Sequential elimination procedure for selecting the s best normal populations with unknown variance

筑波大·数学系 青木 充 (Mitsuru Aoki)
Institute of Mathematics, University of Tsukuba

1. INTRODUCTION

k (\geq 2) 個の独立な正規母集団 π_i : $N(\mu_i, \sigma^2)$, i=1,...,k があるとする. ここで,全てのパラメーターは未知である. μ_i の順序付けを $\mu_{[1]} \leq ... \leq \mu_{[k]}$ と表記する. もちろん,この順序関係も未知である. 本論文では,Bechhofer (1954) の indifference zone formulation を用いて $\mu_{[k]},...,\mu_{[k-s+1]}$ を持つ s ($1 \leq s \leq k-1$) 個の母集団を選択する問題を考える. そのとき,与えられる δ^* (> 0) と $P^* \in \left(1/\binom{k}{s},1\right)$ とで書かれる確率的要求

$$P(CS) \ge P^*$$
 whenever $\mu \in \Omega(\delta^*)$ (1.1)

を課すとする. ここで, $\boldsymbol{\mu}=(\mu_1,...,\mu_k)$, $\Omega\left(\delta^*\right)=\left\{\boldsymbol{\mu}:\mu_{[k-s+1]}-\mu_{[k-s]}\geq\delta^*\right\}$ である. $\Omega^c\left(\delta^*\right)$ を indifference zone と呼び, "CS" は "Correct Selection" の略記である.

Bechhofer (1954) は σ が既知と仮定して,この問題に解を与えた. σ が既知である 仮定をはずし,ただし s=1 のとき,Bechhofer,Dunnett and Sobel (1954) は Stein (1945) の二段階法を用いて (1.1) 式を満たす解を与えた. s が一般の場合,Aoshima and Aoki (2000) は,Mukhopadhyay and Duggan (1999) の二段階法を改良して (1.1) 式を満たす解を与え, さらに解の漸近有効性を 2 次のオーダーまで明らかにした.

一方、上記の研究とは別の方向性として、推測の判定を多段階に分けて、初期の段階で判定を行うことができる母集団については以後のサンプリングの対象からは除外する Paulson (1962) の Elimination 法を応用することも考えられる. 実際、Paulson (1964) は σ が既知と仮定して s=1 の場合に Elimination 法を用いた解を与えている. その後、Hartmann (1988,1991) は Paulson (1964) に用いられる不等式を改良することで Elimination 法に必要となる標本数の削減を行い、さらに σ が既知である仮定をはずして (1.1) 式を満たす Elimination 法による解を s=1 の場合に与えた.

本論文は, s=1 の条件をはずし一般の s の場合について (1.1) 式を満たす Elimination 法による解を与え、その有効性を研究する.

まず、2節においてsが一般の場合の Elimination 法を提案し、(1.1) 式を満たす解を与えることを証明する。3節において、2節で与えた Elimination 法による解の有効性を、Elimination 法を用いない場合の解との比較によって標本数と確率の両面から数値的に考察する。

2. PROCEDURE

固定された大きさ m (\geq 2) の初期標本 $X_{ij}, j=1,...,m$ を各母集団 π_i (i=1,...,k)から抽出し、標本平均 $\overline{X}_{im}=\sum_{j=1}^m X_{ij}/m$ と標本分散

$$S^{2} = \sum_{i=1}^{k} \sum_{j=1}^{m} (X_{ij} - \overline{X}_{im})^{2} / \nu, \quad \nu = k(m-1)$$

を計算する. ある正整数 j に対して $\lambda=\delta^*/(2j)$ とおく. λ に依存して決まる η (> 0) にもとづいて $a_\lambda=\eta\nu S^2/\delta^*$ とおき, $W_\lambda=[a_\lambda/\lambda]$ を定義する. ここで,[c] は c よりも小さな最大の整数とする. もしも $m>W_\lambda$ であれば実験を終了し, $\overline{X}_{im},\,i=1,...,k$ の大きい方から s 番目までの π_i を選択する. もし $m\leq W_\lambda$ であれば,

$$\overline{X}_{jm} < \overline{X}_{[k-s+1,m]} - \frac{a_{\lambda}}{m} + \lambda$$

