The ideal transforms of semigroups

愛知教育大学 金光三男 (Mitsuo Kanemitsu) Aichi University of Education

By a semigroup we mean a submonoid of a torsion-free abelian (additive) group in this paper. Let S be a semigroup with the quotient group q(S), that is, $q(S) = \{ s - s' \mid s, s' \in S \}$. Any semigroup T between S and q(S) is called an oversemigroup of S.

Moreover, let Z be the set of all integers and let $Z_n = \{ a \in Z \mid a \geq n \}$ and $X \cdot Z_m = \{ aX \mid a \in Z_m \}$. And $S[X] = S + Z_0X = \{ s + nX \mid s \in S, n \in Z_0 \}$ is called a *polynomial semigroup* over S (cf. [KOM]).

Let I be a subset of S. I is called an *ideal* of S if I + S = I, that is, $a + s \in I$ for each $a \in I$ and each $s \in S$. For any $a \in S$, put $(a) = a + S = \{ a + s \mid s \in S \}$. Then (a) is an ideal of S and it is called a *principal ideal* of S. For $a_1, a_2, \dots, a_n \in S$, we set $I = (a_1, a_2, \dots, a_n) = \bigcup_{i=1}^n (a_i) = \bigcup_{i=1}^n (a_i + S)$. The (a_1, a_2, \dots, a_n) is an ideal of S and it is called an *ideal generated* by a_1, a_2, \dots, a_n and $\{ a_1, a_2, \dots, a_n \}$ is called a *basis* of I.

An element u of S is called a *unit* if u + v = 0 for some $v \in S$. Let U(S) be the set of units in S. Note that U(S) be a subgroup of q(S).

If we put M = S - U(S), then M is an ideal of S. Moreover, if I is an ideal of S such that $M \subset I$, then M = I or I = S. M is called the maximal ideal of S. A proper ideal P of S is called a prime ideal of S if $a + b \in P$ with $a, b \in S$ implies either $a \in P$ or $b \in P$. We note that the maximal ideal of S is a prime ideal, ϕ is a prime ideal of S and S has the only one maximal ideal.

We give semigroup versions of some results in [F].

Let S be a semigroup. Also, let $\operatorname{Spec}(S)$ be the set of all prime ideals of S. For an ideal I of S, we put $V(I) = \{ P \in \operatorname{Spec}(S) \mid P \supset I \}$ and $D(I) = \{ P \in \operatorname{Spec}(S) \mid P \not\supset I \} = \operatorname{Spec}(S) - V(I)$. In particular, put D((a)) = D(a) for $a \in S$.

Lemma 1. Let $\{I_{\lambda}\}_{{\lambda}\in\Lambda}$ is a family of ideals of S and let I and J are ideals of S. Then we have the following statements.

- (1) $\cap \{ I_{\lambda} \mid \lambda \in \Lambda \}$ is an ideal of S.
- (2) \cup { $I_{\lambda} \mid \lambda \in \Lambda$ } is an ideal of S.
- (3) $I+J=\{a+b\mid a\in I,\ b\in J\}$ is an ideal of S such that $I+J\subset I\cap J$.
- (4) If $P = I \cap J$ is a prime ideal of S, then I = P or J = P.
- (5) If P and Q are two prime ideals of S, then $P \cup Q$ is also a prime ideal of S.

Lemma 2. Let S be a semigroup. Then the following statements hold.

- (1) $V(\phi) = \operatorname{Spec}(S), \ V(S) = \phi.$
- (2) If $I \subset J$, then $V(I) \supset V(J)$.
- (3) $V(I_1) \cap V(I_2) = V(I_1) \cup V(I_2)$.
- $(4) \ V(\cup \{I_{\lambda} \mid \lambda \in \Lambda\}) = \cap \{V(I_{\lambda}) \mid \lambda \in \Lambda\}.$

We make $\operatorname{Spec}(S)$ into a topological space; the topology is called the Zariski topology. The closed sets are defined by the $V(I) = \{ P \in \operatorname{Spec}(S) \mid P \supset I \}$.

Then D(I) is an open set of $\operatorname{Spec}(S)$ and the $D(f) = \{ P \in \operatorname{Spec}(S) \mid f \in P \}$ is an open basis of $\operatorname{Spec}(S)$. For this topology, we give the following statement.

Proposition 3. Spec(S) is a Kolmogoroff space (T_0 -space) and a quasi-compact space.

