<table>
<thead>
<tr>
<th>Title</th>
<th>CPN Languages and Codes (Algebraic Semigroups, Formal Languages and Computation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ito, Masami; Kunimochi, Yoshiyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2001), 1222: 46-49</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41313</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
\textbf{CPN Languages and Codes}

Masami Ito
Kyoto Sangyo University
(伊藤 正美 京都産業大学)

Yoshiyuki Kunimochi
Shizuoka Institute of Science and Technology
(国持 良行 静岡理工科大学)

Let $D = (P, X, \delta, \mu_0)$ be a Petri net with a initial marking μ_0 where P is the set of places, X is the set of transitions, δ is the transition function and $\mu_0 \in N_+^P$ is a positive marking, i.e. $\pi_p(\mu_0) > 0$ for any $p \in P$. Notice that $\pi_p(\mu_0)$ is meant the number of tokens at p of the marking μ_0. A language C is called a CPN language over X generated by D and denoted by $C = \mathcal{L}(D)$ if $C = \{u \in X^+ | \exists p \in P, \pi_p(\delta(\mu_0, u)) = 0, \forall q \in P, \pi_q(\delta(\mu_0, u)) \geq 0, \quad \forall q' \in P, \pi_{q'}(\delta(\mu_0, u')) > 0 \text{ for } u' \in P_r(u) \setminus \{u\} \text{ where } P_r(u) \text{ is the set of all prefixes of } u\}$. Then it is obvious that $C = \mathcal{L}(D)$ is a prefix code over X. If C is a maximal prefix code over X, then C is called an mCPN language over X.

Theorem 1 Let $A, B \subseteq X^+$ be finite maximal prefix codes over X. If AB is an mCPN language over X, then A, B are full uniform codes over X.

Remark 1 In the above theorem, the condition for A and B to be finite is necessary. For instance, let $X = \{a, b\}$ and let $A = B = b^*a$. Then $AB = b^*ab^*a$ is an mCPN language over X but neither A nor B is a full uniform code over X.

Now we consider some constructions of mCPN languages.

Definition 1 Let $A, B \subseteq X^+$. Then by $A \oplus B$ we denote the language $(\cup_{b \in X}\{(P_r(A) \setminus A) \circ Bab^{-1}\}b) \cup (\cup_{a \in X}\{(P_r(B) \setminus B) \circ Aa^{-1}\}a)$ where \circ is meant the shuffle operation.

Proposition 1 Let $X = Y \cup Z$ where $Y, Z \neq \emptyset, Y \cap Z = \emptyset$. If $A \subseteq Y^+$ is an mCPN language over Y and $B \subseteq Z^+$ is an mCPN language over Z, then $A \oplus B$ is an mCPN language over X.
Example 1 Let $X = \{a,b\}$. Consider $A = \{a\}$ and $B = \{bb\}$. Then both A and B are $mCPN$ languages over $\{a\}$ and $\{b\}$, respectively. Hence $A \oplus B = \{a,ba,bb\}$ is an $mCPN$ language over X.

Proposition 2 Let $A, B \subseteq X^+$ be finite $mCPN$ languages over X. Then $A \oplus B$ is an $mCPN$ language over X if and only if $A = B = X$.

Remark 2 For the class of infinite $mCPN$ languages over X, the situation is different. For instance, let $X = \{a,b\}$ and let $A = B = b^*a$. Then $A \oplus B = b^*a$ and A, B and $A \oplus B$ are $mCPN$ languages over X.

Proposition 3 Let $A, B \subseteq X^+$ be $mCPN$ languages over X. Then there exist an alphabet Y, $D \subseteq Y^+$: an $mPCN$ language over Y and a homomorphism h of Y^* onto X^* such that $A \oplus B = h(D)$.

Definition 2 Let $A \subseteq X^+$. By $m(A)$, we denote the language $\{v \in A | \forall u, v \in A, \forall x \in X^+, v = u x \Rightarrow x = 1\}$. Obviously, $m(A)$ is a prefix code over X. Let $A, B \subseteq X^+$. By $A \otimes B$, we denote the language $m(A \cup B)$.

Proposition 4 Let A, B be $mCPN$ languages over X. Then, $A \otimes B$ is an $mCPN$ language over X.

Example 2 It is obvious that a^*b and $(a \cup b)^3$ are $mCPN$ languages over $\{a,b\}$. Hence $a^*b \otimes (a \cup b)^3 = \{b, ab, aaa, aab\}$ is an $mCPN$ language over $\{a,b\}$.

