Regularity of Weak Solutions of the Compressible Navier-Stokes Equations

Hi Jun Choe

August 28, 2000

Department of Mathematics
KAIST, Taejon
Republic of Korea

Abstract

We prove regularity of weak solutions of the Navier-Stokes equations for compressible, isentropic flow in three space dimension. We allow the presence of vacuum region for the initial data. The pressure law satisfies the general relation $P(\rho) = a\rho^\gamma$, $\gamma \geq 1$. As was found by Hoff[2], Lions[7] and Desjardins[1], the effective viscosity G plays an important role.

keywords: Navier-Stokes equations, isentropic, weak solution, regularity

1 Introduction

The isothermal gases are governed by isentropic compressible Navier-Stokes equations. Although there are many important results, the existence of solutions under general condition remains still open. When the initial velocity has small norm in sufficiently regular space, say H^3, and the initial density is near constant, the global existence of classical solution was obtained by Matsumura and Nishida[9]. Then, Hoff[2] extended the global existence of small solutions to more weaker spaces which allow discontinuity of the initial
For the weak solutions, Lions\cite{7} obtained the global existence when the pressure law satisfies $P(\rho) = a\rho^\gamma$, $\gamma \geq 9/5$ for three space dimension, $\gamma \geq 3/2$ for two space dimension and $\gamma > N/2$ for N-space dimension with $N \geq 4$. Now, the remaining question will be the extension of the range of the parameter γ.

On the contrary, Solonnikov\cite{13} showed the local existence of strong solutions if there is no vacuum region for the initial density in the context of classical. Also, Desjardins\cite{1} proved local regularity for the weak solutions when $\gamma \geq 1$ for two space dimension and $\gamma > 3$ for three space dimension.

In this paper, we prove the a priori regularity of weak solutions under the general law $P(\rho) = a\rho^\gamma, \gamma \geq 1$ for three space dimension. We allow vacuum region and do not assume any smallness for the initial data. The compactness and local existence of strong solution will be discussed in a forthcoming paper.

First, we consider the isentropic compressible Navier-Stokes equations in periodic domain \mathbf{T}^3 with periodicity one to each coordinate direction:

$$\begin{align*}
\rho_t + \text{div}(\rho u) &= 0 \quad \text{in} \quad (0, T) \times \mathbf{T}^3 \\
(\rho u)_t + \text{div}(\rho u \otimes u) - \mu \Delta u - (\lambda + \mu) \nabla \text{div}(u) + \nabla P(\rho) &= \rho f \quad \text{in} \quad (0, T) \times \mathbf{T}^3,
\end{align*}$$

where the pressure satisfies for a positive constant a

$$P(\rho) = a\rho^\gamma, \quad \gamma \geq 1.$$

The viscosity constants satisfy $\mu > 0$ and $\lambda + \mu \geq 0$ and the external force f belongs to $L^2((0, T) \times \mathbf{T}^3)$. We need to find the unknown velocity $u \in \mathbb{R}^3$ and the unknown density $\rho \in \mathbb{R}$. The velocity and pressure are to satisfy the initial condition

$$\rho(0, x) = \rho_0(x), \quad u(0, x) = u_0(x).$$

Although we do not know yet the global existence of weak solution under the general pressure law, we introduce definition of a weak solution. In fact the estimates of local smoothness of the weak solution will lead to the existence of strong solution and we will discuss the existence in different places. $(\rho, u) \in L^1((0, T_0) \times \mathbf{T}^3)$ is a weak solution if it satisfies

$$\begin{align*}
\int \rho_0 \psi(0, x)dx + \int_0^{T_0} \int \rho \psi_t + \rho u \cdot \nabla \psi dxdt &= 0 \\
\int \rho_0 u_0 \psi(x, 0)dx + \int_0^{T_0} \int \rho u \otimes u \nabla u + P \text{div} \psi dxdt &= 0.
\end{align*}$$
\[
= \int_0^{T_0} \int \mu \nabla u \nabla \psi + (\lambda + \mu) \text{div} u \text{div} \psi dx dt + \int_0^{T_0} \int \rho f \psi dx dt
\]
for all \(\psi \in C_0^\infty[0, T_0 : C^\infty(T^3)] \) which is periodic. Moreover \((\rho, u)\) satisfies
\[
\sup_{0 \leq t \leq T_0} |\rho|_\gamma(t) + |\sqrt{\rho} u|_2(t) + \int_0^{T_0} |\nabla u|_2 dt \leq C.
\]
We denote \(|u|_p = (\int |u|^p dx)^{1/p} \) and \(c \) is constant depending only exterior data.

