AWARENESS, BELIEF AND COMMUNICATION REACHING CONSENSUS

EMIKO FUKUDA*, TAKASHI MATSUHISA†, AND HISATO SASANUMA

ABSTRACT. We present a communication process according to a protocol which is associated with an awareness and belief model. In the model we impose none of the requirements for player’s knowledge as those in the standard model with partitional information structure. We show that consensus on the posteriors for an event among all players can still be guaranteed in the communication if the protocol contains no cycle.

1. INTRODUCTION

Geanakoplos and Polemarchakis [5] investigated a communication process in which two players announce their posteriors to each other. In the process players learn and revise their posteriors and they reached consensus.

Krasucki [6] investigated the communication process according to a protocol in which value of function are communicated privately through messages among at least three players. He showed that in the process that in the process, consensus on the values of a decision function can be guaranteed if the protocol contains no cycle. They both extend the agreement theorem of Aumann [1]. The information structures of players for their model are given by partitions.

Bacharach [2] showed that the model with the partitional information structure is equivalent to his knowledge operator model with the three axioms for operators: K1 axiom of knowledge, K2 axiom of transparency and K3 axiom of wisdom. Matsuhisa and Kamiyama [7] introduced the lattice structure of knowledge for which non requirements is not imposed such as the three axioms. In lattice structure Aumann’s notion of common-knowledge is the same as their notion of common-belief. Matsuhisa and Usami [9] presented an awareness structure in which the players are not required to have logically omniscient. Matsuhisa and Usami obtained an extension of the 'Agreeing to disagree' that Aumann showed in the awareness model.

The purpose of this paper is to introduce the revision process of the values of a common decision function through the communication associated with the awareness structure. The main result of ours is an extension of Krasucki [6] as follows:

Key words and phrases. Awareness, belief, communication process, consensus, protocol, agreeing to disagree, no trade theorem.

This article is a preliminary version and the final form will be published elsewhere.

*Corresponding author.

†Supported by the Grand-in-Aid for Scientific Research(C)(2)(No.12640145) in the Japan Society for the Promotion of Sciences.
Theorem 1. *In the communication process associated with awareness structure, consensus can be guaranteed if the communication protocol is an acyclic graph.*

This paper organizes as follows: Section 2 defines an awareness belief model, associated information structure with awareness structure and communication process. Further we present the notion of consensus of the values of a decision function. Section 3 illustrates Theorem 1 by using a simple example. In section 4 we show that consensus of the value of a decision function that satisfies the sure thing principle and is preserved under difference can still be guaranteed in this communication process if the protocol contains no cycle.

2. THE MODEL

Let Ω be a non-empty finite set called a state space, N a set of finitely many players at least two, and let \mathcal{F} denote the field 2^{Ω} that is the family of all subsets of Ω. Each member of \mathcal{F} is called an event and each element of Ω called a state.

2.1. Belief and Common-Belief. A belief structure is a tuple $(\Omega, (B_i)_{i \in N})$ in which Ω is a state-space and (B_i) is a class of i’s belief operators on 2^{Ω}. The mutual belief operator $B_E F$ on 2^{Ω} is defined by

$$B_E F = \bigcap_{i \in N} B_i F.$$

A common-belief operator is an operator B_C on Ω satisfying the fixed point property.

$$FP \quad B_C F \subseteq B_E (F \cap B_C F) \quad \text{for every } F \text{ of } \mathcal{F}.$$

The interpretation of $B_i F$ is the event that ‘i believes $F’$, whereas $B_E F$ is interpreted as the event that ‘everybody believes $F’$. We say that an event E is common-belief at ω if ω belongs to $B_C E$.

2.2. Awareness and Belief. We present a model of awareness according to Matsuhisa and Usami [9]. This model follows from E. Dekel, B. L. Lipman and A. Rustichini [3]. A different approach of awareness models is discussed in R. Fagin, J.Y. Halpern, Y. Moses and M.Y. Vardi [4].

An awareness structure is a tuple $(\Omega, (A_i)_{i \in N}, (B_i)_{i \in N})$ in which $(\Omega, (B_i)_{i \in N})$ is a belief structure and $(A_i)_{i \in N}$ is a class of i’s awareness operators on \mathcal{F} such that Axiom PL (axiom of plausibility) is valid:

$$PL \quad B_i F \cup B_i (\Omega \setminus B_i F) \subseteq A_i F \quad \text{for every } F \text{ in } \mathcal{F}.$$

The mutual awareness operator A_E on \mathcal{F} is defined by

$$A_E F = \bigcap_{i \in N} A_i F.$$

An awareness structure is called finite if the state-space is a finite set.

