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The measure of an omega regular language is
rational

Takeuti Izumi (ffN R)
Graduate School of Informatics, Kyoto Univ. 606-8501, JAPAN.
takeutiQkuis.kyoto-u.ac.jp

Abstract. An omega regular language is the omega language which is
recognised by a Buchi automaton. It has been known that the measure of
an omega regular language recognised by a deterministic Buchi automaton
is a rational number. This paper shows the measure of every omega regular
language is a rational number.

1 Introduction

An omega regular language is the omega language which is recognised by a Buchi
automaton. Many studies on omega regular languages and Buchi automata appear
in the literatures [Staiger97, Thomas|, which contain the proofs of most propositions
in Sections 2 of this paper. An important property is that the recognising power of
non-deterministic Buchi automata is properly stronger than that of deterministic Buchi
automata.

Yen Hsu-Chun and Lin Yih-Kai showed that the measure of an omega regular lan-
guage recognised by a deterministic Buchi automaton is a rational number [Lin& Yen].
Unfortunately, their method cannot be applied to non-deterministic Buchi automata.
Therefore, the characterisation on the general omega regular language has remained
open.

The main result of this paper is that the measure of every omega regular language
is a rational number. In order to prove this theorem, we will use two notions, which
are irreducibility and sparseness. The definition of irreducibility is the following: an
omega regular language X C X* is irreducible iff for each word v € X* there is a word
w € L* suchthat z € X iff v-w-z € X for any £ € X¥. The definition of sparseness is
the following: an omega regular language X is sparse iff for each word v € X* there is a
word w € X* such that v-w-z € X for any z € 2. The notion of irreducibility is not
new at this paper. Staiger called irreducible sets strongly connected in the literature
[Staiger83]. The purpose of these two notions is to show the detachment lemma (3.13).
The detachment lemma states that an omega regular language can be divided into
a sparse set and some other subsets each of which is the concatenation of a regular
language and an irreducible set. We will show some other lemmata on the measures.
Lemma 4.13 states that the measure of an irreducible set is 1 or 0. Lemma 4.14 states
that the measure of a sparse set is 0. These three lemmata are crucial. And then,
we will show the lemma such that the measure of each finite-state set is a rational
number. The main lemma is proved with these lemmata above and the theorem by
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Lin and Yen. Our main result is an immediate consequence of this main lemma, for
an omega regular language is finite-state.

2 Buchi Automaton

Definition 2.1 (Buchi Automaton) A Buchi automaton is defined by five compo-
nents (X, S, T, sg, F'), where each component has the following meaning:

x : alphabet, the set of symbols
S : the set of states

T cC S x X xS : transition relation

S0 ES : the initial state

F : the set of final states

Actually, final states are not final, but are to be visited infinitely many times. We call
them final states only because of the traditional reason.

Let B be a Buchi automaton such as B = (X, S, T, sp, F'). Then L(B) is a subset
of X which defined as the following. For (01, 02,...) € ¥, (01,02, ...) € L(B) iff there
is (s1, 82, ...) € S“ such that (s;_,0;,5;) € T for each i = 1,2, ..., and that there are
infinitely many #’s such that s; € F. We say that the Buchi automaton B recognises
the set L(B) '

Definition 2.2 (Regularity) A set X C Z% is regular iff X = L(B) for some Buchi
automaton B.

Notation 2.3 A subset of X* is called an omega language, and a regular subset of
XV is called an omega regular language. We sometimes call a omega language a set in
this paper. Thus, an omega regular language is called a regular set. Note that what is
called a set not always an omega language.

Remark 2.4 We call a subset of X* a language. We use the notion of fegula.r languages
as the ordinal definition, which is defined with ordinal finite automata.

Proposition 2.5 (Buchi ’60) A regular set is an Fod-set.

Proof. By Buchi [Biichi], or also by Remark 3.4 on Page 354 in the literature
[Staiger97]. |

Proposition 2.6 If W C X* is a regular language. Then W - £* is recognised by a
deterministic Buchi automaton.

Proof. By Proposition 3.4 on Page 355 with Theorem 3.1 on Page 354 in the literature
[Staiger97]. 1
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Notation 2.7 For w = (wy,ws, ..., W) € Z* and = = (£1,%2,...,Za) € Z* or X =
(z1,Z3,...) € Z¥, we write w - z or wz for the concatenation of w and z which is
(w1, ..., Wy T1, ---Tn) OF (W, ..., Wm, T1, T2, -..)- For a word w € L* and a set X C v,
w-X={w-z|z€X} Forsets WCZ*and XC ¥ W - X ={w-X |weW}

Definition 2.8 (States) For X C X and w € £*, we write. X/w for {z € Z“ |
w-z € X}, and S(X) for {Y C £¥ | w € Z*,Y = X/w}. We call a set in 5(X) States
of X.