Theorem 1.1 Suppose that \(\rho_0 \in L^\infty \) and \(u_0 \in H^1 \). Then, there is \(T \) such that the weak solution \((\rho, u)\) satisfies \(\rho \in L^\infty([0, T) \times T^3) \) and \(u \in L^\infty(0, T : H^1(T^3)) \). Furthermore we have
\[
\sup_{0 \leq t \leq T} |\rho|_\infty(t) + |\nabla u|_2(t) + \left(\int_0^T |\sqrt{\rho} u_t|_2^2(t) dt \right)^{1/2} \leq c.
\]

For our simplicity of presentation, we assume zero external force.

2 Estimate of integral norm of density

We define our objective function \(h \) by
\[
h(t) = |\rho|_\infty(t) + |\nabla u|_2(t).
\]
For computational convenience we introduce two universal Lipschitz function \(\Phi \) and \(\Psi \) which could be different in each appearance. \(\Phi(h(s)) \) depends only on \(h(s) \) and \(\Psi(\int_0^s \Phi ds) \) depends only on \(\int_0^s \Phi(h(s)) ds \) But, after overall computations, they will be decided in natural way.

First, we estimate the Averages. We denote \(\overline{u} = \int u dx \). The initial mass is positive so that
\[
\int \rho_0 dx = M > 0,
\]
otherwise the problem is trivial. From mass conservation and momentum conservation,
\[
\overline{\rho}(t) = M \quad \text{and} \quad \overline{\rho u}(t) = \int \rho_0 u_0 dx
\]
for all \(t \). From Poincaré inequality we have
\[
| \int (\rho(u - \overline{u}) dx(t) | \leq |\rho|_\infty \left(\int |u - \overline{u}|^2 dx \right)^{1/2}
\]
\[\leq c|\rho|_\infty |\nabla u|_2(t) \]

and hence we obtain

\[||\overline{u}|(t)| \leq \frac{1}{M} |\int \rho u dx(t)| + \frac{|\rho|_\infty(t)}{M} |\nabla u|_2(t) \leq \Phi(h(t)) \]

for some Lipschitz function \(\Phi \). We also have

\[|\int \rho|u|^2 dx(t) - M\overline{|u|^2}(t)| \leq \int \rho||u|^2 - \overline{|u|^2}| dx(t) \]

\[\leq |\rho|_\infty(t) \int |u||\nabla u| dx(t) \leq \frac{1}{4} M\overline{|u|^2}(t) + 4 \left(\frac{|\rho|_\infty(t)}{M} \right)^2 |\nabla u|^2_2(t) \]

and hence it follows that

\[|\overline{u}|^2(t) \leq \frac{2}{M} \int \rho|u|^2 + 6 \left(\frac{|\rho|_\infty(t)}{M} \right)^2 |\nabla u|^2_2(t) \leq \Phi(h(t)). \]

Now we estimate the integral norms of density. We apply \(\rho^{k-1} \) as a test function to mass conservation. Then, we obtain

\[(\rho^k)_t + \text{div}(\rho^k u) + (k - 1)\rho^k \text{div}(u) = 0 \]

for any positive constant \(k \) and hence integrating in time and space

\[\int \rho^k dx(t) = \int \rho_0^k dx - (k - 1) \int_0^t \int \rho^k(s, x) \text{div}(u(s, x)) dx ds \]

\[\leq \int \rho_0^k dx + \int_0^t |\nabla u|^2_2(s) ds + c(k)|\rho|^2_\infty(s) ds \leq c + \int_0^t \Phi(h(s)) ds. \]

Therefore we conclude

\[|\rho|_k(t) \leq \Psi(\int_0^t \Phi(h(s)) ds) \]

for all fixed positive constant and for some Lipschitz functions \(\Phi \) and \(\Psi \). We decide appropriate \(k \) later.
3 Estimate of velocity

To handle the nonlinear convection term $\rho u \cdot \nabla u$, we first estimate

$$\sup_{0 \leq s \leq t} \int \rho |u|^4 dx(s) + \int_0^t \int |u|^2 |\nabla u|^2 dxds.$$

