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Introduction

The class of quasi-Frobenius (QF) algebras, i.e., selfinjective artin algebras, is one
of the most interesting classes of non-semisimple artin algebras. For example,
any artin algebra A is a factor algebra of the trivial extension of A by its dual,
which is a QF algebra. Our aim is to consider the possibility of QF test of factor
algebras of a polynomial ring over a field by using computers and to determine the
isomorphism classes of commutative QF algebras A over a field k satisfying the
condition
A/J=Ek™ and JP=0

where J is the radical of A and k(™ is a product of m copies of k for a positive
integer m. ‘

In §1 we show the existence of an algorithm for deciding whether a given factor
algebra of a polynomial ring is QF, and demonstrate some examples by our im-
plementation. In §2 we consider some type of commutative QF algebras satisfying
the condition above, which will be said to be of type (1,2,1), and determine their
isomorphism classes.

Throughout this paper, k is a field with k* = k\{0} and ch k the characteristic,
all k-algebras mean finite dimensional commutative algebras over k and isomor-
phisms between k-algebras mean k-algebra isomorphisms. For a k-algebra A, we
denote by Rad(A) and Soc(A) the radical and the socle of A, respectively. -

*More general results of the last section in this paper will appear elsewhere.
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1 QF test of polynomial algebras by computer
The following result is most essential for investigating local QF algebras.

Lemma 1.1 ([1]) Let A be a local k-algebra. Then the following conditions are
equivalent:

(1) A is QF;
(2) dimg A/Rad(A) = dim;, Soc(A).

Using the lemma above and some results related to Grébner basis theory, we
have the following.

Theorem 1.2 There ezists an algorithm for deciding whether, for a given ideal I
of the polynomial ring R = k[z, ..., z,] over a field k, R/I is QF.

In fact, under some conditions on the base field k, the algorithm can be im-
plemented in several computer algebra systems. The following are some examples
computed by our program worked on SINGULAR [4], a computer algebra system.

Examplé 1.3 Let R = QJz,y, z]. By our program, we can easily check that the
algebra R/(z%,yz — 22,y%, 12 — 2%, zy,2%2 — 2?) is a local QF algebra, while the
algebra R/(23,yz — 22,12, zz — 22, zy, 2?) is local but not QF.

Example 1.4 (Tachikawa [6]) Let R be the polynomial ring k[zg, Ty, ..., Z,] in
n + 1 variables g, z1,...,Z, over a field k. For a positive integer ¢, set

I = (ﬂ?{i]$[i+1] * Tlitn-1] — -Tfi+n] | 1=0,1,... ,n)

where [h] is the residue of h modulo n + 1. Then, Tachikawa proved that if £ # n,
then the k-algebra R/I, is isomorphic to a direct sum of a group algebra and a
local QF algebra (and hence, it is QF). Now, we shall particularly consider the
algebra in case that n = ¢t — 1 and denote it by T;. The following is an execution
result for the Q-algebra T3 = Q[zo, z,, 23]/ (Toz1 — 13, 2122 — 13, T279 — 23) by our
program, where the first three lines are our input and the rest are output.

> ring r=0, (x,y,z), 1lp;

> ideal I = (xy-z3, yz-x3, zx-y3);

> propideal(I);
<29-25,yz6-yz2,y225-y2z,y4~z4,xz-y3,xy-23,x3-yz>
k~dimension = 27

number of components = 11



Local QF ? True

Groebner Basis of I = {z+1,y+1,x-1}
- of (I:rad(I)) = {1}

- of rad(I)
k-basis of R/I = {1}, 1
-~ of R/(I:rad(I)) = {0}, O
k-dim. of Loewy factors:
upper(>): 1 (1)

Local QF ? - True

Groebner Basis of I = {z-1,y-1,x-1}

- of (I:rad(I)) = {1}

- of rad(I) = {z-1,y-1,x-1}

k-basis of R/I = {1}, 1

~-- of R/(I:rxad(I)) = {0}, O

k~dim. of Loewy factors:

-upper(>): 1 (1)
4

Local QF ?

