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Abstract

In this note, we investigate perturbations of parabolic rational maps
on the Riemann sphere, and dynamical stability of their Julia sets. A
rational map f is called parabolic if every critical point is contained in
the Fatou set. If a perturbation of f into another parabolic rational
map is horocyclic, then we can construct a semiconjugacy on their Julia
sets. This means that parabolic rational maps have weak J-stability.

1 J-stability

Let f : € — C be a rational map of degree d > 2, and Raty the space of all
rational maps of degree d. The topology of this space is defined by the uniform
convergence on the sphere measured by the spherical distance do (-, ).

In this note, we discuss perturbations of a rational map (especially parabolic
rational map) f within Raty, and study the dynamical stability of f on the
Julia set J(f): That is, structural stability of f restricted on the Julia set.
Here a perturbation of f means a family of rational maps {f. € Raty: € € [0,1]}
satisfying fo =f and d,(f., f) — 0 (¢ = 0). We represent this family as the
form of convergence, f. — f.

About this, the result below is famous:

Theorem 1.1 (Mafié-Sad-Sullivan[10]) ' If f has a connected neighbor-
hood U C Raty where the number of attracting cycles is locally constant, then
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for each f. € U there exists a quasiconformal conjugacy he : J(f.) — J(f),
that is, he o fe = f o he on J(fe).

This means that the dynamics on the Julia set varies continuously for
any perturbation. We say such a rational map f is J-stable. For example,
hyperbolic rational maps are J-stable.

2 Parabolic bifurcation

Let a be a parabolic periodic point of period ! with multiplier (f')'(a) = A
such that A? = 1. Then we can take a local coordinate near a such that a is
mapped to 0 and that

fl9z) = 2+ 2P™1 + O(2P+?)

where p is a multiple of ¢ and is unique for a. 2 We call p the petal number of
a and is denoted by p(a). Note that a has multiplicity p+ 1 as a fixed point of
f'7 (See the left figure in Figure 2). Then by a perturbation of f, a parabolic
cycle may split into p+1 cycles (maybe attracting, repelling, indifferent) with
multiplicity, and the dynamics may change not only locally but also globally.

For example, let us consider perturbations of a quadratic polynomial f(z) =
z+ 22, which has a parabolic fixed point with the petal number 1 at the origin.

(1) f(2)=z+2%2—€(e\,0)
(2) fe(z) =2+ 224+¢€(e\,0)

Under the perturbation (1), the parabolic point 0 splits into an attracting
fixed point —4/€ and a repelling fixed point /¢ (In this case, the Julia sets
vary continuously). Note that the number of attracting cycles is locally non-
constant.

Under the perturbation (2), the parabolic point 0 splits into a pair of
repelling fixed points +4/ei. (See Figure 1. In this case, the Julia sets vary
discontinuously! [3])

Then let us consider:

Problem. For a rational map that has parabolic points, find a MSS-like
theorem (or some kind of J-stability) by controlling the parabolic bifurcations.

2See [1, IL5] for basic properties of parabolic points.
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Figure 1: The Julia sets of z + 22 and z + 2% + 0.001.

3 Parabolic rational maps and horocyclic per-
turbation

For the problem, let us introduce the simplest class of rational maps that have
parabolic poiuts. f is called parabolic if all critical points of f are contained in
F(f). By Sullivan’s classification of Fatou components and their properties,
a parabolic rational map can have (super)atfracting and parabolic basins, but
no Siegel disks or Herman rings. Especially, hyperbolic rational maps are
parabolic. Note that any orbit of z € F(f) is attracted to an attracting or
parabolic cycle.

Next, to control the parabolic bifurcations, let us introduce some conditions
for perturbations. Then we will be able to control the parabolic bifurcation so
that the local dynamics near parabolic points change gently.

A perturbation is horocyclic if each parabolic point a of f satisfies following
conditions:

(a) If @ is period { and has p petals, its multiplier (f!)'(a) = A is a primitive
p-th root of unity;

(b) There are fixed points a, of f' with multipliers (f)'(ac) = A satisfying
ae — a and A, — A ; and

(c) If we set exp(Le +46,) := A/ A, which tends to 1, then 6? = o(L,).