に該当する π_j を母集団選択の対象から除外する. ここで, $\overline{X}_{[k-s+1,m]}$ は大きい方から s 番目の \overline{X}_{im} をさす.除外されずに残っている π_i からは標本を1つずつ追加する.この手順を $r=m+1,...,W_\lambda$ について繰り返し,各段階で

$$\overline{X}_{jr} < \overline{X}_{[k-s+1,r]} - \frac{a_{\lambda}}{r} + \lambda \tag{2.1}$$

に該当する π_j を母集団選択の対象から除外していく. 上記のある段階で残りの母集団が s 個になった場合,実験を終了し,それらの母集団を選択する. また, $r=W_\lambda$ の段階で s+1 個以上の母集団が残っている場合,それらの各母集団からさらに標本を 1 つずつ追加して, $\overline{X}_{iW_\lambda+1}$ の大きい方から s 番目までの π_i を選択する.

ある正整数 j と $\lambda = \delta^*/(2j)$ に対して、方程式

$$\sum_{i=1}^{j} (-1)^{i+1} (1 - \delta_{ij}/2) (1 + (2j - i)i\eta/j)^{-\nu/2} = 1 - P^{\star 1/(s(k-s))}$$
 (2.2)

の解 η による $a_{\lambda} = \eta \nu S^2/\delta^*$ を用いるとき、上記 Elimination 法は (1.1) 式を満たす解を与える. ここで、 δ_{ij} は Kronecker symbol とする.

定理の証明には、次の補題を用いる.

補題

 $\{W(t),\ 0 \le t \le \infty\}$ を drift μ (> 0) の Brownian motion とし, m (> 0) と λ (> 0) を与えられる定数とする. そのとき, $\lambda = \mu/(2j)$ で T が $|W(T)| \ge \lambda(m-T)$ なる symmetric stopping time ならば、不等式

$$P_{\mu}\{W(T)<0\} \le \sum_{i=1}^{j} (-1)^{i+1} (1-\delta_{ij}/2) \exp\{-2m(2j-i)i\}$$
 (2.3)

が成り立つ. ここで、 δ_{ij} は Kronecker symbol とする.

定理の証明

表記を簡潔にするため、ここでは $\mu_{[i]}$ を持つ母集団を π_i で表すことにする. また、procedure を 2 つの母集団 π_i , π_j に用いたとき、 π_j が除外される事象を $\{\pi_i \gg \pi_j\}$ で表す. そのとき、選択されるべき母集団 π_k , ..., π_{k-s+1} が procedure によって選択されない事象は、

$$\bigcup_{i=k-s+1}^k \bigcup_{\ell \neq i} \left\{ \pi_\ell \gg \pi_i \right\}$$

なる事象に含まれる. ここで、ド・モルガンの法則を用いることで

$$P(CS) \ge P\left\{\bigcap_{i=k-s+1}^{k} \bigcap_{\ell \ne i} \left\{\pi_i \gg \pi_{\ell}\right\}\right\}$$

が成り立つ. 選択されるべき母集団からの標本 $X_{i1},...,X_{iW_{\lambda}+1},\,i=k-s+1,...,k$ と S^2 とを与えた条件付きで考えると,事象 $\{\pi_i\gg\pi_\ell\},\,i=k-s+1,...,k;\,\ell=1,...,k-s$ は独立になるので

$$P(CS) \ge E \left[P \left\{ \bigcap_{i=k-s+1}^{k} \bigcap_{\ell \neq i} \{ \pi_i \gg \pi_\ell \} \right\} \middle| X_{i1}, ..., X_{iW_{\lambda}+1}, i = k-s+1, ..., k; S^2 \right]$$

$$\ge E \left[\prod_{i=k-s+1}^{k} \prod_{\ell=1}^{k-s} P \left\{ \pi_i \gg \pi_\ell \middle| X_{i1}, ..., X_{iW_{\lambda}+1}, i = k-s+1, ..., k; S^2 \right\} \right]$$

$$(2.4)$$

を得る. この確率は μ_i に関して,least favorable configuration (LFC) と呼ばれる

$$\mu_{[1]} = \dots = \mu_{[k-s]} = \mu_{[k-s+1]} - \delta^* = \dots = \mu_{[k]} - \delta^*$$

