case (3).

For (2) and (3), if $p>1$ , these symmetrically arrayed periodic points have
the same period $lp$ and the multipliers $\approx\lambda_{\epsilon}^{-p^{2}}$ . Moreover, they are contained
in an open ball centered at $a_{\epsilon}$ with radius $O((1-\lambda_{\epsilon}^{p})^{1/p})$ . We call them the
satellites of $a_{\epsilon}$ and $a_{\epsilon}$ itself the planet If $p=1$ , (2) and (3) are equivalent;
that is, $a$ splits into apair of attracting and repelling points. Thus we formally
define the satellite by attracting one and the planet by repelling one. For (1),
we also call $a_{\epsilon}$ the planet, although it has no satellite.

Using these properties, we can obtain akey lemma of horocyclic perturba-
tions. We define the cycle of $a$ by the finite orbit of $a$ , say

$\alpha:=\{a, f(a), \ldots, f^{i-1}(a)\}$ .
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Now we assume that $a$ is parabolic and we call a a parabolic cycle.
Let us fix an $x\in\hat{\mathbb{C}}$ whose orbit accumulates to $\alpha$ . For an arbitrary small

$\delta>0$ , set $\triangle=\Delta(\delta):=\bigcup_{a\in\alpha}B_{\sigma}(a, \delta)$ . (Here $B_{\sigma}(a, \delta)$ is the open ball centered
at $a$ with radius $\delta$ measured by the spherical metric.) Then we can take
$N_{0}=N_{0}(x, \delta)>>0$ such that $f^{n}(x)\in\triangle$ for any $n\geq N_{0}$ . The key lemma is:

Lemma 3.1 If $f_{\epsilon}arrow f$ horocyclically and $\epsilon\ll 1$ , there exists an $N\geq N_{0}$ such
that $f_{\epsilon}^{n}(x)\in\Delta$ for any $n\geq N$ .

This means that the change of local dynamics by the perturbation is con-
trolled within $\triangle$ . This fact is essential for the construction of $\Omega_{\epsilon}$ mentioned
afterward. The proof is shown in [8].

4 Main results
Our main result is:

Theorem 4.1 (Weak $J$-stability)Let $f$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ be a parabolic rational
map of degree $d\geq 2$ and $f_{\epsilon}arrow f$ a horocyclic perturbation.

If $\epsilon\dot{u}$ sufficiently small, then we can construct a map $h_{\epsilon}=h:J(f_{\epsilon})arrow \mathrm{J}(\mathrm{f})$

with following properties:

(i) $h$ is continuous and surjective.

(ii) For any $x\in J(f_{\epsilon})$ , $f\circ h(x)=h\circ \mathrm{f}\mathrm{n}(\mathrm{x})$ .
(iii) $If|h^{-1}(y)|\geq 2$ for some $y\in J(f)$ , then the fomard orbit of $y$ lands on $a$

parabolic periodic point of $f$ , say $a$ , and $|h^{-1}(y)|$ corresponds to the petal
number of $a$ .

The properties (i) and (ii) mean that $h$ gives asemiconjugacy between $J(f_{\epsilon})$

and $J(f)$ . The property (iii) means that the subset of $J(f_{\epsilon})$ where $h$ is not one-
t0-0ne is either countable or empty. If it is countable non-empty set, $h^{-1}(y)$

is consist of the preimages of repelling satellites of an attracting planet which
is generated by the perturbation of $a$ . If it is emPty, none of parabolic points
is perturbed into an attracting planet and $h$ gives atopological conjugacy
between the Julia sets.

Furthermore, we can conclude the Hausdorff convergence of the Julia sets.
Let us ffix an arbitrary small $r>0$ . If $\epsilon$ is sufficiently small, we can construct
the semiconjugacy $h$ to satisfy $\sup\{d_{\sigma}(h(x), x) : x\in J(f_{\epsilon})\}<r$ . Hence we
obtain:

Corollary 4.2 If $f$ is parabolic and $f_{\epsilon}arrow f$ horocyclically, then $J(f_{\epsilon})arrow J(f)$

in the Hausdorff topology
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Remarks.