The interpretation of $A_i F$ is the event that ‘i is aware of $F’$, whereas $A_E F$ is interpreted as the event ‘everybody is aware of $F’. The axiom PL says that i is aware of F if he believes it or if he believes that he dose not believe it.\footnote{The axiom PL dues to E. Dekel, B. L. Lipman and A. Rustichini [3]}
We say that an event F is self-aware of i if $F \subseteq A_iF$ and it is said to be publicly aware if $F \subseteq A_EF$. An event T is said to be i's evident belief if $T \subseteq B_iT$, and it is said to be public belief at state ω if $\omega \in T \subseteq B_\omega T$. An event is public belief (or respectively, it is publicly aware) if whenever it occurs all players believe it (or they are all aware of it.) We can think of public belief as embodying the essence of what is involved in all players making their direct observations.

2.3. Associated Information Structure. M. Bacharach [2] introduces the strong epistemic model that is just the Kripke semantics corresponding to the modal logic S5. Further he defines the information partition of the state-space induced from the knowledge operator. Following his line we generalize the notion of information partition to the associated information structure as below.

The associated information structure $(P_i)_{i \in N}$ with an awareness structure $\langle \Omega, (A_i), (B_i) \rangle$ is a class of the mappings P_i of Ω into \mathcal{F} defined by

$$P_i(\omega) = \bigcap_{T \in 2^\Omega} \{T \mid \omega \in T \subseteq B_iT \}.$$

(If there is no event T for which $\omega \in T \subseteq B_iT$ then we take $P_i(\omega)$ to be non-defined.) We call $P_i(\omega)$ the i's evidence set at ω.

An evidence set is interpreted as the basis for all i's evident beliefs since each i's evident belief T is decomposed into a union of all evidence sets contained in T.

Remark 1. The strong epistemic model in M. Bacharach [2] can be interpreted as an awareness structure $(\Omega, (A_i), (B_i))$ such that B_i satisfies $N, K, T, 4$ and 5 and so A_i is the trivial awareness operator; i.e. $A_i(E) = \Omega$ for every $E \in \mathcal{F}$. This says that an awareness structure is an extension of the strong epistemic model.

2.4. Posterior Revised. We improve on the notion of posterior as follows: Let $\langle \Omega, (A_i), (B_i), \mu \rangle$ be an awareness structure with a common-prior μ. For every real number q_i, we denote

$$[q_i] = \{\omega \in \Omega \mid \mu(X \cap A_i(X) \mid P_i(\omega)) = q_i\}.$$

We say q_i to be the i's posterior of X at ω if ω belongs to $[q_i]$. We denote by q the profile $(q_i)_{i \in N}$. An event $[q]$ is the intersection of the sets $[q_i]$ for all i of N; that is,

$$[q] = \bigcap_{i \in N} [q_i].$$

We say that the players commonly believe their posteriors q_i of X at ω if $[q]$ is common-belief at ω; that is, $\omega \in B_C([q])$.

\footnote{The strong epistemic model is a tuple $\langle \Omega, (K_i)_{i \in N} \rangle$, in which Ω is a state-space and K_i is an i's knowledge operator satisfying the following axioms: For every E, F of 2^Ω,

\begin{align*}
N \quad & K_i \Omega = \Omega; \\
K \quad & K_i(E \cap F) = K_iE \cap K_iF; \\
4 \quad & K_iF \subseteq K_iK_iF; \\
5 \quad & \Omega \setminus K_iF \subseteq K_i(\Omega \setminus K_iF).
\end{align*}

\footnote{The i's information partition Π_i induced from the knowledge operator K_i is defined by $\Pi_i(\omega) = \bigcap_{T \in 2^\Omega} \{T \mid \omega \in K_iT \}$.}
An interpretation of $\mu(X \cap A_i(X) \mid P_i(\omega))$ is the conditional probability of the i's awareness section of X under his evidence set at ω. For the above example, letting $A_1(E) = B_1(E) \cup B_4(\Omega \setminus B_1(E))$ we obtain that $A_2(\{\alpha\}) = \{\beta\}$. Therefore it follows that the player 2's improved posterior of $\{\alpha\}$ at state α is $\mu(\{\alpha\} \cap A_i(\{\alpha\}) \mid P_i(\alpha)) = 0$, as desired.

