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Abstract
トーラス結ひ日の強可逆性を使って、三次元球面内に空間グラフを作ります。そし

て、 出来たグラフが「双曲的」、即ちその外部に、境界が全則地的となる双曲構造が入
る事も示します。
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1Introduction
In this paper, agraph $G$ means afinite, one-dimensional $\mathrm{C}\mathrm{W}$-complex without
isolated vertices. An embedding $f:Garrow M$ of $G$ into athree-dimensional
manifold $M$ is called aspatial embedding of $G$ , and its image $f(G)$ is called a
spatial graph. Especially if $G$ is homeomorphic to acircle (resp. union of Circles),
then the spatial graph $f(G)$ is called aknot (resp. link). Aspatial graph is said
to be planar (or unknotted) if it can be drawn in aplane without edges crossing,
and otherwise knotted.

Let $S$ be aunion of (topologically) circular components of $f(G)$ , and we
denote by $C(f(G))$ amanifold obtained from $M$ by removing regular neighbor-
hoods of $S$ and the interior of regular neighborhoods of $f(G)$ – $S$ . Then we
define aspatial graph $f(G)$ in $M$ to be hyperbolic if $C(f(G))$ admits a $\mathrm{c}\dot{\mathrm{o}}\mathrm{m}-$

plete hyperbolic structure with each toric boundary component (i.e., it comes
from $S$) becoming cusp neighborhood and each non-toric one (i.e., it comes from
$f(G)-S)$ becoming totally geodesic. We note that any hyperbolic spatial graph
in the three-dimensional sphere $\mathrm{S}^{3}$ is knotted, since unknotted handle bodies
do not admit complete hyperbolic structure with totally geodesic boundary.

One of the first example of hyperbolic spatial graph is constructed by
W. P. Thurston (see [Th, Example 3.3.12]). This graph has two verticei with
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three edges in $\mathrm{S}^{3}$ and had already known as Kinoshita’s theta-curve (see [Ki]).
Lately this graph is generalized to Suzuki’s Brunnian graph $\theta_{n}$ of order $n$ (see
[Sc, Su]. Kinoshita’s theta-curve is Suzuki’s Brunnian graph of order 3), and
L. Paoluzzi and B. Zimmermann proved in [PZ] that the graph $\theta_{f}$. is hyperbolic
for any $n\geq 3$ . Actually $\theta_{2}$ is s0-called the trefoil knot, which is atypical non-
hyperbolic knot, and $\theta_{n}$ (or $\mathrm{C}(9\mathrm{n})$ ) is obtained by “$n/2$-fold”cyclic branched
covering of $\theta_{2}$ (or C$2) $)$ , branched over the axis of the symmetry of order 2.
We here explain how to obtain $\theta_{n}$ from the trefoil knot.

n-edges

Figure 1: $n/2$-fold cyclic branched covering over astrongly invertible axis of
$T(2,3)$

The trefoil knot is aknotted circle in $\mathrm{S}^{3}$ like the left side figure of Figure 1,
and has asymmetry of order 2, which means that there is an automorphism,
say $\varphi$ , of $\mathrm{S}^{3}$ preserving the knot and $\varphi^{2}$ being the identity of $\mathrm{S}^{3}$ . Then we take
the quotient of $\mathrm{S}^{3}$ by $\varphi$ , and obtain agraph in it, consisting of atrivial circle
arising from the axis of the action and an arc from the knot. We might say
the quotient space is a“1/2” of $\mathrm{S}^{3}$ . We then take the $n$-fold cyclic branched
covering of the quotient space, branched over the (axial) circle. Thus we obtain
the graph $\theta_{n}$ , the right side figure of Figure 1, after slightly moving the arcs.
So, by this construction, we could say $\theta_{n}$ (or $\mathrm{C}(9\mathrm{n})$) is obtained by “$n/2$-f0ld”
cyclic branched covering of the trefoil knot $\theta_{2}$ (or C$2) $)$ , branched over the axis
of the strongly invertible action.

A $(p, q)$ torus knot $T(p,q)$ is obtained by looping astring through the hole
of astandard torus $p$ times with $q$ revolutions before joining its ends, where $p$

and $q$ are relatively prime. We recall that $T(p, q)$ is unknotted if and only if
$|p|\geq 2$ and $|q|\geq 2$ . An $l$ component torus link $T(ip, Iq)$ is aunion of $l$ string
torus knots $T(p,q)$ running parallel to them.