1. If arational map $f$ has no Siegel disks or Herman rings and $f_{n}arrow f$

horocyclically, it is known that $J(f_{n})arrow J(f)$ in the Hausdorff topology
[7], [9, Thm.9.1]. By this fact, we can obtain Corollary 4.2, because a
parabolic rational map has no Siegel disks or Herman rings. However,
the proofs are given by different ways.

2. We call arational map $f$ is geometrically finite if every critical point
in $J(f)$ is eventually periodic. Note that parabolic rational maps are
geometrically finite. G. Cui[2] showed that ageometrically finite rati0-
nal map has aperturbation into acontinuous family of geometrically
finite rational maps with topological conjugacies on their Julia sets. To
construct this perturbation, he used the technique of pinching deforma-
tion. For geometrically finite polynomials, P. $\mathrm{H}\dot{\mathrm{a}}\mathrm{i}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{k}\mathrm{y}[6]$ gave another
approach using $\mathrm{q}\mathrm{c}$-deformation. These results and our Theorem 4.1 par-
tially solve the Goldberg-Milnor conjecture in [5].

5Survey of the proof
In this section, we give asurvey of the proof of Theorem 4.1. See [7] or [8] for
more details.

Stepl: Construction of $\Omega$ and $\rho$ . Let f be aparabolic rational map and
A the finite set of all parabolic points of f.

Proposition 5.1 There exist a finitely connected compact set $\Omega\subset\hat{\mathbb{C}}$ and $a$

piecewise continuous metriC $\rho$ with following properties:

1. $\Omega\cap P_{0}(f)=A$ .

2. $J(f)\subset\Omega$ and $f^{-1}(\Omega)\subset \mathrm{I}\mathrm{n}\mathrm{t}(\mathrm{f}\mathrm{i})$ $\cup A$ .

S. $\rho$ is defined on Int(fi) and small disk neighborhoods for each parabolic
point of $f$ .

4. For every $C^{1}$ curve $\eta\subset f^{-1}(\Omega)$ ,

$1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{h}_{\rho}(f\circ\eta)>1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{h}_{\rho}(\eta)$ .

So $f$ is expanding for $\rho$ in the sense of this inequality
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Proof. To construct $\Omega$ , we need to remove the orbits of critical points of $f$

from the sphere. First, remove small disks around the attracting cycles, and
small attracting flowers around parabolic cycles. Next, remove finite number of
disk-neighborhoods for the critical orbits which have not been removed. Since
we can take such disks and flowers so that the images of them are strictly
contained in themselves, the remained set satisfies the conditions of Q.

One can find the details of construction of the metric $\rho$ in [11, Step 4] (in
the case of geometrically finite rational maps). See also [4, Expose’ No.X] and
$[1, \mathrm{V}.4.]$ . Here we only sketch the idea of the construction.

Let $\rho u$ be the Poincar\’e metric of $U:=\mathrm{I}\mathrm{n}\mathrm{t}(\Omega)$ . Since this metric diverges
near $A$ , any curve in $f^{-1}(\Omega)$ terminating at $A$ has infinite length with respect
to $\rho_{U}$ . So we need to modify $\rho u$ so that such curves have finite lengths.

For sufficiently small $\delta>0$ and each $a\in A$ , we set $D_{a}:=B_{\sigma}(a, \delta)$ and
$D$ $:= \bigcup_{a\in A}D_{a}$ . Note that $\Omega\cap D$ is a finite union of narrow cusps near repelling
directions. Thus on each $D_{a}$ , we can take asuitable local coordinate $\zeta_{a}$ such
that $f$ is expanding from the metric $|d\zeta_{a}|$ to the metric $|d\zeta_{f(a)}|$ on $\Omega\cap D$ .
Furthermore, we take sufficiently large $M>0$ and smaller $\delta$ if necessary, so
that $f$ is expanding from $\rho_{U}$ to $M|d\zeta_{a}|$ on $f^{-1}(\Omega\cap D_{a})-V$ for any $a\in A$ .
Then we can define the metric $\rho$ by $\min\{\rho_{U}, M|d\zeta_{a}|\}$ on each $D_{a}$ and by $\rho_{U}$