For our convenience we define effective pressure Q and effective viscosity flux G by

$$Q = -(\lambda + \mu) \text{div}(u) + P(\rho)$$

$$G = (\lambda + 2\mu) \text{div}(u) - P(\rho) = \mu \text{div}(u) - Q.$$

Taking $|u|^2 u$ as test function for momentum conservation equation, we have

$$\int \rho(|u|^4)_t dx + \frac{1}{4} \int \rho \nabla(|u|^4) dx + \mu \int |u|^2 |\nabla u|^2 dx + \frac{\mu}{8} \int |\nabla(|u|^2)|^2 dx = \int Q\text{div}(|u|^2u) dx.$$

We note that

$$\int \rho(|u|^4)_t dx + \int \rho u \cdot \nabla(|u|^4) dx = \frac{d}{dt} \int \rho |u|^4 dx.$$

Hence, integrating in time, we have

$$\int \rho |u|^4 dx(t) + \mu \int_0^t \int |u|^2 |\nabla u|^2 dxds$$

$$\leq \int \rho_0 |u_0|^4 dx + c \int_0^t \int |Q||u||u\nabla u| dxds.$$

It is important to find right exponent to derive closed estimates. From Hölder inequality and Sobolev inequality, we have

$$\int_0^t \int |Q||u||u\nabla u| dxds \leq \int_0^t \left[\int |Q|^{12/5} dx \right]^{5/12} \left[\int (|u|^2)^6 dx \right]^{1/12} \left[\int |u|^2 |\nabla u|^2 dx \right]^{1/2} ds$$

$$\leq \int_0^t \left[\int |Q|^{12/5} dx \right]^{5/12} \left[\int (|u|^2 - \overline{|u|^2}(s))^6 dx \right]^{1/12} \left[\int |u|^2 |\nabla u|^2 dx \right]^{1/2} ds$$

$$+ \int_0^t (\overline{|u|^2})^{1/2} \left[\int |Q|^{12/5} dx \right]^{5/12} \left[\int |u|^2 |\nabla u|^2 dx \right]^{1/2} ds$$

5
\[
\leq c \int_0^t \left[\int |Q|^{12/5} dx \right]^{5/12} \left[\int |u|^2 |\nabla u|^2 dx \right]^{3/4} ds + \int_0^t \left(\overline{|u|}^{1/2} \right) \left[\int |Q|^{12/5} dx \right]^{5/3} + \overline{|u|} \left[\int |Q|^{12/5} dx \right]^{5/6} ds \\
+ \frac{\mu}{4} \int_0^t \int |u|^2 |\nabla u|^2 dx ds.
\]

The estimates for generalized pressure \(Q \) can be replaced by effective viscosity flux \(G \) so that
\[
\int |Q(s, x)|^{12/5} dx \leq c \int |G(s, x)|^{12/5} dx + \Phi(h(s)).
\]

From the definition of control variable \(h \) and \(G \), we also have
\[
|\overline{G}(s)| \leq \Phi(h(s)).
\]

Thus from Sobolev inequality and, we find that
\[
\left(\int |G(s, x)|^{12/5} dx \right)^{5/3} \leq \left(\int |G(s, x) - \overline{G}(s)|^{12/5} dx \right)^{5/3} + \Phi(h(s))
\]
\[
\leq \left(\int |G(s, x) - \overline{G}(s)|^2 dx \right)^{5/4} \left(\int |G(s, x) - \overline{G}(s)|^{18/5} dx \right)^{5/12} + \Phi(h(s))
\]
\[
\leq \varepsilon_0 \left(\int |G(s, x) - \overline{G}(s)|^{18/5} dx \right)^{1/2} + c \left(\int |G(s, x) - \overline{G}(s)|^2 dx \right)^{15/2} + \Phi(h(s)).
\]

We note that
\[
c \left(\int |G(s, x) - \overline{G}(s)|^2 dx \right)^{15/2} \leq c |\nabla u|_2^{15}(s) + |P(\rho)|_2^{15} \leq \Phi(h(s))
\]
and
\[
\left(\int |G(s, x) - \overline{G}(s)|^{18/5} dx \right)^{1/2} \leq c |\nabla G|_{15/8}^{9/5}.
\]

