gobooooboo 12230 2001 O 56-60

56

Notes on discrete subgroups of PU(1,2;C)
with Heisenberg translations III

Shigeyasu KAMIYA

ek (BILEX)

In a previous paper [8] we have seen that under some conditions Parker’s theorem
yields the discreteness condition of Basmajian and Miner for groups with a Heisenberg
translation. In this paper we give a new stable basin region and show the same result as
in [8] without the assumption on r. This is a joint work with John R. Parker.

1. First we recall some definitions and notation. Let C be the field of complex
numbers. Let V = V1:2(C) denote the vector space C3, together with the unitary structure
defined by the Hermitian form

8(2*,w") = (] + FFw}) + 7w}

for 2* = (z5,21,23),w* = (w§,w],w3) in V. An a.utomorphism g of V, that is a linear
bijection such that ®(g(2*),g(w*)) = ®(z*,w*) for z*,w* in V, will be called a unitary
transformation. We denote the group of all unitary tra.nsforma.tlons by U(1,2;C). Let
Vo={w*€V| &(w*,w*)=0}and V_={w*eV| &w*,w*)<0}.Itis clear that V,
and V_ are invariant under U(1,2; C). We denote U(1, 2; C)/(center) by PU(1,2;C). Set
V* =V_UVo—{0}. Let 7 : V* — x(V*) be the projection map defined by n(w§, w},w3) =
(w1, w2), where w; = w}/w§ and w,; = w}/w§. We write oo for 7(0,1,0). We may identify
7(V_) with the Siegel domain

1
H? = {w= (wy,wz) € C? | Re(w;) > —|w2|2}.

We can regard an element of PU(1,2; C) as a transformation acting on H? and its boundary
OH? (see [6]). Denote H2 U dH? by H?. We define a new coordinate system in H2 —
{oo}. Our convention slightly differs from Basmajian-Miner [1] and Parker [8]. The H —
coordinates of a point (w;, w;) € H2—{co} are defined by (k,t,w;)g € (RTU{0})xRxC
such that k = Re(w;) — }|w2|? and t = Im(w,). For simplicity, we write (t;,w')y for
(0,21, w")rr. The Cygan metric p(p,q) for p = (k1,t1,w")n and ¢ = (kz2,t2, W')y is given
by

1 . -
p(p,q) = l{‘2'|W' —w'[2+ [k — B} + i{ts — ta + Im(wW")}| L.

We note that the Cygan metric p is a generalization of the Heisenberg metric § in OH?
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Let f = (aij)i<i,j<3 be an element of PU(1,2;C) with f(co) # co. We define the
isometric sphere Iz of f by

I ={w=(w,w) €T | |8W,Q)=8W, s ()},

where @ = (0,1,0), W = (1,w;,wz) in V* (see [4]). It follows that the isometric sphere
Iy is the sphere in the Cygan metric with center f~!(co) and radius Ry = /1/|a12], that

1s,

I = {z=(k,t,w')He(R+u{0})xRxc | oz, F7(00)) = 4| }

|012|

2. We shall give a modified version of the stable basin theorem in [8]. Let
B, ={z € 8H? | §(2,0) < r},

and let E; = OH? — B,. Given r and s with r < s, the pair of open sets (B,,Ej) is said
to be stable with respect to a set S of elements in PU(1,2; C) if for any element g € S,

g(0) € B, g(0) € B,.

A loxodromic element f has a unique complex dilation factor A(f) such that |[A(f)| > 1.
Let S(r,e) denote the family of loxodromic elements f with fixed points in B, and F; /s

and satisfying |A\(f) — 1| < €. For positive real numbers r and r' withr < 1/v/3and r' < 1,
we define e(r,r') by

E(T‘,T’ = Sup{p‘(f) - 1I}a (21)
where |A(f) — 1| satisfies the inequality

1— 3+ A -1\ [1-3r2\2 /2
I)\(f)—1]<\/1+< T o2 T = - 1. (2.2)
A triple of non-negative numbers (r,r', €) is said to be a basin point provided that r < 1/v/3,
r' <1 and € < g(r,r'). In particular, if ' < r, we call (r,r',€) a stable basin point. Call
the set of all such points the stable basin region. For simplicity, we abbreviate (r,r,¢) to

(r,€). Figure 1 shows our new stable basin region, which contains regions in [1] and [8].
Some stable basin points are tabulated in Table 2.

Exactly the same arguments except for using the following Lemma 2.1 instead of
Proposition 3.3 in [1] shows our new stable basin theorem.

Lemma 2.1. Let b,c > 0 be given. If f 1s a complez dilation and its complez dilation

factor satisfies |I\(f) — 1] < 4/1+ (b/c)? — 1, then f(p) € By(p) for p € B..
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Theorem 2.2 (cf. [8; Stable Basin Theorem]). Given positive real numbers r and r'
with r < 1/v/3 and r' < 1, the pair of open sets (B,J,F;‘/,.,) is stable with respect to the
Jamily S(r,e(r,r')), where e(r,r') ts given by (2.2).

Remark 2.3. By arguing as in Corollary 6.14 in [1], we may find the boundary of the
stable basin region by equating both sides of inequality (2.2) and solving for |[A\(f) — 1| in
terms of r. If we use Basmajian and Miner’s inequality (6.2) in [1], this involves solving a
polynomial of degree 6. Using our inequality (2.2), we have

1 ) 3.2 2.2 _ 3h .2
aza1v/a3b; + asa? + 2a3r2b; — a3a? — a3byr
IA(f) -1l < Va3 2212 32 12

— 4 ’

where a; =1 — jr? and for j = 1,2,3 and b, = (r'/r)2.

3. We begin with recalling Parker’s theorem on the discreteness of subgroups of
PU(1,2;C).

Theorem 3.1 ([9; Theorem 2.1)). Let g be a Heisenberg translation with the form

where Re(s) = 3|a|®. Let f be any element of PU(1,2;C) with isometric sphere of radius

R;. If
R% > 8(gf 7" (00), f 7 (00))8(g£(00), £(00)) + 2lal?,
then the group < f,g > generated by f and g is not discrete.

In Theorem 4.5 of [8] we have shown that if r < 0.484, then Theorem 3.1 leads to the
discreteness condition of Basmajian and Miner for groups with a Heisenberg translation.
By using a more precise estimate on the Heisenberg distance between fixed points of f in
terms of Ry and A(f), we have the following same result without the assumption on r.

Theorem 3.2. Fiz a stable basin point (r,c). Let g be the same element as in Theorem
3.1. Let f be a lozodromic element with fized point 0 and g, and satisfying |\(f) — 1| < e.

If 6(0,q9) > ﬂg‘r";£222(1+r2 + V1 + r?), then the group < f,g > generated by f and g is not
discrete.

To prove our theorem, we need the following lemmas.

Lemma 3.3. Let f be a lozodromic element with fized points 0 and g, satisfying |\(f) -

1| <e. Then
8(0,9)\? < 2¢ — €2
Ry = 1l-¢°



Lemma 3.4. For a stable basin point (r,¢),

2 — g2

1+r2+m>(
2
r

where M(e) = (1+¢)¥ + (14¢)~}.
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Figure 1. Graph of (r,r)
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Table 2
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