True

= {z+1,y+1,x?1}

Local QF ? True

Groebner Basis of I = {22+1,y+1,x-z}
- of (I:rad(I)) = {1}

- of rad(I) = {22+1,y+1,x-2z}
k-basis of R/I = {z,1}, 2

-- of R/(I:rad(I)) = {0}, 0

k-dim. of Loewy factors:

upper(>): 2 (1)

Groebner Basis of I = {25,yz2,y2z,y4-z4,xz—y3,xy—zS,x3-yz}
- of (I:rad(I)) = {24,yz2,y2z,y4,xz-y3,xy-23,x3-yz}

- of rad(I)
k-basis of R7%

= {z:Y9x}

= {24323 .22.12 .2,y3 )12 .7,12 axvi} » 11

-- of R/(I:rad(1)) = {23,z2,yz,2,y3,y2,y,x2,x,1}, 10

k-dim. of Loewy factors:
upper(>): 1.3 3 3 1 (5)
5 _____
Local QF ? True
Groebner Basis of I = {z+1,y-1,x+1}
- of (I:rad(I)) = {1}
- of rad(I) = {z+1,y-1,x+1}
k-basis of R/I = {1}, 1
-- of R/(I:rad(I)) = {0}, O
k-dim. of Loewy factors::
upper(>): 1 (1)
7 .....
Local QF 7 _ True
Groebner Basis of I = {z-1,y+1,x+1}
- of (I:rad(I)) = {1}
- of rad(I) = {z-1,y+1,x+1}
k-basis of R/I = {1}, 1
-- of R/(I:rad(I)) = {0}, O
k-dim. of Loewy factors:
upper(>): 1 (1)
‘9
Local QF 7 True
Groebner Basis of I = {z2+1,y-1,x+z}
- of (I:rad(I)) = {1}
- of rad(I) = {z2+1,y-1,x+z}
k-basis of R/I = {z,1}, 2

Local QF ? True
Groebner Basis of I = {z+1,y2+1,x-y}
- of (I:rad(I)) = {1}
- of rad(I) = {z+1,y2+1,x-y}
k-basis of R/I = {y,1}, 2
-- of R/(I:rad(I)) = {0}, O
k-dim. of Loewy factors:
upper(>): 2 (1)

8
Local QF ? True
Groebner Basis of I = {z-1,y2+1,x+y}
- of (I:rad(I)) = {1}
- of rad(I) = {z-1,y2+1,x+y}
k-basis of R/I = {y,1}, 2
-~ of R/(I:rad(I)) = {0}, O
k-dim. of Loewy factors:
upper(>): 2 (1)

10 -
Local QF ? True
Groebner Basis of I = {z2+1,y-z,x+1}
- of (I:rad(I)) = {1} -
-- of rad(I) = {22+41,y-z,x+1}
k-basis of R/I = {z,1}, 2

26
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-- of R/(I:rad(I)) = {0}, O -- of R/(I:rad(I)) = {0}, O
k-dim. of Loewy factors: k-dim. of Loewy factors:
upper (>): 2 (1) upper(>): 2 (1)

_____ 1 1 - -

Local QF 7 *  True

Groebner Basis of I = {22+1,y+z,x-1}
r-— of (I:rad(I)) = {1}

- of rad(I) -= {22+1,y+z,x-1}
k-basis of R/I = {z,1}, 2

-- of R/(I:rad(I)) = {0}, 0

k-dim. of Loewy factors:

upper(>): 2 (1)

This output, which is arranged for want of space, shows not only Tj to be a (non-
local) QF algebra but also further information about this algebra. For example,
dimg T3 = 27, and the number of local components of T3 is 11; four components
have dimension 1, six components have dimension 2 and one ‘exceptional’ compo-
nent has dimension 11 and Loewy length 5.

We also run our program in case of the algebras T, and T5 over k = Q. It is then
remarkable that T, and T as well as T3 have one exceptional local component, say
Cy4 and Cs, of dimension 131 and 1829, respectively. Omitting to show the output,
we here give only a table showing the dimension and the number of components
of the algebras and the series of dimensions of the factors in Loewy series of the
components Cy and Cs.

Ty Ts

) ) the number of " ) i the number of
dimension dimension ,
components - components
1 1 1 16
31 2 640
131 1 1829 1
the number of components = 33 " the number of components = 657
dim T = 256 I dimT; =3125 |
the series of dimensions of the factors in Loewy series of Cy and Cj: ]
. Cy:141016222522161041
Cs: 1515 35 65 105 151 195 225 235 225 195 151 10565351551

Table 1: the dimension and the number of components of Ty and T;
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2 Classification of QF algebras of type (1,2,1)
For the sake of completeness, we give a brief proof of the following known result.

Lemma 2.1 For a commutative ring A, the following conditions are equivalent:
(1) A is a k-algebra with dimy A/Rad(A) = 1;

(2) A = R/I where I is an ideal of the polynomial ring R = k[z1,....z,) such
that (z1,...,2,)™ C I C (xy,...,T,) for some integers m,n > 1.

In particular, if A is not a field, then the ideal I of (2) can be chosen to satisfy
IC (331, ce ,$n>2.