2.5. Decision Function 4. Let Z be a set of decisions for all players in N. An i's decision function is a mapping f_i of F into Z. It is said to satisfy the sure thing principle if it is preserved under disjoint union; that is, for every pair of disjoint events S and T such that if $f_i(S) = f(T) = d$ then $f_i(S \cup T) = d$. A decision function f_i is said to be preserved under difference if for all events S and T such that $S \subseteq T, f_i(S) = f_i(T) = d$ then we have $f_i(T \setminus S) = d$.

If f_i is intended to be a posterior probability, we assume given a probability measure μ which is common for all players and some event X. Then f_i is the mapping of the domain of μ into the closed interval $[0, 1]$ such that

$$f_i(E) = \mu(X \cap A_i(X) \mid E),$$

where $\mu(E) \neq 0$. We plainly observe that this f satisfies the sure thing principle and is preserved under difference.

2.6. Communication with Awareness Structure. We assume that players communicate by sending messages. A protocol is a mapping \Pr of the set of non-negative integers \mathbb{Z}_+ into the product set $N \times N$ that assigns to each t a pair of players $(s(t), r(t))$. Here t stands for time and $s(t)$ and $r(t)$ are, respectively, the sender and the recipient of the communication which takes place at time t. We consider a protocol as the directed graph whose vertices are the set of all players N and such that there is an edge (or an arc) from i to j if and only if there are infinitely many t such that $s(t) = i$ and $r(t) = j$.

A protocol is said to be fair if the graph is strongly-connected; in words, every player in this protocol communicates directly or indirectly with every other player infinitely often. It is said to contain a cycle if the graph contains a cyclic path; that is, there are players i_1, i_2, \ldots, i_k with $k \geq 3$ such that for all $m < k, i_m$ communicates directly with i_{m+1}, and such that i_k communicates directly with i_1.

Definition 1. A communication process π of revisions of the values of decision functions $(f_i)_{i \in N}$ is a triple $(\Pr, (Q^t_i)_{i,t} \in N \times T, (f_i)_{i \in N})$, in which $\Pr(t) = (s(t), r(t))$ is a fair protocol such that for every t, $r(t) = s(t + 1)$, communications proceed in rounds5, and Q^t_i is the mapping of Ω into F for i at time t that is defined inductively as follows:

- We assume given a mapping $Q^0_i := P_i$.
- Suppose Q^t_i is defined.
 - $d^t_i(\omega)$ denotes the value $f_i(Q^t_i(\omega))$:
 - W^t_i is the mapping of Ω into F that assigns to each state ω the event $W^t_i(\omega)$ consisting of all the states ξ such that $d^t_i(\xi) = d^t_i(\omega)$:
 - B^t_i is the belief operator induced by Q^t_i defined by $B^t_iE = \{\omega \in \Omega \mid Q^t_i(\omega) \subseteq E\}$.

4C.f. Bacharach [2]

5That is, there exists a natural number m such that for all t, $s(t) = s(t + m)$
– The recipient $j = r(t)$ at t send the message $B^t_j(W^t_j(\omega))$ at $t + 1$ when $\omega \in B^t_j(W^t_j(\omega))$, and he does not send the message otherwise.

* Then $Q^{t+1}_i(\omega)$ is defined as follows:
 – If i is not a recipient of a message at time $t+1$, then $Q^{t+1}_i(\omega) = Q^t_i(\omega)$.
 – If i is a recipient of a message at time $t+1$, then $Q^{t+1}_i(\omega) = Q^t_i(\omega) \cap B^t_{s(t)}(W^t_{s(t)}(\omega))$.

Specifically the sender j sends to i the message that he believes that his decision is $d^t_j(\omega)$. The communication is said to be cut off in a state ω if $\omega \notin B^t_j(W^t_j(\omega))$ for some t and the recipient $j = r(t)$ at t.