のときに最小となり、(2.4) 式は

$$E\left[\left(P_{LFC}\left\{\pi_{k}\gg\pi_{1}|X_{k1},...,X_{kW_{\lambda}+1},\ S^{2}\right\}\right)^{s(k-s)}\right]$$

で下からおさえられる.ここで、Jensen の不等式を用いることによって

$$P(CS) \ge \left(E \left[P_{LFC} \left\{ \pi_k \gg \pi_1 | X_{k1}, ..., X_{kW_{\lambda}+1}, S^2 \right\} \right] \right)^{s(k-s)}$$

$$\ge \left(P_{LFC} \left\{ \pi_k \gg \pi_1 \right\} \right)^{s(k-s)}$$
(2.5)

を得る.

(2.5) 式にある $P_{LFC}\{\pi_k\gg\pi_1\}$ を評価する. 今, stopping time T は

$$-a_{\lambda} + n\lambda \le \sum_{i=1}^{n} (X_{ki} - X_{1i}) \le a_{\lambda} - n\lambda \tag{2.6}$$

を満たさない最小の自然数 $n~(\geq m)$ となる. そこで、(2.6) 式を

$$\frac{-a_{\lambda}}{\sqrt{2}\sigma} + \frac{n\lambda}{\sqrt{2}\sigma} \le \sum_{i=1}^{n} \frac{(X_{ki} - X_{1i})}{\sqrt{2}\sigma} \le \frac{a_{\lambda}}{\sqrt{2}\sigma} - \frac{n\lambda}{\sqrt{2}\sigma}$$

と書き直して lemma を用いることで、 $S^2 > 0$ に対して

$$P_{LFC}\{\pi_1 \gg \pi_k | S^2\} \le \sum_{i=1}^{j} (-1)^{i+1} (1 - \delta_{ij}/2) \exp\{-a_\lambda \delta^*(2j - i)i/(2j\sigma^2)\}$$
$$= \sum_{i=1}^{j} (-1)^{i+1} (1 - \delta_{ij}/2) \exp\{-((2j - i)i\eta/(2j))(\nu S^2/\sigma^2)\}$$

を得る. S^2 に関する期待値をとることで $P_{LFC}\{\pi_1\gg\pi_k\}$ の upper bound として

$$\sum_{i=1}^{j} (-1)^{i+1} (1 - \delta_{ij}/2) (1 + (2j - i)i\eta/j)^{-\nu/2}$$
(2.7)

が得られ, (2.5) 式と (2.7) 式を組み合わせることで証明が終了する.

3. NUMERICAL RESULTS

本節では、まず、前節で提案した手法に必要となる定数 η の値を具体的に求め、さらに Monte Carlo simulation により解の有効性を標本数と確率の両面から考察する. パラメータの値を、 $P^*=.95, k=2(1)10, s=1(1)k-1, m=10(10)30, j=1(1)4$ に設定して (2.2) 式から η の値を数値計算したものが以下の Table 1 である.

