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Topics on finite and countable infinite BCK
' Kiyoshi ISEKI(3#B1 K%)

In this Note, we present some new results on BCK without proofs, in
particular, we mainly concern with finite and countable infinite BCK.

First I give a new definition of BCK which is equivalent to an old defin-
tion(for exmple, see [5], [7], [8]). Let P be a partially ordered set with a
least element 0 on which a binary operaion * is defined. We assume that the
partial order z < y is reflexive, antisymmetric and transitive.

We say that P is a BCK if a binary operation * on P satisfies the following
conditions:

1) (z*y)*(z*2) < z+y,
2)zx(z*y) <y,

3 z*xz =0,

4) 0*xz =0,

5) z *y =0 is equivalent to z < y.

We know some special classes of BCK which are defined by the following
way: Let X be a BCK.
(1) X is positive implicative, if (x *y) *y = z * y for any z,y in X.
. (2) X is commutative, if z * (z *y) = y * (y * z) for any z,y in X.
Then z * (z * y) is the greatest lower bound of z,y. Hence it is denoted
by z A y. Therefore a commutative BCK is a lower semilattice.
(3) X is implicative, if X is positive implicative and commutative.
(4) X is a BCK with condition (8), if for any a,b € X, non-empty set

{z:z%a < b}

has the gereatest element in X. Its element is denoted by aob.

Then X is a partially ordered commutative semigroup with respect to the
just introduced operation o. This is refered as the associated (p.o.commutative)
semigroup of X.

The operation o has the following basic properties:

6) z,y < zoy = yoz,

7) zo(yoz) = (zoy)oz,

8) x * (y * z) = = * (yoz),

9) z < y = zoz < yoz for any z € X.

We can find many basic and useful properties of these classes in [7] and
[8]. Among them, we only mention some results which hold in BCK.
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10) z 0 = z,

11) (z*xy)xz= (x> 2) * y. (permutatlon rule)

12) z+y <z,

B)zx[zx(z*xy))=z*y.

(5) W.H.Cornish introduced a concept which is called a BCK w1th supre-
mum ([4], [3}).

Let X be a BCK with conidition (S). X is called a BCK with supre-
mum, if the following identity holds for any elements z, Y,z in X:

zo(y * z) = yo(z * y).
zo(y+z) is denoted by xVy. It is the least upper bound of z,y. Therefore,
a BCK with supremum is an upper semilattice.

Remark 1. If the conidtion 4) in the definition of BCK is replaced by a
condition: there is no elements less than 0, namely 0 < z implies z = 0, we
obtain the concept of BCI.

Theorem 1. There ezists at least one BC’K structure on any partially or-
dered set with a least element 0. This BCK structure is given by the following

way:
_J10 ifz<y,
TrY= { z, otherwise.

Consequently this structure is positive implicative, as easily seen. Then
we can not change z(= z*y) into z greater than z. In this sense, the obtained
BCK is maximal, namely if there is a new BCK structure on X, then z* y
can not greater than z(= z * y) in the first given BCK structure.

To define another important class of BCK, we introduce a simple concept
on a partially ordered set.

Definition 1. A partially ordered set P with a least element 0 is called
the type Y if there exists an element a(7# 0) such that a < z for every
non-zero element z in P.

Let us denote by 1 such element a. ,

A very simple BCK is a fan shaped one which has two dlﬁ'erent kinds.
We define two kinds of fans, namely Japanese style and Chinese style. One
of them is of the type Y.

Definition 2. A partially ordered set P with a least element 0 is of a
Japanese (style) fan if it is of type Y and for any a(# 0,1) in P, there are
no elements z,y satisfying 1 < z < a,a < y. P is called Chinese (style)
fan if it is not a type V and for any a(7# 0) there are no elements z,y such
that 0 < z < a,a < y.
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In the theory of BCK, the distinctions are quite important. It is very easy
to introduce at least one BCK (maximal) structure by applying Theorem 1.
There exists no other BCK(maximal) structure on any Chinese style fan and
all subsets including 0 are subalgebras. On the other hand, any Japanese
style fan has some other BCK structures.

Problem 1. Find all(finite and infinite) BCK with only one BCK struc-
tures. Are there none in the finite BCK with only one structure except the
Chinese style one ? The answer may depend on the order.

Example 1. Let us consider the Japanese style fan of order 5 as an

example. Then the *-table of the maximal BCK is given in the following left
tables. In this case, there exist more three different BCK strcutures on it.