Horocyclic perturbation is originally defined by C. McMullen as horocyclic

convergence of rational maps[9, §7-9]. He defined it under more general con-
ditions than the definition above. (For instance, under the original definition,
we need not assume that the multiplier of a parabolic point of f with p petal is
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a primitive p-th root of unity.) Though we use the stronger conditions for sim-
plicity, we can prove the main theorem in the next section under the original
definition.

Let us consider the effects of horocyclic perturbations on the local dynamics
near a, and their representation.

By the condition (b) of horocyclic perturbation, if € is sufficiently small, a
is perturbed into a periodic point a. of f. with the same period ! and a. — a.
Moreover, the multiplier (f')'(a.) = ) converges to .

As f. converges uniformly to f near a, for each f., we can take a local
coordinate which maps a, to 0 and converges uniformly to that of f. Thus we
obtain a local representation of the convergence;

fl(z) = Az + A" + O(2"™)
— fl9(2) = 2+ 2P+ O(2P*?) (e —0)

where 2 < r < p and A, — 0.
Now let us consider a coordinate change by

r Af
¢ =¢(2z) =2— Bz, Be—m-

By the condition (a) of horocyclic convergence (the multiplier A is a primitive
p-th root of unity), we obtain AT~1 # 1 for all ¢ < 1. Thus we may suppose
that ¢. — id uniformly near the origin. For each ¢, changing the coordinate
by ¢., we obtain

Be 0 f 0 67(C) = AL + O(C™H).

So we can continue the discussion replacing 7 with r 4+ 1 until » < p. By com-
position of the finite number of coordinate changes, we obtain the normalized
form of convergence: '

fP(2) = Mz + 2P + O(2PF?) — f2(2) = 2z + 2PT1 + O(2P1?). (2.1)

This property is important to keep the symmetry of the dynamics for each
petals.

Remark 3.a We can obtain the normalized form as (2.1) even if A is not a
primitive p-th root of unity: In fact, if Ac/(M — 1) = O(1) then B, does not
diverges and thus we can apply this discussion. See [9, §7].

Next we consider the condition (c) of horocyclic perturbation. Let us set
Ae/ X = exp(L + i0,). The geometric meaning of the relation 62 = o(L) is as
follows: If we fix a pair of arbitrary small closed disks which are tangent to the
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imaginary axis at the origin for the both sides of the axis, then they contain
L, + 16, for all ¢ < 1. By this relation, L, = 0 implies §. = 0. Equivalently, if
|Ae/A] = 1 then a. is a parabolic point of f, with the same multiplier A as a.
Thus f. can not have irrationally indifferent periodic points.

By solving the equation f!P(z) = z near the origin, we obtain following
three cases:

(1) ac is a parabolic point with p petals and the multiplier A, = A; or

(2) ae is an attracting point, and there are p symmetrically arrayed repelling
points near a.; or

(3) a. is a repelling point, and there are p symmetrically arrayed attracting
points near a..

7

Figure 2: Horocyclic perturbation of a parabolic fixed point of f'? with p = 3
petals. The left figure shows the case (1) and the right one shows the case (3).

For (2) and (3), if p > 1, these symmetrically arrayed periodic points have
the same period lp and the multipliers ~ )\;”2. Moreover, they are contained
in an open ball centered at a, with radius O((1 — A?)}/P). We call them the
satellites of a. and a. itself the planet. If p = 1, (2) and (3) are equivalent;
that is, a splits into a pair of attracting and repelling points. Thus we formally
define the satellite by attracting one and the planet by repelling one. For (1),
we also call a. the planet, although it has no satellite.

Using these properties, we can obtain a key lemma of horocyclic perturba-
tions. We define the cycle of a by the finite orbit of a, say

o= {a, f(a),v...,f‘"l(a)}.

7 ;1;7 st 22,

7
ik
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Now we assume that a is parabolic and we call a a parabolic cycle.

Let us fix an z € C whose orbit accumulates to a. For an arbitrary small
0 >0, set A = A(d) := U,e, Bs(a,6). (Here B,(a,d) is the open ball centered
at a with radius 6 measured by the spherical metric.) Then we can take
No = No(z,6) > 0 such that f*(z) € A for any n > No. The key lemma is:

Lemma 3.1 If f. — f horocyclically and € < 1, there exists an N > N, such
that f*(z) € A for anyn > N.