otherwise. $\blacksquare$

$\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{p}2$ : Construction of $\Omega_{\epsilon}$ and the “0-th” map $h_{0}$ . Next we construct
acompact set $\Omega_{\epsilon}$ corresponding to $\Omega$ , and the correspondence is represented
by the map $h_{0}$ : $\Omega_{\epsilon}arrow\Omega$ .

Proposition 5.2 For $\epsilon\ll 1$ , there exist a compact set $\Omega_{\epsilon}\subset\hat{\mathbb{C}}$ and a contin-
uous map $h_{0}$ : $\Omega_{\epsilon}arrow\Omega$ with following properties:

1. $\Omega_{\epsilon}\cap P_{0}(f_{\epsilon})$ is the set of all parabolic points of $f_{\epsilon}$ .

2. $J(f_{\epsilon})\subset\Omega_{\epsilon}$ and $f_{\epsilon}^{-1}(\Omega_{\epsilon})\subseteq\Omega_{\epsilon}$ .

3. $h_{0}$ : $\Omega_{\epsilon}arrow\Omega$ is surjective.

4. If there exists $y\in\Omega$ such $that|h_{0}^{-1}(y)|\geq 2$ then $y$ is a parabolic point and
$|h_{0}^{-1}(y)|=p(y)$ . By the $pe\hslash urbation$, $y$ splits into an attracting planet
and $p(y)$ repelling satellites which coincide with $h_{0}^{-1}(y)$ .

Moreover, if we fix an arbitrary small $r>0$ , then we can make $h_{0}$ satisfy
$\sup\{d_{\sigma}(h_{0}(x), x) : x\in\Omega_{\epsilon}\}<r$ for all $\epsilon<<1$ .

We can construct $\Omega_{\epsilon}$ by modification of $\Omega$ near the parabolic cycles. For
this, we need ahelp of the key lemma of horocyclic perturbations. However,
the construction is somehow complicated
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For $\Omega$ and $\Omega_{\epsilon}$ , we set

$\Omega_{\epsilon}^{n}:=f_{\epsilon}^{-n}(\Omega_{\epsilon})$ ; $\Omega^{n}:=f^{-n}(\Omega)$ $(n=0,1,2, \ldots)$ .

By the construction of these sets, $f_{\epsilon}$ : $\Omega_{\epsilon}^{n+1}arrow\Omega_{\epsilon}^{n}$ and $f$ : $\Omega^{n+1}arrow\Omega^{n}$ are
covering maps. Moreover, $\{\Omega_{\epsilon}^{n}\}$ and $\{\Omega^{n}\}$ form decreasing sequences as below:

$\Omega_{\epsilon}=\Omega_{\epsilon}^{0}\supset\Omega_{\epsilon}^{1}arrowarrow\cdot\cdotarrow\supset\cdot\supset\Omega_{\epsilon}^{n}arrow\supset\Omega_{\epsilon}^{n+1}\supset\cdot\cdot\supset J(arrow\cdotarrow f_{\epsilon})$ ,
$\Omega=\Omega^{0}\supset\Omega^{1}arrowarrow\cdot\cdotarrowarrow\supset\cdot\supset\Omega^{n}\supset\Omega^{n+1}arrow\supset\ldotsarrow\supset J(f)$ .

