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This note deals with invariant continua under Kleinian groups. Here, acon-
tinuum is acompact connected subset of the Riemann sphere $S^{2}$ , and aKleinian
group is adiscrete subgroup of M\"obius transformations of $S^{2}$ .

Let $L$ be acontinuum on $S^{2}$ . By definition, $L$ is locally connected at apoint $y\in L$

if, for any neighborhood $U$ of $y$ ) there exists asmaller neighborhood $V\subset U$ such
that $L\cap V$ is connected. We say that $L$ is locally connected if it is locally connected
at any point $y\in L$ . We say that acontinuum $L$ is tree-like if the complement $S^{2}-L$

is connected and if the interior of $L$ is empty. Locally connected, tree-like continua
are characterized by the following property. See [1, Section 10].

Proposition. Let $L\subset S^{2}$ be a locally connected, tree-like continuum. Then, for
any points $x$ and $y$ in $L$ , there exists a unique arc $xy$ in $L$ that connects $x$ and $y$ .

Apoint 4on alocally connected, tree-like continuum $L$ is called an endpoint if
there exists no arc Ain $L$ such that 4is an interior point of Awith respect to the
relative topology on A. This is equivalent to saying that $L-\{\xi\}$ is connected.

Let $\Gamma$ be aKleinian group. Aloxodromic fixed point of $\Gamma$ is apoint that is fixed
by aloxodromic element of $\Gamma$ . The limit set $\Lambda(\Gamma)$ for $\Gamma$ is the closure of the set of all
loxodromic fixed points of $\Gamma$ . We say that $\xi\in S^{2}$ is apoint of approximation (or a
conical limit point) for $\Gamma$ if there exists asequence of elements $\gamma_{n}\in\Gamma$ and distinct
points $x$ and $y$ on $S^{2}$ such that $\gamma_{n}(\xi)$ converge to $x$ and $\gamma_{n}(z)$ converge to $y$ locally
uniformly for $z\in S^{2}-\{\xi\}$ . See [3, p.22]. Points of approximation belong to the
limit set. If all the points in the limit set $\Lambda(\Gamma)$ are points of approximation, then the
Kleinian group $\Gamma$ is convex cocompact ASchottky group is aconvex cocompact,
free Kleinian group.

Abikoff [1, Lemma 1] proved that any loxodromic fixed point of aKleinian group
$\Gamma$ with the locally connected, tree-like limit set $\Lambda(\Gamma)$ is its endpoint. In this note,
we extend this result in the following form.

Theorem. Let $\Gamma$ be a Kleinian group and $L$ a locally connected, tree-like continuum
that is invariant under $\Gamma$ . Then any point of approximation for $\Gamma$ is an endpoint
n-
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Proof. Suppose that apoint 4of approximation for $\Gamma$ is not an endpoint of L. Then
there exists an arc Ain $L$ such that 4is in its interior. Let $z_{1}$ and $z_{2}$ be the endpoints
of A. Since $\xi$ is apoint of approximation, there exists asequence of elements $\gamma_{n}\in\Gamma$

and distinct points $x$ and $y$ on $S^{2}$ such that $\gamma_{n}(\xi)$ converge to $x$ and $\gamma_{n}(z_{i})$ converge
to $y$ for $i=1,2$ . The $\Gamma$-invariance of $L$ implies that $\gamma_{n}(\overline{z_{i}\xi})=\overline{\gamma_{n}(z_{i})\gamma_{n}(\xi)}$ lies in $L$

as well as $y$ belongs to $L$ .
Let $V$ be an open neighborhood of $y$ such that $x$ is not contained in the closure

of $V$ and that $L\cap V$ is connected. For asufficiently large $n$ , $\gamma_{n}(z_{i})$ is contained
in $V$ but $\gamma_{n}(\xi)$ is not. Since $\gamma_{n}(z_{i})$ can be connected with $y$ in $L\cap V$ , we take an
arc $\overline{y\gamma_{n}(z_{i})}$ there. Then $\overline{y\gamma_{n}(z_{i})}\cup\overline{\gamma_{n}(z_{i})\gamma_{n}(\xi)}$ for $i=1,2$ are distinct arcs in $L$

connecting $y$ and $\gamma_{n}(\xi)$ . However, this contradicts the uniqueness of the arc in $L$

as in the previous proposition. $\square$

Corollary. Let $\Gamma$ be a convex cocompact Kleinian group and $L$ a locally connected,
tree-like continuum that is invariant under $\Gamma$ . Then $L-\Lambda(\Gamma)$ is connected.

Maskit [2] considered this problem for the case that $L$ is the limit set for a
degenerate Kleinian group $G$ and $\Gamma$ is aSchottky subgroup of $G$ . His arguments did
not involve any assumption on local connectivity for $L$ , however, acertain property
for $L$ seems to have been necessary to complete the proof. It is conjectured that
the limit set for adegenerate Kleinian group is locally connected (cf. [1]), however,
only partial solutions have so far been obtained.
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