Remark 2.9 (X -Y)/w=X/w-Y/w

Definition 2.10 (Finite-state sets) A set X C XV is finite-state iff S(X) is finite.

Proposition 2.11 Each regular set is finite-state.

Proof. In [Thomas]. 1

Proposition 2.12 For a finite-state set X C L and a set Y C L¥, the set of words
{we Z* | X/w=Y} is a regular language.

Proof. Easy. ]

3 Irreducible set

Definition 3.1 (Accessibility) For X,Y € Zv, the relation X %Y holdsiff Y €

S(X), that is, there is w € Z* such that Y = X/w. This relation 2, is called accessi-
bility.

Remark 3.2 Accessibility is reflexive and transitive.

Proposition 3.3 Let D be a non-empty finite set, and a relation < be a preorder over
D, that is, a reflerive transitive relation. Then, there is a mazimal element with respect
to the preorder <.

Proof. Induction on the number of the elements of D. ]

Definition 3.4 (Irreducibility) A finite-state set X € £ is irreducible iff ¥ = X
for each Y € S(X)

Remark 3.5 Irreducible sets are called strongly connected in the literature [Staiger83].

Proposition 3.6 For a ﬁﬁite—state set X C X, there exists at least one irreducible
set in S(X).
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Proof. An irreducible set is a. maximal element with respect to ir, and the domain
S(X) is non-empty and finite. Hence, it exists by Proposition 3.3. |

Definition 3.7 (Sparseness) A finite-state set X is sparse iff iff Y’ % @ for each
Y € §(X) o

Proposition 3.8 If X € £ is sparse and Y € S(X) is irreducible, then Y = Q.

Proof. We have Y 5 @ by the definition of spaeseness. Hence @ %, Y because Y is
irreducible. Thus Y = @. 1

Definition 3.9 (*-operation) For sets X,Y C Z¥, the set X *Y € 2* is defined as:
X+xY={w-z€X|eX ze€X/w=Y/v}=U{w - (X/w)| X/we SY)}

Remark 3.10 Let X and Y be subsets of 2%. Put W = {w € 2* | X/w € S(Y)}.
Then, there is a prefix-free subset V' C W such that for each w € W there are v € V

and u € X* such that v-u = w. It holds that X *Y = U v - (X/v) for this V.
veV

Remark 3.11 In general, for each W C Z* there is a prefix-free subset V' C W such
that for each w € W there are v € V and u € X* such that v-u = w. If W is a regular
language, then so is V.

Proposition 3.12 For sets X,Y € Z¥ and a wordw € Z*, (X/w)*Y = (X *Y)/w.

Proof. Forz € X¥, z € (X *Y)/w iff wz € X Y, which is equivalent to
JuveX el wz=u&yeX/u=Y/v.
This is equivalent to

Juvve el u=wi&r=uy&kyec X/wi=Y/v --- (1)
or
Juw,ve e w=uw&vrz=y&yeX/u=Y/v ---(2)

By deleting the variable u, the upper case (1) is transformed into the equivalent formula:
veX* el z=uy&kye X/wd =Y/v.

We consider the lower case (2). Suppose that

w=uw &wr=y&y€X/u=Y/v.
Then '

z € X/uw = X/w=Y/vw.
This implies
WveX eI z=uy &y € X/wi =Y/v.
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by instantiating «' with empty word, v with v/, and 3/ with z. Therefore, the lower
case (2) implies

Vel el s=uy &y € X/wd =Y/

In the formula with disjunction, the right part of disjunction implies the left part.
Hence, the whole formula is equivalent to the left part. Thus it is equivalent to:

Juvel el z=uy&kye X/wu=Y/v.
This is equivalent to
JuveXIyei.z=uy&yec (X/w)/u=Y/v
This is equivalent to z € (X/w) *Y. |

Lemma 3.13 (Detachment lemma) For each finite-state set X, there are a sparse
set Z, a finite indez set I and indezed families {W;}icr and {Y:}icr such that
X=ZU UW;-Y;
' iel
where each W; is a prefiz-free regular language, each Y; is an irreducible set, and W -
YNW; - Y;=0 and ZNW; -Y; =D for any i # j.