2.7. Consensus

The family $\{Q^t_i(\omega) \mid t = 0, 1, 2, \ldots\}$ is a descending chain in \mathcal{F} and so the limit $Q^\infty_i(\cdot)$ exists in each state where the communication is never cut off: In fact, there exists sufficiently large $T \in \mathbb{Z}_+$ such that for all $t \geq T$, $Q^t_i = Q^T_i$ because Ω is finite. Since the protocol is fair, there exist infinitely many t such that $r(t) = i$, it follows that $Q^\infty_i(\omega) = \lim_{t \to \infty} Q^t_i(\omega)$.

Remark 2. For each i the sequence of the domains of $Q^t_i(t = 0, 1, \ldots)$ makes a descending chain, and thus it may be occurred that for $Q^\infty_i(\omega) = \emptyset$ in some ω.

It can be easily observed that

Lemma 1. For every player i, the sequence $\{d^t_i(\omega) \mid t = 0, 1, 2, \ldots\}$ converges to the limiting value $d^\infty_i(\omega)$ of f at each state ω where the communication is never cut off and $Q^\infty_i(\omega)$ is defined; i.e., there exists

$$d^\infty_i(\omega) = \lim_{t \to \infty} d^t_i(\omega).$$

We call $d^\infty_i(\omega) = f(Q^\infty_i(\omega))$ the limiting value of f at ω for i. We say that consensus on the limiting values of decision functions $(f_i)_{i \in \mathbb{N}}$ can be guaranteed in a communication process if $d^\infty_i(\omega)$ and $d^\infty_j(\omega)$ are equal for each player i, j and in all the states ω that the communication is never cut off and that $Q^\infty_i(\omega)$ is defined for all $i \in \mathbb{N}$.

Remark 3. In the communication process, the limiting value of f can be reached in finitely many rounds; i.e., there exists a non-negative integer T independent on ω such that for every player i and for all $t \geq T$, $d^\infty_i(\omega) = d^t_i(\omega)$ by Lemma 1.

3. Example

We show a simple example below in order to explain Theorem 1. We consider three players A, B and C, and give their associated information structures at time $t = 0$ defined by Figure 1.

In this case, we assume the event $X = \{1, 3, 5, 7\}$ and the protocol $A \Rightarrow B \Rightarrow C$ that contains no cycle. Let us give the common prior $\mu(\omega) = \frac{1}{8}$ for each state $\omega \in \Omega$, and their decision functions are given by the common function f defined by $f(E) = \mu(X|E)$. It is noted that the common decision function satisfies the sure thing principle and is preserved under difference.

Then the calculation result with player A at $t = 0$ will be given in Table 1.

Sender A sends the message $B^0_A(\omega)$ to the recipient B. B mixes the message and his associated information structure, and he makes his revised information structure then.
FIGURE 1. Associated information structure at the early time \(t = 0 \)

<table>
<thead>
<tr>
<th>(t = 1)</th>
<th>(\omega_1)</th>
<th>(\omega_2)</th>
<th>(\omega_3)</th>
<th>(\omega_4)</th>
<th>(\omega_5)</th>
<th>(\omega_6)</th>
<th>(\omega_7)</th>
<th>(\omega_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^0_A)</td>
<td>(\frac{1}{2})</td>
<td>(0)</td>
<td>(\frac{1}{2})</td>
<td>(0)</td>
</tr>
<tr>
<td>(W^0_A)</td>
<td>123457</td>
<td>123457</td>
<td>123457</td>
<td>123457</td>
<td>123457</td>
<td>68</td>
<td>123457</td>
<td>68</td>
</tr>
<tr>
<td>(B^0_A(W^0_A))</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>68</td>
<td>1234</td>
<td>68</td>
</tr>
</tbody>
</table>

TABLE 1. The calculation result with \(A \)

\[
Q^1_B(\omega_1) = Q^1_B(\omega_2) = \{\omega_1, \omega_2, \omega_3, \omega_4\}
\]
\[
Q^1_B(\omega_3) = Q^1_B(\omega_4) = \{\omega_3, \omega_4\}, \quad Q^1_B(\omega_6) = \{\omega_6\}, \quad Q^1_B(\omega_8) = \{\omega_8\}
\]

Note that the state \(\omega_5, \omega_7 \) of \(Q^1_B \) are not defined here. Next the results in Table 2 is also obtained by the same way.