Here important fact is the exponent 9/5 is less than 2 and 15/8 is less also less than 2. Therefore combining all the previous estimates, we conclude
\[
\sup_{0 \leq s \leq t} \int \rho |u|^4 dx(s) + \int_0^t \int |u|^2 |\nabla u|^2 dx ds.
\]
\[
\leq \left(\int_{0}^{t} |\nabla G|_{15/8}^{2}(s) ds \right)^{9/10} + \int_{0}^{t} \Phi(h(s)) ds.
\]

We let \(P \) be the projection operator to divergence free vector space. Then, from the definition of \(G \) and \(Pu \), we have

\[
\Delta G = \text{div}(\rho u_t) + \text{div}(\rho u \cdot \nabla u)
\]

\[
\Delta Pu = P(\rho u_t + \rho u \cdot \nabla u).
\]

For a given nonnegative constant \(\delta \in [0, 1) \), we have

\[
|\nabla G|_{2-\delta}^{2} + |\triangle Pu|_{2-\delta}^{2} \leq c \left(|\rho u_t|_{2-\delta}^{2} + |\rho u \cdot \nabla u|_{2-\delta}^{2} \right)
\]

\[
\leq c(\rho|_{m}^{2} + 1) \left(|\sqrt{\rho}u_t|_{2}^{2} + |u\nabla u|_{2}^{2} \right)
\]

for some \(m \) depends only on \(\delta \) and integrating with respect to time we obtain

\[
\int_{0}^{t} |\nabla G|_{2-\delta}^{2} + |\triangle Pu|_{2-\delta}^{2} ds
\]

\[
\leq c \sup_{0 \leq s \leq t} (\rho|_{m}^{2} + 1) \int_{0}^{t} \int \rho|u_t|^{2} + |u\nabla u|^{2} dx ds
\]

Moreover, the Sobolev inequality implies that

\[
|\nabla u|_{5} \leq c|\nabla G|_{15/8} + c|\Delta Pu|_{15/8} + \Phi(h(s)).
\]

Finally we estimate \(|\nabla u|_{2}(t) \). We multiply \(u_t \) to our momentum conservation equation and integrate. Consequently, we have

\[
\int_{0}^{t} \int \rho|u_t|^{2} dx ds + \mu \int |\nabla u|^{2} dx(t) + (\lambda + \mu) \int |\text{div} u|^{2} dx(t)
\]

\[
\leq \mu \int |\nabla u_0|^{2} dx + (\lambda + \mu) \int |\text{div} u_0|^{2} dx + \int_{0}^{t} \int \rho|u\nabla u|^{2} dx ds - \int_{0}^{t} \int \nabla p \cdot u_t dx ds.
\]

Again from Hölder inequality, for a given constant \(0 < \epsilon < 1 \), we have