Proof. The proof is done by induction on the number of the elements of S(X) — {@}.
(Base case) If S(X) — {@} = O, then X = @ and the assertion of this lemma holds.
(Induction step) We show that the case of X can be reduced to the case of another

X' where S(X') — {@} has less elements than S(X) — {@}.

By the Proposition 3.6, there is at least one irreducible set in S(X). If the only
irreducible set in S(X) is the empty set, then X is sparse, and the assertion of the
lemma holds. Therefore we assume that there are non-empty irreducible set Y € S(X).
Put Y € §(X) as such an irreducible set. Each Z € S(Y)) is also irreducible by the
definition of irreducibility.

If S(X) = S(Y), then X is already irreducible, and the assertion of the lemma
holds, because X = @ U {()} - X where @ is sparse and the set {()} is the singleton of
empty words, which is a regular language. Therefore, we assume that S(X) # S(Y),
that is, X € S(Y).

First we will show that X * Y can be decomposed as X *Y = U W;-Y; and it

ier

holds that for each ¢ € I the set W is a prefix-free regular language, and Y; € S(Y).
Let I be a index set which has the same number of elements as S(Y) has, and

{Yi|i€I}beequal to S(Y). Put V; ={v € 2* | X/v=Y;}. Then X *xY =

UV;:Y.= U U v-(X/v). As Remark 3.10, there is a prefix-free subset W C U V;

i€l iclveV; . iel
such that X *Y = U w-.(X/w). Put W; = WNV,. Then W, is prefix-free.
wew .
As Proposition 2.12, each V; is a regular language, then so is U V;, because I is
iel

finite. As Remark 3.11, the subset W is a regular language, and then so is W;.
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Therefore we have X +Y = U W;-Y; where for each i € I, W; is a prefix-free regular
ier
language and Y; € S(Y'). Moreover, each V; and V; are disjoint for i # j. Therefore
each W; and W; are disjoint. In addition, W; U W; is prefix-free. These facts imply
that each W; - Y; and Wj - Y; are disjoint. , /

Next we discuss X — X *Y. ‘

The mapping Z +— Z—ZxY is a function of S(X) into S(X —X+Y'). That is because
if Z € §(X) then Z = X/w for some w. Hence Z *Y = (X *Y)/w by Proposition
312,50 Z - Z+Y = X/w— (X *Y)/w=(X—-X*Y)/w € S(X — X *Y). Moreover,
the mapping Z — Z — Z *Y is a surjection. That is because if Z' € S(X — X *Y) then
for some w, it holds that Z' = (X — X *Y)/w = (X/w) — (X/w)*Y and X/w € §(X).
Note that this mapping maps Y into Y —Y *Y =@, and of cause @ — @ *x Y = Q.
Hence, the number of elements of S(X — X *Y') — {@} is less than or equal to that of
S(X) —{9,Y}, Therefore the number of elements of S(X — X *Y) — {@} is less than
that of S(X) — {@}. Thus, induction hypothesis holds for S(X — X *Y).

By the induction hypothesis, there are a sparse set Z and familys {W]}ic;r and
{Y}icr such that X — XY = ZU U W]-Y! where Z, {W/} =ie€ I'and {Y} =ie I

iel
satisfies the disjointness in the assertion of this lemma.
Therefore

x:x*yu(x—x*y)=zu( U W’Y’) u(u WY)
ier iel

The disjointness in the assertion holds because X *Y and X — X *Y are disjoint. 1§

4 Measure
Remark 4.1 We fix the alphabet X which consists of n symbols.

Notation 4.2 We use the notations U and U (w) such as U = 2* and U(w) = w-Z¥ C
XY forw € X*. '

Definition 4.3 (Measure) For a set X C X, the measure p(X) is defined as:
u(X) = inf { Y, nlensthlwi) IX C U U(w) }

iel iel

Definition 4.4 (Measurability) A set X C X is measurable iff u(X)+ pu(U - X) =
1.

Remark 4.5 This u(X) is usually called the outer measure if X is not neasurable.

Remark 4.6 The following propositions 4.7 and 4.8 are easily seen form the discussion
in the literature [It6).
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Proposition 4.7 If X C U is a Fod-set, then X is measurable.

Proposition 4.8 If the set of words {w; € £* | i € I} is prefiz-free, Then, it holds
that :
I ( U w;- Xi) = ¥ 27lenethlw y(X;).

iel iel
Lemma 4.9 A regular set is measurable.

Proof. By Propositions 2.5 and 4.7. ]

Theorem 4.10 (Lin & Yen ’00) For each deterministic Buchi automaton B, the
measure u(L(B)) is rational.