<table>
<thead>
<tr>
<th>(t = 2)</th>
<th>(\omega_1)</th>
<th>(\omega_2)</th>
<th>(\omega_3)</th>
<th>(\omega_4)</th>
<th>(\omega_5)</th>
<th>(\omega_6)</th>
<th>(\omega_7)</th>
<th>(\omega_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_B)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\times)</td>
<td>(0)</td>
<td>(\times)</td>
<td>(0)</td>
</tr>
<tr>
<td>(W^1_B)</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>(\times)</td>
<td>68</td>
<td>(\times)</td>
<td>68</td>
</tr>
<tr>
<td>(B^1_B(W^1_B))</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>(\times)</td>
<td>68</td>
<td>(\times)</td>
<td>68</td>
</tr>
</tbody>
</table>

TABLE 2. The calculation result with \(B \)

Then player \(C \)'s revised information structure at \(t = 2 \) is as follows:

\[
Q^2_C(\omega_1) = Q^2_C(\omega_4) = \{\omega_1, \omega_4\}, \quad Q^2_C(\omega_2) = \{\omega_2, \omega_3\},
\]
\[
Q^2_C(\omega_3) = \{\omega_3\}, \quad Q^2_C(\omega_6) = \{\omega_6\}, \quad Q^2_C(\omega_8) = \{\omega_6, \omega_8\}
\]

Similarly, the communication goes on as follows.
Then Player B's revised information structure at $t = 3$ is the next result.

\[
\begin{align*}
Q_B^3(\omega_1) &= Q_B^3(\omega_4) = \{\omega_1, \omega_4\} \\
Q_B^3(\omega_3) &= \{\omega_3\}, \quad Q_B^3(\omega_6) = \{\omega_6\}, \quad Q_B^3(\omega_8) = \{\omega_8\}
\end{align*}
\]

Player A's revised information structure at $t = 4$ is given by as follows:

\[
\begin{align*}
Q_A^4(\omega_1) &= Q_A^4(\omega_4) = \{\omega_1, \omega_4\} \\
Q_A^4(\omega_3) &= \{\omega_3\}, \quad Q_A^4(\omega_6) = Q_A^4(\omega_8) = \{\omega_6, \omega_8\}
\end{align*}
\]

Player B's revised information structure at $t = 5$ is given by as follows:

\[
\begin{align*}
Q_B^5(\omega_1) &= Q_B^5(\omega_4) = \{\omega_1, \omega_4\} \\
Q_B^5(\omega_3) &= \{\omega_3\}, \quad Q_B^5(\omega_6) = \{\omega_6\}, \quad Q_B^5(\omega_8) = \{\omega_8\}
\end{align*}
\]
For $t \geqq 5$ each Q_i^t is stationary given by Figure 2. All values of decision functions are equal. Therefore consensus can be guaranteed in this example. (Note that the states ω_2, ω_5 and ω_7 are not defined.) □

4. The Result

4.1. We prove the generalized version of Theorem 1 in Matsuhisa et al [8] as follows:

Theorem 2. In a communication process associated with awareness structure, suppose that the all decision functions are common for all players, and that the common decision function satisfies the sure thing principle and is preserved under difference. Consensus on the limiting values of the decision function can be guaranteed if the protocol contains no cycle.

In the case that the decision function is given by posterior (Section 2.5), it immediately follows from Theorem 2 that

Corollary 1. Suppose that all players have a common-prior. Consensus on the limiting values of the posteriors for a publicly aware event among all players can still be guaranteed in the communication if the protocol contains no cycle.

4.2. RT-Information Structure. Before proceeding to the proof, we need the notion of RT-information structure and the fundamental lemma:

A mapping $Q : \Omega \rightarrow \mathcal{F}$ is said to be an RT-information structure on Ω if the following two conditions are true: For each i and for every state ω such that $Q(\omega)$ is defined,

(Ref) $\omega \in Q(\omega)$;

(Trn) $\xi \in Q(\omega)$ implies $Q(\xi) \subseteq Q(\omega)$.

The following lemma is a key to proving the theorem:

6The RT-information structure stands for reflexive and transitive information structure.
Fundamental Lemma. Let ω be a state in Ω, and Q an RT-information structure on Ω. Suppose that f be a decision function that satisfies the sure thing principle and is preserved under difference.

If there exists an event H of \mathcal{F} such that the two conditions are true: For each ξ of H,

(a) $Q(\xi)$ is defined and it always contained in H, and

(b) it is always satisfied that $f(Q(\xi)) = f(Q(\omega))$,

then we obtain that

$$f(H) = f(Q(\omega)).$$

A similar lemma may be found in Matsuhisa and Usami [9].

