Characterization of finite Automata by the Images and the Kernels of their Transition Functions¹

T. Saito (斎藤 立彦)

Mukunoura 374, Innoshima,
Hiroshima, Japan, 722-23221
E-mail: tatusaito@mx4.tiki.ne.jp

1. Introduction

By an automaton A, we mean here a 3-tuple (X, A, δ), where X is a finite set (the set of states), A is a finite alphabet (the set of inputs) and δ is a mapping of $X \times A$ into X (the transition function).

As usual, A^* and A^+ denotes the free monoid and free semigroup generated by A, respectively, and δ is extended from $X \times A$ to $X \times A^*$. In this case, $\delta(x, s)$ is denoted simply by xs for $x \in X, s \in A^*$.

Let $\rho = \{(s, t) \in A^* \times A^* : xs = xt$ for every $x \in X\}$. Then ρ is a congruence on A^* and A^*/ρ is a finite transformation semigroup on X by defining the action of $s\rho \in A^*/\rho$ on X as $x(s\rho) = xs$. The semigroup A^*/ρ is called the characteristic semigroup of A. Let \mathcal{V} be a class of semigroups not necessarily a variety. Then an automaton A is called a \mathcal{V}-type if $A^*/\rho \in \mathcal{V}$.

For $s \in A^*$, let $\text{im} s = \{xs : x \in X\} = Xs$ and $\ker s = \{(x, y) \in X \times X : xs = ys\}$, which are called the image and the kernel of s, respectively. Then $\ker s$ is an equivalence on X.

Let \mathcal{V} and \mathcal{U} be two classes of semigroups. Then the direct product of \mathcal{V} and \mathcal{U} is defined by $\mathcal{V} \times \mathcal{U} = \{V \times U : V \in \mathcal{V}, U \in \mathcal{U}\}$. Let $U \in \mathcal{U}$ and let S be a semigroup. If for each $s \in V$, there exists $U_s \in U$ such that $S = \sqcup\{U_s : s \in U\}$ and $U_s \cdot U_t = \{u_s u_t : v_s \in U_s, v_t \in U_t\} \subseteq U_{st}$, then we say that S belongs to $\mathcal{V}(U)$, where \sqcup denotes a disjoint union.

As our start, we consider the following classes of semigroups: $\mathcal{G} = \{\text{groups}\}$, $\mathcal{LZ} = \{\text{left zero semigroups} \ [st = s]\}$, $\mathcal{RZ} = \{\text{right zero semigroups} \ [st = t]\}$ and $\mathcal{SL} = \{ \text{semilattices} \ [st = ts, s^2 = s]\}$. We first characterize, for the classes $\mathcal{G}, \mathcal{LZ} \times \mathcal{G}, \mathcal{G} \times \mathcal{RZ}$ and $\mathcal{LZ} \times \mathcal{G} \times \mathcal{RZ}$, their types automata by the images and the kernels of their transition functions. By using the results, we characterize, for $\mathcal{V} \in \{\mathcal{SL}, \mathcal{LZ}, \mathcal{RZ}\}$ and $\mathcal{U} \in \{\mathcal{G}, \mathcal{LZ} \times \mathcal{G}, \mathcal{G} \times \mathcal{RZ}, \mathcal{LZ} \times \mathcal{G} \times \mathcal{RZ}\}$, $\mathcal{V}(\mathcal{U})$-type automaton by the same way.

¹ This is an abstract and the details will be published eleswhere
For a example, we show later that an automaton \(\mathcal{A} \) is a \(\mathcal{SL}(\mathcal{LZ} \times \mathcal{G}) \)-type if and only if \(\text{im } st = \text{im } s \cap \text{im } t \) for every \(s, t \in A^+ \).

2. Preliminaries

For a set \(Y \), \(|Y| \) denotes the cardinality of \(Y \), for an equivalence \(\lambda \), \(x \lambda \) denotes the \(\lambda \)-class containing \(x \) and \(|\lambda| \) denotes the number of \(\lambda \)-classes. i.e., \(|\lambda| = |\{x \lambda : x \in X\}| \), and for \(s \in A^+ \), \(|s| \) denotes the length of \(s \). Then clearly \(|\text{im } s| = |\ker s| \) for every \(s \in A^+ \).

For \(s \in A^* \), let fix \(s = \{x \in X : xs = x\} \). Let \(E(A^+) = \{e \in A^+ : (e, e^2) \in \rho\} \). Then it is easy to see that \(e \in E(A^+) \) if and only if \(\text{im } e = \text{fix } e \). and that \((e, f) \in \rho \) for \(e, f \in E(A^+) \) if and only if \(\text{im } e = \text{im } f \) and \(\ker e = \ker f \). Since \(A^+/\rho \) is finite, for every \(s \in A^+ \), there exists a positive integer \(m \) such that \(s^m \in E(A^+) \).