Proof. By Lin and Yen [Lin&Yen]. |

Remark 4.11 Lin and Yen proves the theorem above with the property of Markov
chains. A deterministic Buchi automaton is regarded as a Markov chain in their proof.
Unfortunately, their method cannot be applied to non-deterministic Buchi automata.

Lemma 4.12 If X is irreducible, then for each Y € S(X), p(X) = u(Y).

Proof. Because S(X) is finite, then there exists m = max{u(Y) | Y € S(X)}. Put
E = {Y € S(X) | u(Y) = m}. Then the assertion of this lemma is equivalent to
E = S(X). We will prove this by reductio ad absurdum. '
Suppose that S(X) — E is not empty. Put Y and Y’ asY €e Eand Y’ € §(X) - E.
Because X is irreducible, there is a sequence of sets Y = Y3,Y3,...,Yi_1,Y; = Y’ such
that Y;/o; = Y;;, for some 0; € £. Because Y; € E and Y, ¢ E, there is a pair
(Y;,Yi41) such that Y¥; € F and Y, € E. Note that
Y= U o-(%/o).
cel
By Proposition 4.8,

1
p(Ys)=— ¥ pYi/o)
ocex
Therefore,
1 n—-1 1 n—1
m SH”(Y‘“)"'_n—m <-m+-———m=m,
that is, m < m. This is contradiction. 1
Lemma 4.13 For each irreducible set X, p(X) =1 or u(X) =0.

Proof. We will prove this theorem by reductio ad absurdum.
Put m = u(X). If m is neither 1 nor 0, then there is € such that 0 < € < m(1 —m).
As the definition of u, there is a set {w; | ¢ € I'} such that X C U U(w;) and that

iel
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m < Y noleosth() < e
iel
Without loss of generousity we can assume that {w; | i € I} is prefix-free.

Then, there is a finite subset J C I such that

€ —length(w;)

i=m < j%:Jn .
Put V= U U(w;), b = p(V) and | = max{length(w;) | 7 € J}. The number !
J

J€

exists because J is finite. Note b > ——Ln—z Let K be the set {v € Z' | U(v) ¢ V}.
Then U U(v) =U — V. The number of all the elements of K is n'(1 — b).

veEK
Thus, the following equations hold:

X-V=Xn ( U U(v)) = U XNnUww)= U v-(X/v).
veK veK veK
By Lemma 4.12, u(X/v) = m, hence by Proposition 4.8,
wX-V)= vgxn"ﬂ(x/ v)=(1-b)-m.
Therefore, ‘
p(XuV)=pu(V)+u(X -V)=b+m(l—-b)=m+b1l—-—m)>m+e
On the other hand,
| XC UU(w) and V C U U(w).

iel iel
Thus
iel
Therefore
p(XuV)<pu ( U U(w,-)) <m+e
iel
Those make contradiction. |

Lemma 4.14 The measure of a sparse set is 0.

Proof. Let X C U be sparse. Put Y € §(X) as u(Y) = max{u(Z) | Z € S(X)}.
Such Y exists because S(X) is finite. Put w € X* as Y/w = @ and I = length(w).
Then Y = U{Y/v | v € £*,length(v) = l}. Hence

u(Y) = p(Y/w) + ) u(Y/v) < ) u(Y)
length(v) = Lv#w length(v) = Lv# w
= (1= 2)u(Y).

because Y/v € S(X). Thus, u(Y) < (1 —27Yu(Y), which implies u(Y) = 0.
We have p(X) < u(Y) because of X € §(X), therefore pu(X) = 0. |
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Lemma 4.15 The measure of a finite-state set is rational.

Proof. By the detachment lemma 3.13, X = Z U (U W; - Y; where Z is sparse, the

tel
indexed set I is finite, each W; is a regular language, each Y; is regular, a.nd all the
summands of the union operator are disjoint to each other.
By Proposition 4.8, we have u(W; - Y;) = u(W; - U) - u(Y), hence u(X) = u(2) +

S ulWi-U)- (%),
By Proposition 4.14, u(Z) = 0, therefore, u(X) = ¥ pu(W; - U) - u(Y5).
ierl
By Lemma 4.13, u(Y)is 1 or 0. Put J = {j € I | u(Y;) = 1}, Then, u(X) =

_Z: wW; - U).

' This summation is finite. By Lemma 4.10 and Proposition 2.6, each summand
w(W; - U) is rational. It implies x(X) is finite. 1
Theorem 4.16 The measure of an omega regular language is rational.

Proof. By Proposition 2.11 and Lemma 4.15. ]
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