Remark 3 Proposition 4 does not hold for the class of CPN languages over X. The reason is the following: Suppose that $A \otimes B$ is a CPN language over X for any two CPN languages A and B over X. Then we can show that, for a given finite CPN language A over X, there exists a finite $mCPN$ language B over X such that $A \subseteq B$ as follows. Let $A \subseteq X^+$ be a finite CPN language over X which is not an $mCPN$ language. Let $n = max\{|u| | u \in A\}$. Consider X^n which is an $mCPN$ language over X. By assumption, $A \otimes X^n$ becomes a CPN language (in fact, an $mCPN$ language) over X. By the definition of the operation \otimes, it can be also proved that $A \subseteq A \otimes X^n$. Notice that there exists a finite CPN language A over X such that there exists no $mCPN$ language B over X with $A \subseteq B$. Hence, Proposition 4 does not hold for the class of all CPN languages over X.
Remark 4 The set of all \(mCPN \) languages over \(X \) forms a semigroup under \(\otimes \). Moreover, the operation \(\otimes \) has the following properties:

1. \(A \otimes B = B \otimes A \)
2. \(A \otimes A = A \)
3. \(A \otimes X = X \)

Consequently, the set of all \(mCPN \) languages over \(X \) forms a commutative band with zero under \(\otimes \).

Definition 3 Let \(A \subseteq X^+ \) be a \(CPN \) language over \(X \). By \(r(A) \) we denote the value \(\min\{|P||D=(P,X,\delta,\mu_0),\mathcal{L}(D)=A\} \).

Remark 5 Let \(A \subseteq X^+ \) be a finite \(CPN \) language over \(X \). Then \(r(A) \leq |A| \). Moreover, let \(A, B \subseteq X^+ \) be \(mCPN \) languages over \(X \). Then \(r(A \otimes B) \leq r(A) + r(B) \). In the above, if \(|A|, |B| \) are finite, then \(|A \otimes B| \leq \max(|A|, |B|) \).

We define three language classes as follows: \(\mathcal{L}_{CPN} = \{A \subseteq X^+|A \text{ is a CPN language over } X\} \), \(\mathcal{L}_{mCPN} = \{A \subseteq X^+|A \text{ is an mCPN language over } X\} \), \(\mathcal{L}_{NmCPN} = \{A \subseteq X^+|A: \text{an mCPN language over } X, \exists D = (P,X,\delta,\mu_0), \forall p \in P, \forall a \in X, \#(p \rightarrow a) \leq 1, \mathcal{L}(D) = A\} \). Then it is obvious that we have the following inclusion relations: \(\mathcal{L}_{NmCPN} \subseteq \mathcal{L}_{mCPN} \subseteq \mathcal{L}_{CPN} \). It is also obvious that \(\mathcal{L}_{mCPN} \neq \mathcal{L}_{mCPN} \).

Problem 1 \(\mathcal{L}_{mCPN} \neq \mathcal{L}_{NmCPN} \)?

Proposition 5 Let \(A \in \mathcal{L}_{CPN} \) and let \(r(A) = k \). Then there exist \(A_1, A_2, \ldots, A_k \in \mathcal{L}_{CPN} \) such that \(r(A_i) = 1, i = 1, 2, \ldots, k \) and \(A = A_1 \otimes A_2 \otimes \ldots \otimes A_k \). Moreover, in the above, if \(A \in \mathcal{L}_{NmCPN} \), then \(A_1, A_2, \ldots, A_k \) are in \(\mathcal{L}_{NmCPN} \) and context-free.

For \(mCPN \) languages with rank 1, we have the following:

Proposition 6 Let \(A \subseteq X^+ \) be a finite \(mCPN \) language with \(r(A) = 1 \) over \(X \). Then \(A \) is a full uniform code over \(X \).

Proposition 7 Let \(A \subseteq X^+ \) be an \(mCPN \) language with \(r(A) = 1 \) over \(X \) and let \(k \) be a positive integer. Then \(A^k \) is an \(mCPN \) language with \(r(A^k) = 1 \) over \(X \).

Proposition 8 Let \(A \in \mathcal{L}_{NmCPN} \) and let \(r(A) = k \). Then there exist \(A_1, A_2, \ldots, A_k \in \mathcal{L}_{NmCPN} \) such that \(r(A_i) = 1, i = 1, 2, \ldots, k \) and \(A = \)}
$A_1 \otimes A_2 \otimes \ldots \otimes A_k$. Let n_1, n_2, \ldots, n_k be positive integers. Then $A_1^{n_1} \otimes A_2^{n_2} \otimes \ldots \otimes A_k^{n_k} \in \mathcal{L}_{NmCPN}$.

Finally, we can prove the following main theorem by two different ways, i.e. the first one is an indirect proof and the second one is a direct proof.

Theorem 2 Let $C \subseteq X^+$ be a CPN language over X. Then C is a context-sensitive language over X.