The trefoil knot $\theta_{2}$ is the torus knot $T(2,3)$ . It is easy to see that the
automorphism $\varphi$ defined above also acts on $(\mathrm{S}^{3}, T(p, lq))$ as order 2symmetry
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Figure 2: Torus link $T(4,6)$ with the axis of an order 2symmetry

(see Figure 2). Thus, for any knotted torus link, we can obtain aspatial graph
by the $n/2$-fold cyclic branched covering, which means that we first take the
quotient of the action of the generator of the symmetry group, and then take
the $n$-fold cyclic branched covering of the quotient space over the axis of the
action. So the following question naturally arises:

Question 1.1 For any knotted torus knot or link and na rural number n $\geq 3$ ,
does the $n/2$ -fold cyclic branched covering arise a hyperbolic spatial $gmph^{\mathit{9}}$

The purpose of this paper is to answer this question:

Theorem 1.2 For any knotted to us knot and natural number $n\geq 3$ , the n/2-
fold cyclic branched cover$|\dot{\tau}ng$ arises a hyperbolic spatial graph. On the other
hand, this property does not hold for the knotted torus links.

We prove this theorem in the next section.
The author would like to thank Professor Makoto Sakuma for his helpful

comments and advice. The author also would like to express their sincere
gratitude to Professor Kimihiko Motegi and Dr. Kazuhiro Ichihara for useful
discussion.

2Proof of Theorem 1.2

2.1 Knots case
Take relatively prime integers $p$ and $q$ , and consider atorus knot $T(p, q)$ . Let
$E(T(p, q))$ be the closure of $C(T(p, q))$ , i.e., the exterior of $T(p, q)$ in $\mathrm{S}^{3}$ . Then
it is known (see, for example, $[\mathrm{S}\mathrm{T}$ , p. 402]) that $E(T(p, q))$ is aSeifert fibered
manifold with two exceptional fibers. Its base orbifold is aclosed disk with
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two cone points of orders $p$ and $q$ respectively. The Seifert invariant of the
exceptional fiber corresponding to the cone point of order $p$ (resp. $q$) is $(p,\beta_{1})$

(resp. ($q$ , $\beta_{2}$ )), where $\beta_{1}$ (resp. $\beta_{2}$ ) is anatural number uniquely determined from
the following two conditions: $0<\beta_{1}<p$ and $q\beta_{1}\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} p$ (resp. $0<\beta_{2}<q$

and $p\beta_{2}\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} q$).
Let $M$ be a3-manifold of trivial $\mathrm{S}^{1}$ bundle over aclosed disk (i.e., $M$ is a

trivial solid torus), and $L$ alink in $M$ of two (trivial) fibers. Then $E(T(p, q))$ is
aresult of Dehn surgery on $M$ along $L$ with surgery coefficients $\beta_{1}/p$ and $\beta_{2}/q$ .
We here note that, since $\varphi$ acts on $E(T(p,q))$ as involution, the link $L$ must be
preserved by the action of $\varphi$ and its each component must be intersect the axis
of $\varphi$ two times.

We next take the quotient space of $E(T(p, q))$ by $\varphi$ . Topologically
$E(T(p, q))$ is asolid torus and the action $\varphi$ is the involution. So the qu0-

.tient space is aclosed ball, say Af’. Then the fixed point set, say $t$ , of $\varphi$ comes
from two arcs. Actually it is obtained by atangle addition of two rational tan-
gles $\beta_{1}/p$ and $\beta_{2}/q$ (for the definition of the rational tangle, see, for example,
[Mu, Chapter 9]. See also Figure 3).

Example.

$\frac{2}{3}=$

$( \mathrm{s}1\mathrm{o}\mathrm{p}\mathrm{e}=\frac{2}{3})$

Figure 3: The rational tangle 2/3

Now all we have to show is that the $n$-fold cyclic branched covering of $M’$

over $t$ is aclosed hyperbolic manifold with totally geodesic boundary. Let $DM$’

be the double of $M’$ , i.e., aclosed manifold obtained from $M’$ and its mirror
image by gluing them naturally along their boundaries. Since $M’$ is topolog-
ically aclosed ball, $DM’$ is topologically $\mathrm{S}^{3}$ . Then $t$ arises $\mathrm{a}$ .link $Dt$ in $\mathrm{S}^{3}$ ,
usually called Montesinos link $M$(0; $(p,\beta_{1})$ , $(q,$ &), $(q$ , -$2), $(p$ , Pi)) (see Fig-
ure 4). So what we want to show is equivalent to do the following one: for
any $n\geq 3$ , the $n$-fold cyclic branched covering of $\mathrm{S}^{3}$ over aMontesinos link
$M(0; (p,\beta_{1}), (q,h), (\mathrm{g},- 2), (p, -\beta_{1}))$ admits ahyperbolic structure.