Table 1. Values of η

j = 1

$\lceil m \rceil$	$s \setminus k$	2	3	4	5	6	7	8	9	10
10	1	.292	.247	.207	.177	.155	.138	.125	.114	.105
	2		.247	.226	.198	.175	.157	.141	.129	.119
	3			.207	.198	.180	.163	.149	.136	.126
	4				.177	.175	.163	.151	.139	.129
	5					.155	.157	.149	.139	.130
	6						.138	.141	.136	.129
	7							.125	.129	.126
	8								.114	.119
	9									.105
20	1	.129	.110	.093	.080	.071	.063	.057	.052	.048
	2		.110	.101	.090	.079	.071	.065	.059	.055
	3			.093	.090	.082	.074	.068	.062	.058
	4				.080	.079	.074	.069	.064	.059
	5					.071	.071	.068	.064	.060
	6						.063	.065	.062	.059
	7							.057	.059	.058
	8								.052	.055
	9									.048
30	1	.083	.071	.060	.052	.046	.041	.037	.034	.031
	2		.071	.065	.058	.051	.046	.042	.038	.035
	3			.060	.058	.053	.048	.044	.040	.037
	4				.052	.051	.048	.045	.041	.038
	5					.046	.046	.044	.041	.039
	6						.041	.042	.040	.038
	7							.037	.038	.037
	8								.034	.035
$ldsymbol{ld}}}}}}}}}$	9									.031

 $\underline{j=2}$

\overline{m}	sackslash k	2	3	4	5	6	7	8	9	10
10	1	.236	.195	.161	.137	.119	.106	.095	.086	.079
	2		.195	.175	.152	.134	.119	.107	.097	.089
	3			.161	.152	.137	.123	.112	.102	.094
	4				.137	.134	.123	.113	.104	.096
	5					.119	.119	.112	.104	.097
	6						.106	.107	.102	.096
	7							.095	.097	.094
	8								.086	.089
	9									.079
20	1	.104	.087	.072	.062	.054	.048	.044	.040	.037
	2		.087	.078	.068	.060	.054	.049	.044	.041
	3			.072	.068	.062	.056	.051	.047	.043
	4				.062	.060	.056	.052	.048	.044
	5					.054	.054	.051	.048	.044
	6						.048	.049	.047	.044
	7							.044	.044	.043
	8								.040	.041
	9									.037
30	1	.067	.056	.047	.040	.035	.031	.028	.026	.024
	2		.056	.050	.044	.039	.035	.032	.029	.027
	3			.047	.044	.040	.036	.033	.030	.028
	4				.040	.039	.036	.033	.031	.029
	5					.035	.035	.033	.031	.029
	6						.031	.032	.030	.029
	7							.028	.029	.028
	8								.026	.027
	9									.024

j=3

\overline{m}	$s \setminus k$	2	3	4	5	6	7	8	9	10
10	1	.219	.180	.148	.126	.109	.097	.087	.079	.072
	2		.180	.161	.139	.122	.108	.097	.088	.081
	3			.148	.139	.125	.112	.102	.093	.085
	4				.126	.122	.112	.103	.095	.087
	5					.109	.108	.102	.095	.088
	6						.097	.097	.093	.087
	7							.087	.088	.085
	8								.079	.081
	9									.072

20	1	.096	.080	.066	.057	.050	.044	.040	.036	.033
	2		.080	.072	.063	.055	.049	.044	.040	.037
	3			.066	.063	.056	.051	.046	.042	.039
	4				.057	.055	.051	.047	.043	.040
	5					.050	.049	.046	.043	.040
	6						.044	.044	.042	.040
	7							.040	.040	.039
	8								.036	.037
	9									.033
30	1	.062	.051	.043	.037	.032	.029	.026	.023	.022
}	2		.051	.046	.040	.036	.032	.029	.026	.024
	3			.043	.040	.036	.033	.030	.027	.025
	4				.037	.036	.033	.030	.028	.026
	5					.032	.032	.030	.028	.026
	6						.029	.029	.027	.026
	7							.026	.026	.025
	8								.023	.024
	9									.022