Step3: Construction of $h_{n}$ . Let us set

$A^{-}:=\{y\in\Omega : |h_{0}^{-1}(y)|\geq 2\}$ ,

which is the finite set of all parabolic points of $f$ perturbed into attracting
planets of $f_{\epsilon}$ . Then we set $\Gamma^{-}:=h_{0}^{-1}(A^{-})$ , which is the finite set of all
repelling satellites generated by the perturbation of $A^{-}\subset A$ . Note that $A^{-}$

and $\Gamma^{-}$ depend on $\epsilon$ .
In addition, we set

$\bullet\Gamma_{n}^{-}:=f_{\epsilon}^{-n}(\Gamma^{-})$ , $A_{n}^{-}:=f^{-n}(A^{-})$

$\bullet\Gamma_{\infty}^{-}:=\bigcup_{n=0}^{\infty}\Gamma_{n}^{-}$ , $A_{\infty}^{-}:= \bigcup_{n=0}^{\infty}A_{n}^{-}$ .

Note that $\Gamma_{\infty}^{-}$ and $A_{\infty}^{-}$ have no critical point, and that $f^{n}(y)$ is aparabolic point
of $f$ for $y\in A_{n}^{-}$ . We thus define the petal number of $y$ by $p(y):=p(f^{n}(y))$ .

First we construct $h_{1}$ : $\Omega_{\epsilon}^{1}arrow\Omega^{1}$ as the first lift of $h_{0}$ :

Proposition 5.3 For the map $h\circ$ , there exists a continuous map $h_{1}$ : $\Omega_{\epsilon}^{1}arrow\Omega^{1}$

such that $f\circ h_{1}(x)=h_{0}\circ f_{\epsilon}(x)$ for any $x\in\Omega_{\epsilon}^{1}$ . If $\epsilon<<1$ , $h_{1}$ is surjective and
$h_{1}$ : $\Omega_{\epsilon}^{1}-\Gamma_{1}^{-}arrow\Omega^{1}-A_{1}^{-}$ is a homeomorphism.

Proof. Fix an $x\in\Omega_{\epsilon}^{1}$ , then $f_{\epsilon}(x)\in\Omega_{\epsilon}$ and $d_{\sigma}(f_{\epsilon}(x), h_{0}(f_{\epsilon}(x)))\leq r/2$ . If
$\epsilon<<1$ we may assume that $d_{\sigma}(f(x), f_{\epsilon}(x))<r/2$ , thus $d_{\sigma}(f(x), h_{0}(f_{\epsilon}(x)))<$

$r$ ;that is, $h_{0}(f_{\epsilon}(x))\in B_{\sigma}(f(x), r)\cap\Omega$ . Since $\Omega$ is sufficiently far from the
critical values, $B_{\sigma}(f(x), r)$ is evenly covered by $f$ (If necessary, replace $r$ with
smaller one and repeat the argument). Thus we can take abranch of $f^{-1}$

on $B_{\sigma}(f(x), r)$ , say $g$ , such that $g\mathrm{o}f(x)=x$ . This gives the map $h_{1}(x):=$

$g\circ h_{0}\circ f_{\epsilon}(x)\in\Omega^{1}$ , which is clearly continuous. The last part of the statement
is not difficult to prove. $\blacksquare$

Next we define $h_{n}$ : $\Omega_{\epsilon}^{n}arrow\Omega^{n}$ inductively as following proposition. The
proof is similar to the case of n $=1$ .
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Proposition 5.4 For $n\geq 1$ , suppose that ate have defined the continuous map
$h_{n}$ : $\Omega_{\epsilon}^{n}arrow\Omega^{n}$ such that $d_{\rho}(h_{n-1}(x), h_{n}(x))<r_{\epsilon}$ for any $x\in\Omega_{\epsilon}^{n}$ . Then there
exists a continuous map $h_{n+1}$ : $\Omega_{\epsilon}^{n+1}arrow\Omega^{n+1}$ such that $h_{n}\mathrm{o}f_{\epsilon}=f\mathrm{o}h_{n+1}$ and
that $d_{\rho}(h_{n}(x), h_{n+1}(x))<r_{\epsilon}$ for any $x\in\Omega_{\epsilon}^{n+1}$ .