These types of Montesinos links are s0-called non-elliptic Montesinos
links (see [BZ]). We here note that the figure eight knot in not con-
tained in this class. Now it is shown in [Oe, Corollary 5] that the exterior
$C(M(0; (p,\beta_{1}), (\#,\# 2), (q,- 2), (p, -\beta_{1})))$ has acomplete hyperbohc structure.
So using the folowing Theorem 2.1 we can complete the proof of Theorem 1.2
in the knots case.

Theorem 2.1 ([BP, Corollary 5]) Let $M$ be a compact orientable irreducible
3-manifold and $L\subset M$ be a hyperbolic link. Then, for $n\geq 3$ , any $n$-fold cyclic
covering of $M$ branched over $L$ admits a hyperbolic structure, except when $\dot{n}=3$ ,
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$Dt=M(0;(p, \beta_{1}),$ $(q,\beta_{2})$ , $(q, -oe)$ , $(p, -\beta_{1}))$

Figure 4: Aflow chart of the proof of Theorem 1.2 of knots case

$M=\mathrm{S}^{3}$ and $L$ is the figure-eight knot.

2.2 Odd components links case
Let $l\geq 3$ be an odd natural number and consider atorus link $T(lp, lq)$ . Then
$E(T(lp, lq))$ has $l$ toric boundary components, and one of them intersects the
axis of $\varphi$ . So the quotient space of $E(T(lp, lq))$ by $\varphi$ is topologically $\mathrm{B}^{3}$ minus
the interior of $(l-1)/2$ solid tori. Now, as we have done in the previous proof,
we take the double of this quotient space with respect to the spherical boundary.
Then we obtain the three-dimensional manifold, topologically homeomorphic to
$\mathrm{S}^{3}$ minus the interior of $l-1$ solid tori, with aMontesinos link as the image of
the axis of $\varphi$ (see Figure 5). As in the previous proof, all we have to check is
that, for any $n\geq 3$ , whether or not the $n$-fold cyclic branched covering of the
manifold over the Montesinos link admits ahyperbolic structure with totally
geodesic boundary.

We consider atorus wrapping all toric boundary (see Figure 5again). Since
it wraps several toric boundaries, it is essential in the $n$-fold cyclic branched cov-
ering of the manifold. Thus we have proved Theorem 1.2 in the odd components
links case
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Figure 5: Aflow chart of the proof of Theorem 1.2 of odd links case

2.3 Even components links case
Let $l$ be an even natural number, and consider atorus link $T(lp, lq)$ . Then
$E(T(lp, lq))$ has $l$ toric boundary components, and two of them intersect the
axis of $\varphi$ . So the quotient space of $E(T(lp, lq))$ by $\varphi$ is topologically $\mathrm{S}^{2}\cross[0,1]$

minus the interior of $(l-2)/2$ solid tori, with two rational tangles as the image
of the axis of $\varphi$ (see Figure 6).

We consider an annulus naturally connecting two spherical boundaries (see
Figure 6again). Then we can easily see that it is essential in the $n$-fold cyclic
branched covering of the quotient space branched over the rational tangles.
Thus we have proved Theorem 1.2 in the even components links case.

We have thus completely finished the proof of Theorem 1.2. Cl

3Remarks
1. Atorus knot exterior is the one obtained from $\mathrm{S}^{3}$ as Seifert fibered mani-

fold fibered by the torus knot by removing the interior of atubular neigh-
borhood of aregular fiber. Since $\mathrm{S}^{3}$ is aspecial case of lens spaces, we can
generalize the statement of Theorem 1.2 to lens spaces as Seifert fibered
manifold with two (nontrivial) exceptional fibers.

2. As we mentioned in the introduction, Theorem 1.2 has already proved
when the knot is $T(2,3)$ . The way of the previous proof is to determine
the fundamental polyhedra of hyperbolic manifolds (see [PZ, Us]). One
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Figure 6: Aflow chart of the proof of Theorem 1.2 of even links case

of the $\mathrm{a}\mathrm{d}\mathrm{v}\mathrm{a}^{\cap}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s}$ of such proof is to obtain various different manifolds
not coming from cyclic branched coverings (by changing the identification
rules of the faces of the polyhedra). So there still be the problem of
determining fundamental polyhedra of the hyperbolic manifolds obtained
by $n/3$-fold cyclic branched coverings of $E(T(p, q))$ .
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