 $\underline{j=4}$

$\lceil m \rceil$	$s \setminus k$	2	3	4	5	6	7	8	9	10
10	1	.211	.173	.142	.120	.104	.092	.083	.075	.069
	2		.173	.154	.133	.117	.103	.093	.084	.077
	3			.142	.133	.120	.107	.097	.089	.081
	4				.120	.117	.107	.098	.090	.083
	5					.104	.103	.097	.090	.084
	6						.092	.093	.089	.083
	7							.083	.084	.081
	8								.075	.077
	9									.069
20	1	.093	.077	.064	.054	.047	.042	.038	.035	.032
	2		.077	.069	.060	.053	.047	.042	.039	.035
	3			.064	.060	.054	.049	.044	.040	.037
	4				.054	.053	.049	.045	.041	.038
	5					.047	.047	.044	.041	.038
	6						.042	.042	.040	.038
	7							.038	.039	.037
	8								.035	.035
	9									.032
30	1	.059	.049	.041	.035	.031	.027	.025	.022	.021
	2		.049	.044	.039	.034	.030	.027	.025	.023
	3			.041	.039	.035	.031	.029	.026	.024
	4				.035	.034	.031	.029	.027	.025
	5					.031	.030	.029	.027	.025
	6						.027	.027	.026	.025
	7							.025	.025	.024
	8								.022	.023
	9									.021

2節で与えた解の有効性について、 $P^*=.95, k=6(2)10, s=2(1)k/2, m=10$ の場合に 10000 回のシミュレーションを行い、数値的な検証を行った。正規乱数のパラメータは $\sigma=1$ とし、 μ_i 、i=1,...,k に関しては LFC に設定した。j の値は j=2 に設定して Table 1 から引いた。 δ^* の値は、 σ が既知であることを仮定して Elimination 法を用いない Bechhofer (1954) の解に使われる標本の総数 (n^*) を $20 \times k$ と $50 \times k$ に固定して、そこから逆算することで設定した。次の Table 2 は、2 節で提案した Elimination 法における 10000 回のシミュレーションによる総標本数の平均 (\overline{N}) ,CS の平均 (\overline{p}) ,実験が実際に終了するまでの段階数の上限値の平均 (\overline{r}_{max}) ,手法の中で設定される段階数の上限値の平均 (\overline{w}) ,および,標本数の削減率 \overline{N}/n^* を与えている。

Table 2. Efficiency of the Elimination procedure

 $n^* = 20 \times k$

k	s	σ/δ^*	\overline{N}	\overline{p}	$\overline{r}_{ ext{max}}$	\overline{w}	\overline{N}/n^\star	n*
10	2	1.202	136.807	.982	17.560	45.881	.684	200
	3	1.160	146.267	.983	18.032	45.033	.731	-
	4	1.141	153.905	.986	18.221	44.691	.770	
	5	1.136	160.387	.983	18.235	44.516	.802	
8	2	1.243	113.159	.980	17.451	47.031	.707	160
	3	1.206	121.229	.982	17.811	46.260	.758	
	4	1.195	127.702	.986	17.910	46.035	.798	
6	2	1.310	89.056	.983	17.294	48.975	.742	120
	3	1.286	95.506	.983	17.529	48.611	.796	

n^{\cdot}	=	50	X	κ
				_

$oxedsymbol{k}$	s	σ/δ^{\star}	\overline{N}	\overline{p}	$\overline{r}_{ ext{max}}$	\overline{w}	\overline{N}/n^\star	n^{\star}
10	2	1.901	307.248	.977	42.245	115.580	.614	500
	3	1.835	337.011	.978	43.432	113.228	.674	
	4	1.805	360.539	.979	43.968	112.231	.721	
	5	1.796	379.170	.982	43.925	111.938	.758	
8	2	1.966	256.311	.973	41.888	118.314	.641	400
	3	1.907	282.430	.978	42.980	116.711	.706	
	4	1.890	302.699	.979	43.374	116.010	.757	
6	2	2.070	202.539	.976	40.893	123.579	.675	300
	3	2.034	222.423	.979	41.611	122.018	.741	

今回提案した Elimination 法は、 σ が既知を仮定した Bechhofer (1954) の手法と比べ 20% から 40% あまりも総標本数を削減して解を与えていることが分かる. \bar{r}_{max} の値を見ても、すべての母集団で標本数の削減に成功していることが分かる. また、 \bar{r}_{max} と \bar{w} の値を比べることで、Elimination 法が手法の初期段階に設定される段階数の上限まで達することなく実験を効率良く終了していることが分かり、elimination 機能が有効に作動していることも見てとれる.