Definition 1. We call the *ideal transform of* S *with respect to an ideal* I of S the following oversemigroup of S:

$$T_S(I) := \{ z \in q(S) \mid (S :_S z + S) \supset nI \text{ for some } n \geq 1 \}$$

Also, we call the Kaplansky ideal transform of S with respect to an ideal I of S the following oversemigroup of S:

$$\Omega_S(I) := \{ z \in q(S) \mid \operatorname{rad}(S :_S z + S) \supset I \}.$$

where $rad(J) = \{a \in S \mid na \in J \text{ for some positive integer } n\}.$

Note that $\Omega_S(I)$ is an oversemigroup of $T_S(I)$ and note that if I is finitely generated, then $\Omega_S(I) = T_S(I)$. For a principal ideal I, we have that $I + T_S(I) = T_S(I)$.

Proposition 4. Let I be a principal ideal of S and P be a prime ideal of S. Then the following results are hold.

- (1) $I + T_S(I) = T_S(I)$, $I + \Omega_S(I) = \Omega_S(I)$.
- (2) $P \in V(I)$ if and only if $P+T_S(I) = T_S(I)$ if and only if $P+\Omega_S(I) = \Omega_S(I)$.

Definition 2 ([K],[KB],[KM] and [MK]). A semigroup S is a valuation semigroup if $\alpha \in q(S)$ then $\alpha \in S$ or $-\alpha \in S$.

Also, we say that S is a seminormal semigroup if 2α , $3\alpha \in S$ for $\alpha \in q(S)$, we have $\alpha \in S$.

It is clear that valuation semigroups are seminormal.

Definition 3. A non-empty subset N of a semigroup S is called an additive system of S if $a, b \in N$ implies $a + b \in N$ and $0 \in N$.

Put $S_N = \{ s - t \mid s \in S, t \in N \}$. Then S_N is an oversemigroup of S and is called the *quotient semigroup* of S. If P is a prime ideal of S, then T = S - P is an additive system of S and the quotient semigroup S_T is denoted by S_P .

Definition 4 ([OK]). Let T be an oversemigroup of S. Then T is said to be *flat* over S if for any prime ideal P of S, either P + T = T or $T \subset S_P$. Put $\text{Flat}(T) = \{P \in \text{Spec}(S) \mid P + T = T \text{ or } T \subset S_P\}$.

Example 1. Let $S = (\mathbf{Z_1} + \mathbf{Z_1}X) \cup \{0\}$. Then $U(S) = \{0\}$ and $M = \mathbf{Z_1} + \mathbf{Z_1}X = S - U(S)$ is the maximal ideal of S. Also, Krull dim S = 1 and S is not valuation semigroup.

Also, let $T = (\mathbf{Z_1} + \mathbf{Z_1}X) \cup \mathbf{Z_0}$. Then T is not a valuation semigroup and $U(T) = \{0\}$. Put $N = \mathbf{Z_1} + \mathbf{Z_1}X$. Then $N \notin \text{Flat}(T)$.

Theorem 5 ([OK]). Let T be an oversemigroup of S. Then the following statements are equivalent.

- (1) T is flat over S.
- (2) $T = S_{N \cap S}$ for the maximal ideal N of T.
- (3) For any two ideals I, J of S, $(I \cap J) + T = (I + T) \cap (J + T)$.

Definition 5. Let S be a semigroup and let T be an oversemigroup of S. Then T is said to be LCM-stable over S if $((a+S)\cap (b+S))+T=(a+T)\cap (b+T)$ for each $a,\ b\in S$.

A flat oversemigroup T over S is LCM-stable over S.

Theorem 6. Assume that S be a Noetherian semigroup. Let T be an oversemigroup of S. Then T is flat over S if and only if T is LCM-stable over S.

Corollaly 7. If S is a valuation semigroup and a proper principal ideal I = (a) of S, then $P \in D(I)$ if and only if $T_S(I) = \Omega_S(I) \subset S_P$.

Proposition 8. The following satetements are hold.

- (1) $S_a = \Omega_S((a))$ for a non-unit $a \in S$.
- (2) If I and J are ideals of S such that $I \subset J$, then $\Omega_S(I) \supset \Omega_S(J)$.
- (3) $\Omega_S(I) = \bigcap \{S_P \mid P \in D(I)\} = \bigcap \{\Omega_S(I + S_P) \mid P \in \text{Spec}(S)\}.$
- (4) If I is a proper ideal of S, then $\Omega_S(I) = \bigcap \{\Omega_S(a+S) \mid a \in I\} = \bigcap \{S_a \mid a \in S_a \}.$

Definition 6. $x \in G$ is called an almost integral element of S if there exisits an element $a \in S$ such that $a + nx \in S$ for each positive integer n. Also, S is a completely integrally closed if x is almost integral over S then $x \in S$.