This means that the change of local dynamics by the perturbatioh is con-
trolled within A. This fact is essential for the construction of ). mentioned
afterward. The proof is shown in [8].

4 Main results

Our main result is:

Theorem 4.1 (Weak J-stability) Let f : C — C be a parabolic rational
map of degree d > 2 and f. — f a horocyclic perturbation.

If € is sufficiently small, then we can construct a map he = h : J(f.) — J(f)
with following properties:

(i) h is continuous and surjective.
(ii) For anyz € J(£.), f o h(z) = ho f.(z) .

(1) If |h='(y)| > 2 for some y € J(f), then the forward orbit of y lands on a
parabolic periodic point of f, say a, and |h'(y)| corresponds to the petal
number of a. '

The properties (i) and (ii) mean that h gives a semiconjugacy between J(f.)
and J(f). The property (iii) means that the subset of J(f.) where h is not one-
to-one is either countable or empty. If it is countable non-empty set, h1(y)
1s consist of the preimages of repelling satellites of an attracting planet which
is generated by the perturbation of a. If it is empty, none of parabolic points
is perturbed into an attracting planet and h gives a topological conjugacy
between the Julia sets.

Furthermore, we can conclude the Hausdorff convergence of the Julia sets.
Let us fix an arbitrary small 7 > 0. If € is sufficiently small, we can construct
the semiconjugacy h to satisfy sup {d,(h(z),z):z € J(f.)} < r. Hence we
obtain:

Corollary 4.2 If f is parabolic and f. — f horocyclically, then J(f.) — J(f)
in the Hausdorff topology.
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Remarks.

5

1. If a rational map f has no Siegel disks or Herman rings and f, — f

horocyclically, it is known that J(f,) — J(f) in the Hausdorff topology
[7],-[9, Thm.9.1]. By this fact, we can obtain Corollary 4.2, because a
parabolic rational map has no Siegel disks or Herman rings. However,
the proofs are given by different ways.

. We call a rational map f is geometrically finite if every critical point

in J(f) is eventually periodic. Note that parabolic rational maps are
geometrically finite. G. Cui[2] showed that a geometrically finite ratio-
nal map has a perturbation into a continuous family of geometrically
finite rational maps with topological conjugacies on their Julia sets. To
construct this perturbation, he used the technique of pinching deforma-
tion. For geometrically finite polynomials, P. Haissinsky[6] gave another
approach using qgc-deformation. These results and our Theorem 4.1 par-
tially solve the Goldberg-Milnor conjecture in [5].

Survey of the proof

In this section, we give a survey of the proof of Theorem 4.1. See [7] or [8] for
more details.

Stepl: Construction of  and p. Let f be a parabolic rational map and
A the finite set of all parabolic points of f.

Proposition 5.1 There ezist a finitely connected compact set Q2 C C and a
piecewise continuous metric p with following properties:

1. QN PBy(f) = A.
2. J(f) C Q and f~1(Q) C Int(2) U A.
3. p is defined on Int(Q) and small disk neighborhoods for each parabolic

point of f.

4. For every C! curve n C f~1(9),

length,(f o n) > length,(n).

So f is expanding for p in the sense of this inequality.
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Proof. To construct 2, we need to remove the orbits of critical points of f
from the sphere. First, remove small disks around the attracting cycles, and
small attracting flowers around parabolic cycles. Next, remove finite number of
disk-neighborhoods for the critical orbits which have not been removed. Since
we can take such disks and flowers so that the images of them are strictly
contained in themselves, the remained set satisfies the conditions of .

One can find the details of construction of the metric p in [11, Step 4] (in
the case of geometrically finite rational maps). See also [4, Exposé No.X] and
[1, V.4.]. Here we only sketch the idea of the construction.

Let py be the Poincaré metric of U := Int(Q2). Since this metric diverges
near A, any curve in f~!(£2) terminating at A has infinite length with respect
to py. So we need to modify py so that such curves have finite lengths.