4.3. Proof of Theorem 2. It is sufficient to prove the following theorem because Theorem 2 immediately follows from it.

Theorem 3. In a communication process associated with an awareness structure, suppose that the decision functions are common for all players, and that the common decision function satisfies the sure thing principle and is preserved under difference, if player i communicates his/her message directly to player j then their limiting values of the decision function must be equal.

Proof. Let $\pi = \langle \Pr, Q_l^i, f \rangle$ be a communication process associated with awareness structures where f is the common decision function. The protocol has the property that, if $s(t) = i$ and $r(t) = j$ then $r(t + m) = i$ and $s(t + m) = j$ for some m.

It should be noted that P_i is an RT-information structure, and so is Q_i^∞ for every i. Therefore in view of (Ref) and (Trn), it can be plainly observed that

$$T \ B_l^\infty(F) \subseteq F;$$

$$4 \ B_l^\infty(F) \subseteq B_l^\infty(B_l^\infty(F)).$$

For each state ω at which Q_i^∞ is defined, set $H = B_l^\infty(W_l^\infty(\omega)) \cap B_j^\infty(W_j^\infty(\omega))$ and $Q = Q_l^\infty$ for $l = i, j$. To complete the proof, it suffices to verify the two properties:

(a) If ξ is a member of H then $Q(\xi) \subseteq H$, and

(b) H is contained in the set consisting of all the states ξ such that $d_l^\infty(\xi) = d_l^\infty(\omega)$.

Indeed, if it is the case then, viewing of Fundamental Lemma we obtain that $f(H) = f(Q_l^\infty(\omega))$ for each $l \in \{i, j\}$, and thus $d_l^\infty(\omega) = d_l^\infty(\omega)$ as required.

Proof of (a): It follows from 4 that $Q_l^\infty(\xi) \subseteq B_l^\infty(W_l^\infty(\omega))$, and it follows from the definition of Q_{i+1}^l that $\xi \in Q_l^\infty(\xi) \subseteq B_l^\infty(W_l^\infty(\xi))$ for $l' \in \{i, j\} \setminus \{l\}$, and thus $W_l^\infty(\xi) = W_l^\infty(\omega)$ by T. We observe that for every $\xi \in H$, $Q(\xi) \subseteq B_l^\infty(W_l^\infty(\omega)) \cap B_j^\infty(W_j^\infty(\omega))$.

Proof of (b): In view of T it is easily observed that $H \subseteq W_l^\infty(\omega) = \{\xi \in \Omega \mid d_l^\infty(\xi) = d_l^\infty(\omega)\}$, in completing the proof. \qed
4.4. As a consequence of Theorem 2 we can obtain a generalized version of the Agreement theorem of Geanakoplos and Polemarchakis [5] and that of Matsuhisa and Kamiyama [7].

Corollary 2. In a communication process associated with awareness structure, suppose that the all decision functions are common for all players, and that the common decision function satisfies the sure thing principle and is preserved under difference, if the players in the process are only two then their limiting values of the decision function must be equal.

Proof. Immediately follows from Theorem 2. □

4.5. Conclusion. In this paper we have shown that the nature that consensus can be guaranteed in a communication process is not the restrictions on the players' knowledge operators but their awareness and belief.

REFERENCES

(Emiko Fukuda) 東京工業大学大学院社会理工学研究科, DEPARTMENT OF VALUE AND DECISION SCIENCE, Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Oh-Okayama 2-Choume 12-1, Meguro-ku, Tokyo 152-8552, JAPAN.
E-mail address: emiko@valdes.titech.ac.jp

(Takashi Matsuhisa) 茨木工業高等専門学校, DEPARTMENT OF LIBERAL ARTS AND SCIENCES, Ibaraki National College of Technology, Nakane 866, Hitachinaka-shi, Ibaraki 312-8508, JAPAN
E-mail address: mathisa@ge.ibaraki-ct.ac.jp

(Hisato Sasumna) 茨木工業高等専門学校, UNDERGRADUATE COURSE OF ELECTRIC ENGINEERING, Ibaraki National College of Technology. Current Address: NHK (Nippon Housou Kyokai), Shibuya-ku, Tokyo 150-8081, JAPAN.