Proof. (1) = (2). Assume that A is a k-algebra with J = Rad(A) such that
dimg A/J =1 and J™ = 0 for some integer m > 1. Since dimy A/J = 1, it follows
that A=k+J. Let {u;+J |i=1,...,n} be a k-basis of J/J2. Then it is shown
that

A=k+ Z kui, + E kui wiy + -+ + 2 kui, - - - i,y
1<ii<n 1<ip <ia<n 1<i1<Sim-1<n

which implies the following epimorphism:
@:R=klzy,...,za] 2 A, f(z1,...,Zn) = fus,...,un).

Now, setting I = Ker ¢, we will obtain the result.
(2) = (1). This is easily shown. m

Let A be a k-algebra with J = Rad(A) and n a positive integer. Then we say
that A is of type (1,n,1) if
dimgA/J =1, dimgJ/J?=n, dim;J?=1 and dim;J®=0.

To determine the isomorphism classes of QF k-algebras A with J = Rad(A)
satisfying the condition

AJJ=k™ and J3=0

for some m > 1, we need to consider the k-algebras of type (1,n,1), for the local
components of QF k-algebras satisfying this condition are the field k, the serial
k-algebra of length 2, or the k-algebras of type (1,n,1).

The following lemma gives the “canonical forms” of k-algebras of type (1,n,1).
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Lemma 2.2 Let A be a k-algebra. Then the following conditions are equivalent:
(1) A is of type (1,n,1);
(2) There exist
() p, quwith1 <p<g<mn, and
(i) aij € k for 1 <i < j < n with (4,5) # (p, q)
such that

A2 Koy, 2ol /(mi3; — 0T, 3230 | 1< i < j < 1 with (i,5) # (p,0)).

Proof. Set R = k[z,,...,z,] and J = (z1,...,z,). For p, ¢ and a;;’s as in (i) and
(ii) of (2), set

I = (225 — aijTpTq, TyZy | 1 < i < j < mowith (4,5) # (p,@)) CR. (#)

(2) > (1) Assume that A = R/I. For f € R, set f = f + I € A. Since it
is easy to see that J3 C I, it follows from Lemma 2.1 that A is a k-algebra with
Rad(A) = J/I. Furthermore, it can be easily seen that :

{Z1 + Rad(A)?,..., T, + Rad(A)?’} and {Z,7;}

are k-bases of Rad(A)/Rad(A)? and Rad(A)?, respectively. Therefore, A is a k-
algebra of type (1,n,1). '

(1) = (2). Let A be a k-algebra of type (1,n,1). By Lemma 2.1, we may
assume that A = R/H where H is an ideal of R such that J® ¢ H ¢ J? and
dimy J*/H = 1. Then we can choose an 1,7, ¢ H where 1 < p < ¢ < n. Since
dimg J2/H =1, it follows that for 1 < i < j < n with (3,5) # (p,q), there exist
aij € k such that z;x; — a;jz,z, € H. For the (p, q) and the a;;’s, define an ideal I
of R as in (#). Since I C H and dimy R/I = dimy R/H = n + 2, we have H = I,
which shows (2). m

It is easy to see that in case n = 1, any k-algebra of type (1,1,1) is isomorphic
to k[z]/(z®), a serial k-algebra of length 3. In the rest of this paper, we shall
consider a non-trivial case n = 2, i.e., k-algebras of type (1,2,1). To this, we
define k-algebras I' and X, (a,b € k) by

' = k[z,y]/(z%¢*) and
Ta = k[z,y]/(zy — ay?, z? — by?, 4P).

Then we have the following.
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Lemma 2.3 (1) Any k-algebra A of type (1,2,1) is isomorphic to T' or Sqp for
some a,b € k. :
(2) Any QF k-algebra of type (1,2,1) is isomorphic to ' or Ly for some a,b € k
with a® — b # 0.

Proof. (1) It suffices to consider the factor algebras of k[z,y] (where z = z; and
Yy = z3) in (2) of Lemma 2.2 for (p,q) € {(1,2),(2,2)}. Then it can be checked
that A 2 T'if (p,q) = (1,2) and a1 = as; = 0; A = 5, for some a, b € k otherwise.

(2) Since it is easily seen that T is QF, it suffices to show that T, is not QF if
and only if a? — b = 0. Set J = Rad(Zs) and S = Soc(Zs). Then we see that
{zT + J2, 5+ J*} and {7*} are k-bases of J/J? and J?, respectively, and that

P=k?CcS={feZa|ff=fy=0}CJ

It follows from Lemma 1.1 that £, is not QF if and only if J2 € S, which means
that there exists 0 # (s,t) € k™ such that sZ + tj € S. By the note above on S,
we see that this is also equivalent to the condition a2 —b=0. ®

Lemma 2.4 Let a,b,c,d € k witha® —b# 0 and > —d # 0. Then the following
conditions are equivalent:

(1) Sop & Sy
(2) \/(c2 —d)(a? - b)-1 € k.