For sufficiently small 6 > 0 and each a € A, we set D, := B,(a,6) and
D :=|J,c4 Da- Note that QND is a finite union of narrow cusps near repelling
directions. Thus on each D,, we can take a suitable local coordinate (, such
that f is expanding from the metric |d{,| to the metric |d(sq)| on QN D.
Furthermore, we take sufficiently large M > 0 and smaller § if necessary, so
that f is expanding from py to M|d({,| on f~'(2ND,) — D for any a € A.
Then we can define the metric p by min {py, M|d{,|} on each D, and by py
otherwise. l

Step2: Construction of (), and the “0O-th” map hy,. Next we construct
a compact set {2 corresponding to Q and the correspondence is represented
by the map hg : Qc — Q.

Proposition 5.2 For e < 1, there exist a compact set Q. C C and a contin-
uous map ho : Q2 — Q with following properties: ,

1. Q. N Py(fe) is the set of all parabolic points of f..

2. J(f) C Qe and f71(Q) C Q..
3. hg : Qe — Q is surjective.
4

. If there exists y € Q such that |hy'(y)| > 2 then y is a parabolic point and
|ho'(y)| = p(y). By the perturbation, y splits into an attracting planet
and p(y) repelling satellites which coincide with hg*(y).

Moreover, if we fix an arbitrary small r > 0, then we can make hy satisfy
sup {d,(ho(z),z) : € Q} < 7 for all e < 1.

We can construct ). by modification of {2 near the parabolic cycles. For
this, we need a help of the key lemma of horocyclic perturbations. However,
the construction is somehow complicated.
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For Q and (2, we set
Q= £ ; = Q) (n=0,1,2,...).

By the construction of these sets, f. : Q! — Q7 and f : Q"' — Q" are
covering maps. Moreover, {Q2*} and {Q2"} form decreasing sequences as below:

Q=202 229 2--- 2 J(fo),
Q=020 2. 20" 20" 2... 2 J(f).

Step3: Construction of h,. Let us set
A" :={yeQ:|hg'(y)| = 2},

which is the finite set of all parabolic points of f perturbed into attracting
planets of f.. Then we set I'" := hg'(A~), which is the finite set of all
repelling satellites generated by the perturbation of A~ C A. Note that A~
and '~ depend on €. .

In addition, we set

o IV = fT™(I7), Ay = f(A7)
o Iy :=Unlo I, A% :=UnloAr-

n=0"'n

Note that I’ and AZ have no critical point, and that f"(y) is a parabolic point
of f for y € A,. We thus define the petal number of y by p(y) := p(f™(¥)).
First we construct h; : O — Q! as the first lift of ho:

Proposition 5.3 For the map hy, there exists a continuous map h; : QF — Q!
such that f o hy(z) = hg o fo(z) for any z € QL. Ife < 1, hy is surjective and
hy: Q} —IT — Q' — AT is a homeomorphism.

Proof. Fix an z € Q}, then f.(z) € Q and d,(f(z), ho(fe(z))) < r/2. If
¢ < 1 we may assume that d,(f(z), fe(z)) < r/2, thus d,(f(z), ho(fe(z))) <
r; that is, ho(fc(z)) € By(f(z),7) N Q. Since Q is sufficiently far from the
critical values, B,(f(x),) is evenly covered by f (If necessary, replace r with
smaller one and repeat the argument). Thus we can take a branch of f~!
on B,(f(z),r), say g, such that g o f(z) = x. This gives the map h,(z) :=
gohgo f(z) € O, which is clearly continuous. The last part of the statement
is not difficult to prove. B

Next we define h, : QF — Q" inductively as following proposition. The
proof is similar to the case of n = 1.
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Proposition 5.4 Forn > 1, suppose that we have defined the continuous map
hyn @ QF — Q" such that dy(hn_1(x), hn(z)) < Te for any = € QF. Then there

exists a continuous map hnyq : QP — Q" such that hy o fo= f o hpyr and

that d,(hn(z), hnt1(z)) < T for any z € QP
Moreover, ife K 1, hy, : QF — Q" s surjective and hy, : Q7 —I7 — Q" — A
18 a homeomorphism for any n.

Where dy(-,-) is the distance measured by p, and r is defined by
sup {d,(ho(z), h1(z)) : = € QL }.

We can easily check that 7. = O(r), thus we may suppose that it is sufficiently
small if € <« 1.