* 01234 01234
000000 O0O0OO0OO0ODO
110000 110000
222022 221011
3 33303 331101
4 44440 441110

The above right structure is commutative. Other two structures are men-
tioned in the following tables, but it seems that no these structures have
special kinds of properties.

* 01234 01234
000000 O0O0OOOO0O
110000 110000
221011 221010
333303 331101
4 44440 444440

All elements in a BCK X appear in the column containing 0 in the *-
table of X. All elements which appear in the diagonal of the *-table are 0.
Let us consider the part of the triangle of the left side of the diagonal, and
eliminate the first colunn(the 0-column). For example, from the above first
two *tables, we have the following parts:

2 1
3 3 1 1
4 44 111

Such a triangle is called the essential part of X. Similarly, we can define
the quasiessential part of X. Let us consider the triangle formed through the
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right side of the diagonal. We elminate the first row(0-row) of the triangle.
The triangle obtained is called the quasiesential part of X. A
The quasiessential parts of the first two in Example 1 are as follows:

000 O0O00O
2 2 11
3 1

For any BCK linearly ordered, all elements of its quasiessential part are
0, as easily seen.

Definition 3. A BCK is called minimal, if all elements of the essentlal
and quasiessential parts are 0 or 1.

The above Japanese style fan has a minmal structure, but for a Chinese
style fan, it is not always true. Then we have the following important

Theorem 2. A BCK is the type Y if and only if it is minimal.

Hence any linear(finite or infinite) BCK has a minimal structure. The
minimal linear BCK of order 3 is commutative, but such a BCK of order 4
is not commutative.

The essential parts of the later two structures are

1 1
3 3 1 1
4 4 4 4 4 4

The first element of these essentlal parts are 1. They are smaller than
the first element 3 of the maximal structure, and greater than the first el-
ement 1 of the minimal structure. There are the same situations among
the corresponding elements. The same fact holds for the quasiessential part.
Therefore we can say that each structure is between the maximal and mini-
mal structures(This is valid for a non minimal case). For every finite BCK,
we can theoretically find all BCK structures, but the calculation is not easy
This is very tedious work.

Problem 2. Find an algorithm to determine all finite BCK structures.
Is there a Turing machine to describe the structures of all finite BCK ?

Next we consider a factor(branch) of a partially ordered set P with a least
element 0.

Definition 4. Each member of family {P,} of subsets of a BCK X is
called factor(branch) if it satisfies the following conditions:

(F-1) Each P, is a partially ordered set with 0,

(F-2) X is the union of {F,},

(F-3) PN P, = {0} for m # n.
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Then each P, is a BCK, and for z € Py, y € Pa(m # n) we have zxy = z.

Conversely, let {P,} be a family of partially ordered sets. Let us sup-
pose that the least element 0 is common in all P, and {P,} is a disjoint
family except the element 0. Moreover, we suppose each of {P,} has a BCK
structure. Then the following result holds true.

Theorem 3. On the union P of P,, a BCK structure is uniquely intro-
duced, and each P, is subalgebra under the structure on P.

For z € Ppand y € Py(m#n),
' TxyY =T

The BCK structure of each P, is preserved in P.

For example, the union of several two elements BCK is a Chinese style
fan and the BCK structure is given by the above equation. The uniqueness
of the BCK structure on a Chinese style fan also follow from Theorem 3.

Moreover, X is positive implicative(commutative) if and if so is each
P,, So, each P,, is implicative if and if P is implicative. Many interesting
‘commutative BCK are constructed by the above method. But a commutative
BCK is very strange in BCK theory. Its structure has not completely known
until now. .

Finally, as easily sen, there exist a maximal BCK, a minimal BCK, a
positive implicative BCK, a commutative BCK, an imlicative BCK with any
cardinality. I wold like to mention this fact is very useful to study various
classes of BCK. In this Note, we considered the case of the union of BCK
such that only 0 is identified. An important researche program is to develop
general identification theory of BCK.
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Correction of my paper On finite BCK with condition (S) in Proc.
4th Symposium on Algebraic Langueges and Computation(2000). 1. p.16.
15 z * (y * =) should be read as z * (y * 2).

2. p.18. In the right table in 7, x9; = 2 should be read z,; = 3.

3. p.18. In the right table in 10, z;; = 2 and z,3 = 3 should be respec-
tively read as 11 = 1 and 9 = 2.

4. p.18. In the right table in 6, x;; = 2 should be read as z;; = 1.

5. p.18. in the right table in 13, x99 = 3 should be read as z9; = 2



