Some remarks on generalized inverse *-semigroups II 1

Teruo Imaoka (Shimane University) 今岡 輝男 (島根大学総合理工学部)

Abstract

By using a concept of representations of generalized inverse *-semigroups [2], we introduce a new partial product on a generalized inverse *-semigroup. The purpose of this paper is to give a characterization of prehomomorphisms of generalized inverse *-semigroups.

1 Introduction

A semigroup S with a unary operation $*: S \to S$ is called a regular *-semigroup if it satisfies

(i)
$$(x^*)^* = x$$
; (ii) $(xy)^* = y^*x^*$; (iii) $xx^*x = x$.

Let S be a regular *-semigroup. An idempotent e in S is called a *projection* if $e^* = e$. For a subset A of S, denote the sets of idempotents and projections of A by E(A) and P(A), respectively.

Let S be a regular *-semigroup. Define a relation \leq on S as follows:

$$a \le b \iff a = eb = bf \text{ for some } e, f \in P(S).$$

A regular *-semigroup S is called a generalized inverse *-semigroup if E(S) satisfies the identity xyzw = xzyw. In this case, E(S) forms a band.

Result 1.1. [1] Let a and b be elements of S. Then the following conditions are equivalent:

- (1) a < b,
- (2) $aa^* = ba^*$ and $a^*a = b^*a$,
- (3) $aa^* = ab^*$ and $a^*a = a^*b$.
- (4) $a = aa^*b = ba^*a$.

Moreover, if S is a generalized inverse *-semigroup, the conditions above are equivalent to the following:

¹This paper is an abstract and the details will be published elsewhere.

(5)
$$a = eb = bf$$
 for some $e, f \in E(S)$.

Result 1.2. [1] The relation \leq on a regular *-semigroup, defined above, is a partial order on S which preserves the unary operation. Moreover, if S is a generalized inverse *-semigroup, \leq is compatible.

We call the partial order \leq , defined above, the natural order on S.

Let S and T be regular *-semigroups. A mapping $\phi: S \to T$ is called a *prehomomorphism*, if it satisfies

- (i) $(ab)\phi \leq (a\phi)(b\phi)$,
- (ii) $(a\phi)^* = a^*\phi$,

for all $a, b \in S$.

Result 1.3. [1] Let ϕ be a prehomomorphism of a regular *-semigroup S to a regular *-semigroup T. Then we have the following:

- (1) ϕ maps an idempotent of S to an idempotent of T, and so it maps a projection of S to a projection of T,
- (2) ϕ is isotone, that is, $a \leq b$ implies $a\phi \leq b\phi$,

As a generalization of the Preston-Vagner representations, we obtain a representation of a generalized inverse *-semigroup [2]. A non-empty set X with an equivalence relation σ is called a transitive ι -set, and denoted by $(X;\sigma)$. Let $(X;\sigma)$ be a transitive ι -set. A subset A of X is called an ι -single subset of $(X;\sigma)$ if there exists at most one element of A for each equivalence class induced by σ , that is, $x\sigma y$ $(x,y\in A)$ implies x=y. Denot the set of all ι -single subsets of $(X;\sigma)$ by T. A mapping α in \mathcal{I}_X , the symmetric inverse semigroup on X, is called a partial one-to-one ι -mapping on $(X;\sigma)$ if $d(\alpha), r(\alpha)$ are both ι -single subsets of $(X;\sigma)$, where $d(\alpha)$ and $r(\alpha)$ are the domain and the range of α , respectively. Denote the set of all partial one-to-one ι -mappings of $(X;\sigma)$ by $\mathcal{GI}_{(X;\sigma)}$.

For any ι -single subsets A and B of $(X; \sigma)$, define $\theta_{A,B}$ by

$$\theta_{A,B} = \{(a,b) \in A \times B : (a,b) \in \sigma\} = (A \times B) \cap \sigma.$$

Since a subset of an ι -single subset is also an ι -single subset, $\theta_{A,B} \in \mathcal{GI}_{(X;\sigma)}$. For any $\alpha, \beta \in \mathcal{GI}_{(X;\sigma)}$, define $\theta_{\alpha,\beta}$ by $\theta_{\alpha,\beta} = \theta_{r(\alpha),d(\beta)}$, and let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha,\beta \in \mathcal{LI}_{(X;\sigma)}\}$, an indexed set of one-to-one partial functions. Now, define a multiplication \circ and a unary operation * on $\mathcal{GI}_{(X;\sigma)}$ as follows:

$$\alpha \circ \beta = \alpha \theta_{\alpha,\beta} \beta$$
 and $\alpha^* = \alpha^{-1}$,

¹It is called a V-prehomomorphism in [4]

where the multiplication of the right side of the first equality is that of \mathcal{I}_X . Denote $(\mathcal{GI}_{(X;\sigma)}, \circ, *)$ by $\mathcal{GI}_{(X;\sigma)}(\mathcal{M})$ or simply by $\mathcal{GI}_{(X;\sigma)}$. In this paper, we use $\mathcal{GI}_{(X;\sigma)}$ rather than $\mathcal{GI}_{(X;\sigma)}(\mathcal{M})$.