Step4: The function 7(s) and the proof of h, — h. In the proof of the
convergence of h,, the expanding property of f will play an important role.
For instance, we can easily show the convergence when f is hyperbolic:

Proposition 5.5 Suppose that f is hyperbolic. For € < 1, h,, converges uni-
formly to the limit h on J(f). '

Proof. Since f has no parabolic point, we may use the Poincaré metric on
Int(Q2) as p without modification. Thus there is a constant & such that f*p/p >
k > 1 on Q!. By the definition of {h,}, there exists a constant C' > 0 such
that

dp(hn(2), hny1(z)) < C/6™

for any z € J(f). Thus we can easily follow that A, converges uniformly and
rapidly to the limit h on J(f.).B

However in the case that f has parabolic points, f is not uniformly expand-
ing and the convergence of h,, is very slow. To show the convergence, we will
use the idea due to Douady-Hubbard[4, Exposé No.X] again. See also [11].

Let so > 0 be the supremum of s such that B,(z,s) (an open ball with
respect to p) is evenly covered by f for any z € Q'. We define a function
7:(0,80) = R* by :

7(s) = Sup {do(9(2), 9(v)): 2,y € Q' dy(z,y) < s}.

Here g ranges over all branches of f~!. Then 7 has following properties:
(i) 7 is an increasing and right-continuous function;

(i1) s > 7(s) for any s; and
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(iii) the function s +— s — 7(s) is also increasing.

(i) and (ii) are almost clear by the definition. (iii) can be followed by the fact
that 7(s; + s2) < 7(s1) + 7(s2).
By using this function, we can prove that:

Proposition 5.6 For € < 1, h, converges uniformly to the limit h on J(f.)
where h satisfies f o h = ho f.. Moreover, for arbitrary small T > 0,

sup {d,(h(z),z) 1z € J(f)} <T
ife < 1.

Proof. Fix an arbitrary L such that 0 < L < sp. Since r. = O(r), we may
assume € < 1 such that

dy(ho(z), h1(z)) < re < L —7(L)

for any z € Q}. We claim that d,(ho(z), hn(z)) < L on Qf for any n > 1.
If n =1, dy(ho(z), hi(z)) < L —7(L) < L. For n = k, let us assume that
d,(ho(z), he(z)) < L. Then for any z € QFt!,

dp(ho(), hi+1(2)) < dp(ho(2), h1(Z)) + dp(h1(2), hisr(2))
< dp(ho(2), h1(z)) + 7(dp(ho(fe(2)), hi(fe(2))))
<L-7(L)+7(L)=L.

We have thus proved the claim by induction on n.
Fix any z € J(f.). For sufficiently large integer I, m,

dp(Pu(z), hmi(2)) < 7' (dp(Bo(f(2)), hm(fe(2))))
<t(L)—=0 (I— o0).

Because z is arbitrary, h, converges uniformly on J(f.). By the continuity of
hn, the limit h is also continuous. Since the topology of " defined by p is
equivalent to that by the spherical metric o, this convergence is also true with
respect to o.

The last part of the statement is easily followed by the construction of kg
and the fact that d,(ho(z), h(z)) < L.W
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Step5: Completing the Proof. Finally we complete the proof of Theorem
4.1 by the proposition below.

Proposition 5.7 Ife < 1, h: J(f.) — J(f) has following properties.
e h is surjective.
o If h(z) = h(z') for some different z, =’ € J(f.), then z, 2’ € T'y,.

e Forz, o' as above, there exists an integer N such that N(z), ¥
are repelling satellites of an attracting planet a. which is generated by the
perturbation of a point in A~. :

Proof. Here we only show the proof of the surjectivity of h. Other properties
are shown by using the expanding property of f with respect to the Poincaré
metric of C — P(f.).

Fix any y € J(f). By the surjectivity of hy,, there is a sequence z,, € Q"
such that h,(z,) = y. For € is compact, z, has an accumulate point z € J(f)
and we can take a subsequence z,, so that z,, — z (k — o0). Because h, — h
uniformly and A is continuous, the inequality

dp(y7 h(.’l))) S dﬂ(h"nk (x'nk)’ h’(x'nk)) + dp(h(xnk)a h(x))
implies h(z) = y.1

By this surjectivity of h and an fact that h™'(AL) = I, we obtain that
h maps J(f.) — 'y to J(f) — A7, homeomorphically.
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