\[
\int_{0}^{t} \int \rho|u\nabla u|^{2} dx ds \leq \left(\int_{0}^{t} \int |u\nabla u|^{2} dx ds \right)^{1-\epsilon} \left(\int_{0}^{t} \int \rho^{1/\epsilon}|u\nabla u|^{2} dx ds \right)^{\epsilon}
\]
\[
\int_0^t \int \rho^{1/\epsilon} |u\nabla u|^2 dx ds \leq \int_0^t \left(\int \rho^{10/\epsilon - 5} dx \right)^{1/10} \left(\int \rho |u|^4 dx \right)^{1/2} \left(\int |\nabla u|^5 dx \right)^{2/5}
\]
\[
\leq \sup_{0 \leq s \leq t} \rho^{1/\epsilon - 1/2} (s) \left(\sup_{0 \leq s \leq t} \int \rho |u|^4 dx(s) \right)^{1/2} \int_0^t |\nabla u|^2(s) ds
\]
\[
\leq \Psi_{\epsilon} \left(\int_0^t \Phi(h(s)) ds \right) \left(\left(\int_0^t |\nabla G|_{15/8}^2 ds \right)^{9/20} + \Psi \right)
\]
\[
\left(\int_0^t |\nabla G|_{15/8}^2 + |\Delta P u|_{15/8}^2 ds + \int_0^t \Phi(h(s)) ds \right),
\]
where \(\Psi_{\epsilon} \) is a Lipschitz function depending on \(\epsilon \) and we choose \(\epsilon = \frac{1}{11} \). From the estimate for \(\int_0^t \int |u\nabla u|^2 dx ds \), we have
\[
\int_0^t \int \rho |u\nabla u|^2 \leq \Psi_{\epsilon} \left(\int_0^t \Phi(h(s)) ds \right) \left(\int_0^t |\nabla G|_{15/8}^2 + |\Delta P u|_{15/8}^2 ds \right)^{\frac{9}{10} + \frac{11\epsilon}{20}} + \Psi \left(\int_0^t \Phi(h(s)) ds \right).
\]
Now if we choose \(\epsilon = \frac{1}{11} \), then
\[
\frac{9}{10} + \frac{11\epsilon}{20} = \frac{19}{20} < 1
\]
and
\[
\int_0^t \int \rho |u\nabla u|^2 \leq \Psi \left(\int_0^t \Phi(h(s)) ds \right) \left(\int_0^t |\nabla G|_{15/8}^2 + |\Delta P u|_{15/8}^2 ds \right)^{19/20} + \Psi \left(\int_0^t \Phi(h(s)) ds \right).
\]
From integration by parts,
\[
- \int \nabla P \cdot u_s dx = \int P \text{div} u_s dx = \frac{d}{ds} \int P \text{div} u dx + \int P_s \text{div} u dx.
\]
Integrating in time, we have
\[
- \int_0^t \int \nabla P \cdot u_s dx ds = - \int P \text{div} u dx(t) + \int P_0 \text{div} u_0 dx
\]
We find that
\[
\left| \int P(\rho) \mathrm{div} u \, dx(t) \right| \leq \frac{\mu}{4} \int |\nabla u|^2 \, dx(t) + \frac{4}{\mu} \int P^2 \, dx
\]
\[
\leq \frac{\mu}{4} \int |\nabla u|^2 \, dx(t) + \Psi \left(\int_0^t \Phi(h(s)) \, ds \right).
\]

Since \(\rho_t = -\mathrm{div}(\rho u) \), we find that
\[
\int_0^t \int P' \rho_\delta \mathrm{div} u \, dx \, ds = -\int_0^t \int P' \mathrm{div}(\rho u) + u \cdot \nabla \rho \, dx \, ds
\]
\[
- \int_0^t \int P' \rho |\mathrm{div} u|^2 \, dx \, ds - \int_0^t \int \nabla P \cdot u \mathrm{div} u \, dx \, ds
\]
\[
\int_0^t \int (P - P' \rho) \mathrm{div} u |^2 \, dx \, ds + \int_0^t \int Pu \cdot \nabla \mathrm{div} u \, dx \, ds.
\]

Clearly we have
\[
\left| \int_0^t \int (P - P' \rho) |\mathrm{div} u|^2 \, dx \, ds \right|
\]
\[
\leq \int_0^t |P - P' \rho|_\infty(s) |\nabla u|_2^2(s) \, ds
\]
\[
\leq \int_0^t \Phi(h) \, ds.
\]

Since \(\mathrm{div} u = \frac{1}{\lambda + \mu} (G + P) \),

we have
\[
\left| \int_0^t \int \nabla P \cdot u \mathrm{div} u \, dx \, ds \right| = \frac{1}{\lambda + \mu} \left| \int_0^t \int Pu \nabla (G + P) \, dx \, ds \right|
\]
\[
\leq c \int_0^t \int P^2 |\mathrm{div} u| \, dx \, ds + c \int_0^t \int |u| |\nabla G| \, dx \, ds
\]
\[
\leq \left(\int_0^t |\nabla G|_{15/8}^2 \, ds \right)^{19/20} + \Psi \left(\int_0^t \Phi ds \right).
\]

Therefore combining all the estimates, we have
\[
\int_0^t \int \rho |u_t|^2 \, dx \, ds + \int |\nabla u|^2 \, dx(t)
\]
\[
\leq \Psi \left(\int_0^t |\nabla G|_{15/8}^2 + |\Delta P u|_{15/8}^2 ds \right)^{19/20} + \Psi
\]
\[
\leq \Psi \left(\int_0^t \int \rho |u_t|^2 dx ds + \int |\nabla u|^2 dx(t) \right)^{19/20} + \Psi
\]
\[
\leq \frac{1}{2} \int_0^t \int \rho |u_t|^2 dx ds + \int |\nabla u|^2 dx(t) + \Psi
\]

and we conclude that
\[
\int_0^t \int \rho |u_t|^2 dx ds + \int |\nabla u|^2 dx(t) \leq \Psi.
\]