Theorem 9 ([K]). Let S be a valuation semigroup such that $S \neq q(S)$. Then Krull dim S = 1 if and only if S is a completely integrally closed semigroup.

Theorem 10 ([KHF]). (1) Spec($\mathbb{Z}_0[X]$) = { (X), (1), (1, X), ϕ }.

- (2) The primary ideals of $\mathbb{Z}_0[X]$ are the following:
- (i) All the ideals that contains both elements of \mathbb{Z}_0 and \mathbb{Z}_0X .
- (ii) $\mathbf{Z_k} + \mathbf{Z_0}X = (k)$ with $k \in \mathbf{Z_0}$.
- (iii) $\mathbf{Z_0} + \mathbf{Z_k}X = (kX)$ with $k \in \mathbf{Z_0}$.

Example 2. Let $S = \mathbb{Z}_0 \cup (\mathbb{Z} + \mathbb{Z}_1 X)$. Put $P = \mathbb{Z} + \mathbb{Z}_1 X$ and $M = (1) = 1 + S = P \cup \mathbb{Z}_1$. Then $\operatorname{Spec}(S) = \{ \phi, P, M \}$. Since $\phi \subset P \subset M$, we have that Krull dim S = 2. It is clear that S is a valuation semigroup. Since P is not finitely generated, S is not Noetherian semigroup.

Theorem 11. Let the notation be as in Example 2 and let I be an ideal of S. Then the following statements hold.

- (1) Let I = (f) be a principal ideal of S. If f = 0, then $T_S(I) = \Omega_S(I) = S$. Also, if $f \in M P$, then $T_S(I) = \Omega_S(I) = S_f = \mathbb{Z}[X] = \mathbb{Z} + \mathbb{Z}_0 X$. Next, if $f \in P$, then $T_S(I) = \Omega_S(I) = S_f = q(S)$.
- (2) If I is not a finitely generated ideal of S, then $I = \mathbf{Z} + \mathbf{Z_n} X$ $(n \ge 1)$ and $\Omega_S(I) = q(S)$.
- (3) Let $I \neq S$. Then $\operatorname{Spec}(\Omega_S(I)) \cong D(I)$ if and only if $I + \Omega_S(I) = \Omega_S(I)$.
- (4) S is not a completely integrally closed and each oversemigroup of S is a flat semigroup over S, and so $\operatorname{Flat}(T) = \operatorname{Spec}(S)$ for each oversemigroup T of S.

Theorem 12. Let S be a semigroup and I an ideal of S. Then the following statements are equivalent.

- (1) D(I) is an affine open subspace of Spec(S).
- (2) $\Omega_S(I)$ is flat over S and, for each $P \in \operatorname{Spec}(S)$ with $P \supset I$, $P + \Omega_S(I) = \Omega_S(I)$.
 - (3) $I + \Omega_S(I) = \Omega_S(I)$.

References

- [F] M.Fontana, Kaplansky ideal transform: A survey, in Advances in commutative ring theory, Lecture Notes in Pure and Appl. Math., vol. 205 (1999), 271 306, Marcel Dekker, Inc., New York/Basel.
- [K] M.Kanemitsu, Oversemigroups of a valuation semigroup, SUT J. Math. 36 (2000), 185 197.
- [KB] M.Kanemitsu and S.Bansho, On primary ideals of valuation semi-groups, Far East J. Math. Sci., 1 (1999), 27 32.
- [KHF] M.Kanemitsu, K.Hatano and M.Furuhata, On the ideals of polynomial semigroups, *Hiroshima J. Math. Education*, 8 (2000), 41 51.
- [KM] M.Kanemitsu and R.Matsuda, Note on seminormal overrings, *Houston J. Math.* 22 (1996), 217 224.

[KOM] M.Kanemitsu, A.Okabe and R.Matsuda, On polynomial extensions of g-monoids, *Algebras Groups and Geometries* 16 (1999), 269 -276.

[MK] R.Matsuda and M.Kanemitsu, On seminormal semigroups, *Arch. Math.* 69 (1997), 279 - 285.

[OK] A.Okabe and M.Kanemitsu, On flatness of semigroups, Far East J. Math. Sci.(FJMS) 2 (2000), 463 - 475.