Result 1.4. [2] For a transitive ι -set $(X; \sigma)$, we have the following:

- (1) The *-groupoid $\mathcal{GI}_{(X;\sigma)}$, defined above, is a generalized inverse *-semigroup. Moreover, any generalized inverse *-semigroup can be embedded (up to *-isomorphism) in $\mathcal{GI}_{(X;\sigma)}$ on some transitive ι -set $(X;\sigma)$.
- (2) $E(\mathcal{GI}_{(X;\sigma)}) = \mathcal{M}$ and $P(\mathcal{LI}_{(X;\sigma)}) = \{1_A : A \text{ is an } \iota\text{-single subset of } (X;\sigma)\}.$
- (3) If σ is the identity relation on X, then $\mathcal{GI}_{(X;\sigma)}$ is the symmetric inverse semigroup \mathcal{I}_X on X.

2 Characterization of prehomomorphisms

Let S be a generalized inverse *-semigroup. For any element $a \in S$, aa^* and a^*a by d(a) and r(a), respectively. Define a new partial product \cdot on S as follows:

$$a \cdot b = \left\{egin{array}{ll} ab & ext{if} & r(a) = d(a^*abb^*) ext{ and } d(b) = r(a^*abb^*) \ ext{undefined} & ext{otherwise} \end{array}
ight.$$

The partial product \cdot is called a restricted product of S.

Lemma 2.1. Let a and b be elements of a generalized inverse *-semigroup S.

- (1) $a \cdot b$ is defined if and only if $a^*a = a^*abb^*a^*a$ and $bb^* = bb^*a^*abb^*$.
- (2) If $a \cdot b$ is defined, then $d(a \cdot b) = d(a)$ and $r(a \cdot b) = r(b)$.

The following lemma is a basic property of the restricted product of S.

Lemma 2.2. Let S be a generalized inverse *-semigroup.

- (1) Let x be an element of S and e a projection of S such that $e \le x^*x$. Then a = xe is the unique element in S such that $a \le x$ and $a^*a = e$.
- (2) Let x be an element of S and e a projection of S such that $e \le xx^*$. Then a = ex is the unique element in S such that $a \le x$ and $aa^* = e$.
- (3) For any elemants $x, y \in S$, $xy = a \cdot b$ where a = xe, b = fy, $e = x^*xyy^*x^*x$ and $f = yy^*x^*xyy^*$.

Lemma 2.3. Let $\phi: S \to T$ be a prehomomorphism of a generalized inverse *-semigroup S to a generalized inverse *-semigroup T, and a, b elements of S.

(1)
$$(aa^*)\phi = (a\phi)(a\phi)^*$$
 and $(a^*a)\phi = (a\phi)^*(a\phi)$.

- (2) If $a \cdot b$ is defined, then $a\phi \cdot b\phi$ is defined and $((a \cdot b)\phi)^*(a \cdot b)\phi) = (a\phi \cdot b\phi)^*(a\phi \cdot b\phi)$.
- (3) By the lemma above, $ab = (ae) \cdot (fb)$ where $e = a^*abb^*a^*a$ and $f = bb^*a^*abb^*$. If ϕ satisfies that $(gh)\phi = (g\phi)(h\phi)$ for any $g,h \in E(S)$, then $(ae)\phi = (a\phi)(e\phi)$ and $(fb)\phi = (f\phi)(b\phi)$.

Now, we have the main theorem.

Theorem 2.4. Let S and T be generalized inverse *-semigroups and $\phi: S \to T$ a mapping.

- (1) ϕ is a prehomomorphism if and only if it preserves the restricted product and the natural order.
- (2) ϕ is a homomorphism if and only if it is a prehomomorphism which satisfies $(ef)\phi = (e\phi)(f\phi)$ for all $e, f \in E(S)$.

References

- [1] Imaoka, T., Prehomomorphisms on regular *-semigroups, Mem. Fc. Sci. Shimane Univ. 15 (1981), 23-27.
- [2] Imaoka, T. and M. Katsura, Representations of locally inverse *-semigroups II, Semigroup Forum 55 (1997), 247-255.
- [3] Lawson, M. V., Inverse semigroups, World Scientific, Singapre, 1998.
- [4] McAlister, D. B., V-Prehomomorphisms on inverse semigroups, Pacific J. Math. 67 (1976), 215-231.

Department of Mathematics and Computer Science Shimane University Matsue, Shimane 690-8504, Japan e-mail address: imaoka@math.shimane-u.ac.jp