4 \text{ \textit{L}}^\infty\text{-bound of density}

From the mass conservation law, we have
\[
(\log \rho)_t + u \cdot \nabla (\log \rho) + \text{div}u = 0
\]
and from momentum conservation law,
\[
(\Delta^{-1} \text{div}(\rho u)) + u \cdot \nabla (\Delta^{-1} \text{div}(\rho u))
\]
\[+[u_j, R_i R_j](\rho u_i) - (\lambda + 2\mu) \text{div}u + P = 0.
\]
Thus, if we define \(F = (\lambda + 2\mu) \log \rho + \Delta^{-1} \text{div}(\rho u) \), \(F \) satisfies
\[
F_t + u \cdot \nabla F + P = [u, , R_i R_j](\rho u_i).
\]
Next we define the Lagrange flow \(X \) of \(u \) so that
\[
(X(t, s, x))_t = u(t, X(t, s, x)), \quad X(s, s, x) = x
\]
and derive
\[
F(t, X(t, 0, x)) = F_0 - \int_0^t P(\rho(s, X(s, 0, x))) ds
\]
\[+ \int_0^t [u, , R_i R_j](\rho u_i)(s, X(s, 0, x)) ds.
\]
Using the fact that \(\rho_0 \) is nonnegative, we have
\[
F(t, X(t, 0, x)) \leq F_0 + \int_0^t [u, , R_i R_j](\rho u_i)(s, X(s, 0, x)) ds.
\]
\[
\log \rho(t, x) \leq \log(|\rho_0|_\infty) + c |\Delta^{-1}\text{div}(\rho_0 u_0)|_\infty \\
+ c |\Delta^{-1}\text{div}(\rho u)|_\infty(t) + c \int_0^t \|[u, R_4 R_3](\rho u_i)|_\infty(s) ds.
\]

In view of Sobolev embedding, we have

\[|\Delta^{-1}\text{div}(\rho_0 u_0)|_\infty \leq |\rho_0 u_0|_{7/2}\]

and

\[|\Delta^{-1}\text{div}(\rho u)|_\infty(t) \leq c |\rho u|_{7/2} \leq \left(\int \rho|u|^4 dx(t) \right)^{2/7} \leq \Psi.
\]

Again, from Sobolev embedding, we obtain

\[
\|[u, R_4 R_3](\rho u_i)|_\infty(s) \leq \|[u, R_4 R_3](\rho u_i)|_{W^{1,7/2}} \\
\leq c |\nabla u|_{5} |\rho u|_{20} \leq c |\nabla u|_{5} |\rho|_{39}^{39/40} |u|_{\infty}^{9/10} \left(\int \rho|u|^4 dx \right)^{1/40}.
\]

we know that

\[
|u|_\infty(s) \leq |u - \overline{u}|_\infty(s) + |\overline{u}|_\infty(s) \leq |\nabla u|_{5}(s) + \Phi(h(s)) \\
|\rho|_{39}(s) \leq \Psi \left(\int_0^t \Phi(h(s)) ds \right)
\]

\[
\sup_{0 \leq s \leq t} \int_0^t |u|^4 dx(s) \leq \Psi \left(\int_0^t \Phi(h(s)) ds \right).
\]

Hence, we get

\[
\int_0^t \|[u, R_4 R_3](\rho u_i)|_\infty(s) ds \leq \int_0^t |\nabla u|_{5}^2(s) ds + \Psi \\
\leq c \int_0^t |\nabla G|_{15/8}^2 + |\Delta P u|_{15/8}^2 ds + \Psi \leq \Psi
\]

and this implies

\[
\rho(t, x) \leq \Psi.
\]

With the estimate of $|\nabla u|_2(t)$, we conclude that

\[
h(t) \leq \Psi \left(\int_0^t \Phi(h(s)) ds \right)
\]

for some Lipschitz functions Ψ and Φ. Since Ψ and Φ are Lipschitz, there is T_0 such that

\[
h(t) \leq C \quad \text{for all} \quad 0 \leq t \leq T_0.
\]

Acknowledgement. The author expresses his sincere gratitude for the wonderful hospitality of Mathematical Institute of Tohoku University.
References