Lemma 1. Let \(s, t \in A^+ \). Then

1. If \(|\ker st| = |\ker t| \), then \(\text{im } st = \text{im } t \).
2. If \(|\text{im } st| = |\text{im } s| \), then \(\ker st = \ker s \).

Lemma 2. Let \(s \in A^+ \). Then the following are equivalent:

1. \(\text{im } s \cap x \ker s \neq \emptyset \) for every \(x \in X \).
2. \(\text{im } s^m = \text{im } s \) and \(\ker s^m = \ker s \) for every \(m \in \mathbb{N}^+ \).
3. There exists \(e \in E(A^+) \) such that \(\text{im } s = \text{im } e \), \(\ker s = \ker e \), \((s, se) \in \rho \) and \((s, es) \in \rho \).

Lemma 3. The following are equivalent:

For every \(s, t \in A^+ \),

1. \(\text{im } s \cap x \ker t \neq \emptyset \) for every \(x \in X \),
2. \(\text{im } st = \text{im } t \).
3. \(\ker st = \ker s \).

Let \(\mathcal{A} = (X, A, \delta) \) be an automaton, and let \(Y = \cup \{\text{im } a : a \in A\} \) and \(\kappa = \cap \{\ker a : a \in A\} \). Then we have \(Y = \cup \{\text{im } s ; s \in A^+ \} \) and \(\kappa = \cap \{\ker s : s \in A^+ \} \). In fact, if \(s \in A^+ \), then \(s = s'a = bs'' \) for some \(a, b \in A, s's'' \in A^* \), so that \(\text{im } s'a \subseteq \text{im } a \) and \(\ker b \subseteq \ker bs'' \).

Since \(Ys \subseteq Y \) for every \(s \in A^+ \), the restriction \(s_Y \) of \(s \) to \(Y \) can be defined. Let \(A_Y = \{a_Y : a \in A\} \). Then the automaton \(\mathcal{A}_Y = (Y, A_Y, \delta) \) is called the subautomaton of \(\mathcal{A} \) with respect to \(Y \).

Let \(s, t \in A^+ \) and \(x \in X \). Since \((xs)t_Y = (xs)t \), the action of \(st_Y \) on \(X \) is defined by \(x(st_Y) = x(st) \).
Let \(\kappa \) be as above. Define the action of \(s \in A^+ \) on \(X/\kappa \) by \((x\kappa)s = (xs)\kappa\). Then the action is well-defined. In fact, if \(x\kappa = y\kappa \), then \((x,y) \in \kappa \subseteq \ker s \), so that \(xs = ys \). When the action of \(s \) is on \(X/\kappa \), \(s \) is denoted by \(s_\kappa \). Let \(A_\kappa = \{a_\kappa : a \in A\} \). Then the automaton \(A_\kappa = (X/\kappa, A_\kappa, \delta) \) is called the automaton induced from \(A \) by \(\kappa \).

Let \(s, t \in A^+ \) and \(x \in X \). Then clearly \((x\ker s)s = xs \). Since \(\kappa \subseteq \ker s \), we have \((x\kappa)s = xs \), so that \(((x\kappa)s_\kappa)t = ((xs)\kappa)t = (xs)t \). Thus the action of \(s_\kappa t \) on \(X \) is defined by \(x(s_\kappa t) = x(st) \).

For an automaton \(A = (X, A, \delta) \), let \(\text{Im}(A^+) = \{\text{im} s : s \in A^+\} = \{Y_i : i \in I\} \), i.e., for each \(i \in I \), \(Y_i = \text{im} s \) for some \(s \in A^+ \) and \(\text{im} s \in \text{Im}(A^+) \) for every \(s \in A^+ \), and let \(\text{Ker}(A^+) = \{\ker s : s \in A^+\} = \{\kappa_\mu : \mu \in M\} \), \(\text{Im}(A^+) = \{\text{im} s_\kappa : s \in A^+\} = \{Z_i : i \in I'\} \) and \(\text{Ker}(A^+) = \{\ker s_Y : s \in A^+\} = \{\kappa_\mu : \mu \in M'\} \). In this case, if \(\text{im} s \cap \ker s \neq \emptyset \) holds for every \(s \in A^+ \) and \(x \in X \), then \(\text{Im}(A^+) = \text{Im}(E(A^+)) \) and \(\text{Ker}(A^+) = \text{Ker}(E(A^+)) \).

3. Main Results

A semigroup in \(\mathcal{LZ} \times \mathcal{G} \) is called a left group whose class is denoted simply by \(\mathcal{LG} \), i.e., \(\mathcal{LG} = \mathcal{LZ} \times \mathcal{G} \).

Theorem 1. Let \(A = (X, A, \delta) \) be an automaton. Then the following are equivalent:

1. There exists a subset \(Y \) of \(X \) such that \(\text{im} a = Y \) and \(Y \cap \ker a \neq \emptyset \) for every \(a \in A \) and \(x \in X \).
2. There exists a subset \(Y \) of \(X \) such that \(\text{im} s = Y \) for every \(s \in S \).
3. \(A \) is a left group type.