Moreover, if $\epsilon\ll 1,$ $h_{n}$ : $\Omega_{\epsilon}^{n}arrow\Omega^{n}$ is surjective and $h_{n}$ : $\Omega_{\epsilon}^{n}-\Gamma_{n}^{-}arrow\Omega^{n}-A_{n}^{-}$

is a homeomorphism for any $n$ .

Where $d_{\rho}(\cdot$ , $\cdot$ $)$ is the distance measured by $\rho$ , and $r_{\epsilon}$ is defined by

$\sup\{d_{\rho}(h_{0}(x), h_{1}(x)) : x\in\Omega_{\epsilon}^{1}\}$ .

We can easily check that $r_{\epsilon}=O(r)$ , thus we may suppose that it is sufficiently
small if $\epsilon<<1$ .

Step4: The function $\tau(s)$ and the proof of $h_{n}arrow h$ . In the proof of the
convergence of $h_{n}$ , the expanding property of $f$ will play an important role.
For instance, we can easily show the convergence when $f$ is hyperbolic:

Proposition 5.5 Suppose that $f$ is hyperbolic. For $\epsilon\ll 1$ , $h_{n}$ converges uni-
formly to the limit $h$ on $J(f_{\epsilon})$ .

Proof. Since $f$ has no parabolic point, we may use the Poincare’ metric on
Int (Q) as $\rho$ without modification. Thus there is aconstant $\kappa$ such that $f^{*}\rho/\rho\geq$

$\kappa$ $>1$ on $\Omega^{1}$ . By the definition of $\{h_{n}\}$ , there exists aconstant $C>0$ such
that

$d_{\rho}(h_{n}(x), h_{n+1}(x))<C/\kappa^{n+1}$

for any $x\in J(f_{\epsilon})$ . Thus we can easily follow that $h_{n}$ converges uniformly and
rapidly to the limit $h$ on $J(f_{\epsilon}).\blacksquare$

However in the case that $f$ has parabolic points, $f$ is not uniformly expand-
ing and the convergence of $h_{n}$ is very slow. To show the convergence, we will
use the idea due to Douady-Hubbard[4, Expose’ No.X] again. See also [11].

Let $s_{0}>0$ be the supremurn of $s$ such that $B_{\rho}(x, s)$ (an open ball with
respect to $\rho$) is evenly covered by $f$ for any $x\in\Omega^{1}$ . We define afunction
$\tau$ : $(0, s_{0})arrow \mathbb{R}^{+}$ by

$\tau(s):=\sup_{g}\{d_{\rho}(g(x), g(y)) : x, y\in\Omega^{1}, d_{\rho}(x, y)\leq s\}$ .

Here $g$ ranges over all branches of $f^{-1}$ . Then $\tau$ has following properties:

(i) $\tau$ is an increasing and right-continuous function;

(ii) $s>\tau(s)$ for any $s$ ;and
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(iii) the function $s\mapsto s-\tau(s)$ is also increasing.

(i) and (ii) are almost clear by the definition, (iii) can be followed by the fact
that $\tau(s_{1}+s_{2})\leq\tau(s_{1})+\tau(s_{2})$ .

By using this function, we can prove that:

Proposition 5.6 For $\epsilon\ll 1$ , $h_{n}$ converges uniformly to the limit $h$ on $J(f_{\epsilon})$

where $h$ satisfies $f\circ h=h\mathrm{o}f_{\epsilon}$ . Moreover, for arbitrary small $r>0$ ,

$\sup\{d_{\sigma}(h(x), x) : x\in J(f_{\epsilon})\}<r$

if $\epsilon\ll 1$ .