Remark

手法の中で設定する j の値について、本論文中では、Paulson (1964) が s=1 の場合に数値実験から推奨した j=2 を用いた、今回の s が一般の場合について、j の値を j=1(1)4 まで動かして Table 1 を引き、その有効性を Table 2 と同様のシミュレーションを行って調べたものが、次の Table 3 である.

Table 3. Efficiency for the several choice of j

n^{\star}	=	20	0

(k,s)	σ/δ^{\star}	j	\overline{N}	\overline{p}	$\overline{r}_{ ext{max}}$	\overline{N}/n^{\star}
(10,2)	1.202	1	138.658	.976	17.251	.693
		2	136.807	.982	17.560	.684
		3	138.140	.986	18.014	.691
		4	139.461	.986	18.317	.697
(10,3)	1.160	1	146.844	.977	17.596	.734
		2	146.267	.983	18.032	.731
		3	147.931	.988	18.498	.740
		4	149.586	.988	18.812	.748
(10,4)	1.141	1	153.700	.976	17.763	.769
		2	153.905	.986	18.221	.770
		3	156.284	.990	18.672	.781
		4	158.129	.991	18.995	.791
(10,5)	1.136	1	159.339	.978	17.784	.797
		2	160.387	.983	18.235	.802
		3	163.445	.990	18.732	.817
		4	165.804	.991	19.080	.829

 $n^* = 160$

(k,s)	σ/δ^{\star}	j	\overline{N}	\overline{p}	$\overline{r}_{ ext{max}}$	\overline{N}/n^\star
(8,2)	1.243	1	114.151	.974	17.166	.713
		2	113.159	.980	17.451	.707
		3	114.594	.984	17.909	.716
		4	115.725	.988	18.206	.723
(8,3)	1.206	1	121.284	.976	17.429	.758
		2	121.229	.982	17.811	.758
		3	123.209	.988	18.296	.770
		4	124.479	.988	18.554	.778
(8,4)	1.195	1	126.771	.978	17.484	.792
		2	127.702	.986	17.910	.798
		3	129.474	.989	18.264	.809
		4	131.612	.990	18.646	.823

s が一般のとき, j=2 は必ずしも最適でないことが見られ、最適性に関する研究が 今後の課題にあげられる.

REFERENCES

- [1] Aoshima, M. and Aoki, M. (2000). Two–stage procedure having exact consistency and second–order properties for the s best selection. Sequential Analysis, 19, 115–131.
- [2] Bechhofer, R.E. (1954). A single-sample multiple decision procedure for ranking means of normal populations with known variances. *Ann. Math. Statist.*, **25**, 16–39.
- [3] Bechhofer, R.E., Dunnett, C.W. and Sobel, M. (1954). A two-sample multiple decision procedure for ranking means of normal populations with a common unknown variance. *Biometrika*, 41, 170–176.
- [4] Hartmann, E. (1988). An improvement on Paulson's sequential ranking procedure. Sequential Analysis, 7, 363–372.
- [5] Hartmann, E. (1991). An improvement on Paulson's procedure for selecting the population with the largest mean from k normal populations with a common unknown variance. Sequential Analysis, 10, 1–16.
- [6] Mukhopadhyay, N. and Duggan, W.T. (1999). On a two-stage procedure having second-order properties with applications. *Ann. Inst. Statist. Math.*, **51**, 621–636.
- [7] Paulson, E. (1962). A sequential procedure for comparing several experimental categories with a standard or control. *Ann. Math. Statist.*, **33**, 438–443.
- [8] Paulson, E. (1964). A sequential procedure for selecting the population with the largest mean from k normal populations. Ann. Math. Statist., 35, 174–180.
- [9] Stein, C. (1945). A two-sample test for a linear hypothesis whose power is independent of the variance. Ann. Math. Statist., 16, 243-258.