From Theorem 1 we obtain the following results

Corollary 1.1. An automaton \(A = (X, A, \delta) \) is a \(\mathcal{SL}(\mathcal{LG}) \)-type if and only if \(\text{im} st = \text{im} s \cap \text{im} t \) for every \(s, t \in A^+ \).

Corollary 1.2. An automaton \(A = (X, A, \delta) \) is a \(\mathcal{RZ}(\mathcal{LG}) \)-type if and only if \(\text{im} st = \text{im} t \) for every \(s, t \in A^+ \).

A semigroup in \(\mathcal{G} \times \mathcal{RZ} \) is called a right group whose class is denoted by \(\mathcal{RG} \), i.e., \(\mathcal{RG} = \mathcal{G} \times \mathcal{RZ} \).

Theorem 2. Let \(A = (X, A, \delta) \) be an automaton. Then the following are equivalent:
(1) There exists an equivalence κ on X such that $\ker a = \kappa$ and $\im a \cap x\kappa \neq \emptyset$ for every $a \in A$.

(2) There exists an equivalence κ on X such that $\ker s = \kappa$ for every $s \in A^+$.

(3) A is a right group type.

Corollary 2.1. An automaton $A = (X, A, \delta)$ is a $SL(RG)$-type if and only if $\ker st = \ker s \vee \ker t$ for every $s, t \in A^+$.

Corollary 2.2. An automaton $A = (X, A, \delta)$ is a $LZ(RG)$-type if and only if $\im st = \im t$ for every $s, t \in A^+$.

From Corollaries 1.2 and 2.2 we obtain:

Corollary 2.3. An automaton $RZ(LG)$-type if and only if it is $LZ(RG)$-type.

Remark. It can be easily show that $LZ(LG) = LZ(G) = LZ$ and $RZ(RG) = RZ(G) = RG$.

Theorem 3. Let $A = (X, A, \delta)$ be an automaton. Then the following are equivalent:

1. There exist a subset Y of X and an equivalence κ on X such that $\im a = Y$ and $\ker a = \kappa$ for every $a \in A$ and $Y \cap x\kappa \neq \emptyset$ for every $x \in X$.

2. There exist a subset Y of X and an equivalence κ on X such that $\im s = Y$ and $\ker s = \kappa$ for every $s \in A^+$,

3. A is a group-type.

A semigroup in $SL(G)$ is called a Cliford semigroup,

Corollary 3.1. An automaton $A = (X, A, \delta)$ is a Cliford smigroup type if and only if $\im st = \im s \cap \im t$ and $\ker st = \ker s \vee \ker t$ for every $s, t \in A^+$.

Theorem 4. Let $A = (X, A, \delta)$ be an automaton, and Let $Y = \cup\{\im a : a \in A\}, \kappa = \cap\{\ker a : a \in A\}$. Suppose that $\im s \cap x\ker s \neq \emptyset$ for every $s \in A^+, x \in X$. Then the following are equivalent:

1. A is a $LZ \times G \times RZ$-type.
2. $\ker s_Y = \ker t_Y$ for every $s, t \in A^+$.
3. $\im s_\kappa = \im t_\kappa$ for every $s, t \in A^+$.

Corollary 4.1. With the assumption of Theorem 4, the following are equivalent:

1. A is a $SL(LZ \times G \times RZ)$-type.
(2) $\ker sy \cdot ty = \ker sy \vee \ker ty$ for every $s, t \in A^+$.
(3) $\text{im} s_\kappa t_\kappa = \text{im} s_\kappa \cap \text{im} t_\kappa$ for every $s, t \in A^+$.

Suppose that an automaton A is a $\mathcal{LZ} \times \mathcal{G} \times \mathcal{RZ}$-type. As is seen in the proof of Theorem 4, $A^+ / \rho = \{(i, g, \mu) : i \in I, g \in G, \mu \in M\}$. For $i \in I$ and $\mu \in M$, let $A_i / \rho = \{(i, g, \mu) : g \in G, \mu \in M\}$ and $A_\mu = \{(i, g, \mu) : i \in I, g \in G\}$, respectively. Then $A_i / \rho \in \mathcal{RG}$ and $A_\mu / \rho \in \mathcal{LG}$. For $s \rho = (i, g, \nu), t \rho = (j, h, \mu)$, since $(st) \rho = (i, gh, \mu)$, by Theorems 1 and 2, we have $\ker st = \ker s$ and $\text{im} st = \text{im} t$. Thus we obtain:

Corollary 4.2. If an automaton A is a $\mathcal{LZ} \times \mathcal{G} \times \mathcal{RZ}$-type, then it is a $\mathcal{RZ}(\mathcal{LG})$-type. The converse is not true.

There is a simple example that a $\mathcal{RZ}(\mathcal{LG})$-type automaton which is not a $\mathcal{LZ} \times \mathcal{G} \times \mathcal{RZ}$-type.

References