Proof. Fix an arbitrary $L$ such that $0<L<s\circ\cdot$ Since $r_{\epsilon}=O(r)$ , we may
assume $\epsilon\ll 1$ such that

$d_{\rho}(h_{0}(x), h_{1}(x))<r_{\epsilon}\leq L-\tau(L)$

for any $x\in\Omega_{\epsilon}^{1}$ . We claim that $d_{\rho}(h_{0}(x), h_{n}(x))<L$ on $\Omega_{\epsilon}^{n}$ for any $n\geq 1$ .
If $n=1$ , $d_{\rho}(h_{0}(x), h_{1}(x))<L-\tau(L)<L$ . For $n=k$ , let us assume that

$d_{\rho}(h_{0}(x), h_{k}(x))<L$ . Then for any $x\in\Omega_{\epsilon}^{k+1}$ ,

$d_{\rho}(h_{0}(x), h_{k+1}(x))\leq d_{\rho}(h_{0}(x), h_{1}(x))+d_{\rho}(h_{1}(x), h_{k+1}(x))$

$<d_{\rho}(h_{0}(x), h_{1}(x))+\tau(d_{\rho}(h_{0}(f_{\epsilon}(x)), h_{k}(f_{\epsilon}(x))))$

$<L-\tau(L)+\tau(L)=L$ .

We have thus proved the claim by induction on $n$ .
Fix any $x\in J(f_{\epsilon})$ . For sufficiently large integer 1 $m$ ,

$d_{\rho}(h_{l}(x), h_{m+l}(x))<\tau^{l}(d_{\rho}(h_{0}(f_{\epsilon}^{l}(x)), h_{m}(f_{\epsilon}^{l}(x))))$

$<\tau^{l}(L)arrow 0$ (l $arrow\infty)$ .

Because $x$ is arbitrary, $h_{n}$ converges uniformly on $J(f_{\epsilon})$ . By the continuity of
$h_{n}$ , the limit $h$ is also continuous. Since the topology of $\Omega^{n}$ defined by $\rho$ is
equivalent to that by the spherical metric $\sigma$ , this convergence is also true with
respect to $\sigma$ .

The last part of the statement is easily followed by the construction of $h\circ$

and the fact that $d_{\rho}(h_{0}(x), h(x))<L.\blacksquare$
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Step5: Completing the Proof. Finally we complete the proof of Theorem
4.1 by the proposition below.

Proposition 5.7 If $\epsilon\ll 1$ , $h:J(f_{\epsilon})arrow J(f)$ has following properties.

$\bullet$ $h$ is surjective.

$\bullet$ If $h(x)=h(x’)$ for some different $x$ , $x’\in J(f_{\epsilon})$ , then $x$ , $x’\in\Gamma_{\infty}^{-}$ .
$\bullet$ For $x$ , $x’$ as above, there exists an integer $N$ such that $f_{\epsilon}^{N}(x)$ , $f_{\epsilon}^{N}(x’)$

are repelling satellites of an attracting planet $a_{\epsilon}$ which is generated by the
perturbation of a point in $A^{-}$

Proof. Here we only show the proof of the surjectivity of $h$ . Other properties
are shown by using the expanding property of $f$ with respect to the Poincare’
metric of $\hat{\mathbb{C}}-P(f_{\epsilon})$ .

Fix any $y\in J(f)$ . By the surjectivity of $h_{n}$ , there is asequence $x_{n}\in\Omega_{\epsilon}^{n}$

such that $h_{n}(x_{n})=y$ . For $\Omega_{\epsilon}$ is compact, $x_{n}$ has an accumulate point $x\in J(f_{\epsilon})$

and we can take asubsequence $x_{n_{k}}$ so that $x_{n_{k}}arrow x(karrow\infty)$ . Because $h_{n}arrow h$

uniformly and $h$ is continuous, the inequality

$d_{\rho}(y, h(x))\leq d_{\rho}(h_{n_{k}}(x_{n_{k}}), h(x_{n_{k}}))+d_{\rho}(h(x_{n_{k}}), h(x))$

implies $h(x)=y.@$

By this surjectivity of $h$ and an fact that $h^{-1}(A_{\infty}^{-})=\Gamma_{\infty}^{-}$ , we obtain that
$h$ maps $J(f_{\epsilon})-\Gamma_{\infty}^{-}$ to $J(f)-A_{\infty}^{-}$ homeomorphically.
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