Proof. (1) = (2). Let ¢ be a k-isomorphism from X, to X, and
o) = sT+F+up® (s,t,uck)
0@ = pZ+qi+r7 (pg,r€k).
Then,
0 # p(7®) = ¢(@)* = p’* + 2pgT7 + ¢°F* = (dp” + 2cpq + ¢*)7°.

Set w = dp?+ 2¢cpq + ¢2. Since ¢ is an isomorphism, the determinant of the matrix
of ¢ relative to k-bases {1,Z,%, 7} of both £, and X4 is

1 00

o

det = w(gs — pt) # 0.

r
w

o O O
o »
O



0 = (¥ — o) = ¢(T)9(@) — ap(F)?
= {dsp+ c(sq + tp) + tqg — aw}F.

Similarly,
0 = o(Z? — by?) = (ds® + 2cst + ¢ — bw)F*.
It follows that

a = {dsp + c(sq + tp) + tq}w™?
b = (ds®+ 2cst+t>)w™t.

Now we substitute the a and b above for (c? — d)(a? — b)~! to obtain
(¢® — d)(a® = b)~" = w?(gs — pt)?,

which implies (2).
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(2) = (1). Assume that u := /(2 —d)(a® — b)~! € k. Then the following

correspondence gives a k-isomorphism from X, to T4 :

1-1, T T+ (au—0o)F, T uf, 7°~ v,
which completes the .proof. n

Now, consider the following algebra:
Aq = k[z,y)/(z? — ay®, zy) (a € k).
Then we can show the following.
Theorem 2.5 Any QF k-algebra of type (1,2,1) is isomorphic to
T or A,

for some a € k*. Moreover,

(1) Fora,be k*, Vab-t €k & A, = A,;.
(2) () chk#2 & (i) T=A_, & (iii) [ = A, for some c € k*.

Proof. Note from Lemma 2.4 that for a,b € k with a2 — b # 0, T, =

Ap_,2. Then the first assertion follows from Lemma 2.3.
(1) This follows immediately from A, = Xy, and Lemma 2.4.

2O,b—a2 =
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(2) (i) = (ii). If chk # 2, then the following correspondence gives a k-
isomorphism from I'" to A_;: '

= =2

11, TIT+7y THI-F, T~ 27
(ii) = (iii). Obvious.
(iii) = (i). Let ¢ : ' = A, (c € k*) be a k-isomorphism and
O(F) = ST+tJ+uf (s,t,u€k)
0@ = PE+q@+T (BqrEk)
Then, .
0 = ¢(?) = ¢(T)? = 8’7 + *F* = (cs* + )P,
from which cs?2 +12 =0, i.e., t2 = —cs?. Similarly, ¢> = —cp?. On the other hand,
0 # (ZF) = @(T)e(¥) = (csp + ta) 7.
Hence, csp + tq # 0. Therefore we have
0 # (csp + tq)? = c2s?p? + 2cstpq + t2¢* = 2(c*s*p* + cstpq),
which implies that chk #2. =

Let {a; | (a; € I)} be a set of representative elements of the multiplicative group
k* modulo the subgroup (k*)? of square elements, i.e., k*/(k*)? = {ai(k*)? | i € I}.
Then, Theorem 2.5 gives the isomorphism classes of QF k-algebras of type (1,2,1)
as follows.

Corollary 2.6 (1) If chk # 2, then the isomorphism classes of QF k-algebras of
type (1,2,1) are A,, (i € I). In particular, T = A_,.
(2) If ch k = 2, then the isomorphism classes of QF k-algebras of type (1,2,1) are
I and A,, (i € I). In particular, T # A, for alla € k*.
Remark 2.7 (1) For a given field k, the number IV of the isomorphism classes
- of QF k-algebras of type (1,2, 1) is given as follows. -
{2e (e>0) or oo (chk#2)
N =
2 or oo (chk=2).
(2) For any e > 0, there exists a field k such that N = 2¢ (cf. [5, Chapter 4, §7]).

The following table shows the isomorphism classes of QF algebras of type (1,2,1)
over some typical fields k.
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k If-isomorphism classes
algebraically | chk =2 | ] I, A
closed fields chk #2 | ‘ r
finite fields chk =2 L A
chk #2 " A1, Aq (ais a primitive element of k)
R L, Ay
: .
( {ai | a; € N} is the set of square free integers)
ko(zy,...,Zm)

Ay, (€1, |I| = 00)

(ko is an arbitrary field)
p-adic fields p=2 Ag; (Q2/(Q2)? = {ai(Q2)? |i=1,...,8})
Q p#2 Ao (Qp/(Qp)? = {a:(Qp)* |i=1,...,4})

Table 2: the isomorphism classes of QF k-algebras of type (1,2, 1)
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