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1. Introduction

We are interested in the large-time asymptotic behavior of weak and strong solutions of the
Navier-Stokes system in the whole-space R" and in the upper half-space R}, n > 2:

du+u-Vu=Au—-Vp (ze€ D" t>0)
V-u=0 (xe D™ t>0) (NS)
‘U|t=o=0,.

Here, D™ = R" or R} ; and when D" = R}, we impose the boundary condition
‘u'agi =0.

u = (u},---,u"™) and p denote, respectively, unknown velocity and pressure; a is a given
initial velocity ; and

o, = 9/0t, V=(,,0), 8;=0/0z; (j=1,---,n),
n n n
Au=zaj?u, u-Vu=Zuj6ju, V-u=zajuj.

et '

We want to find asymptotic profiles of Navier-Stokes flows under some specific conditions
on the initial velocities. In Section 2 we state our main results in R". Our first result in R"
is that, as ¢ = oo, the strong solution u admits an asymptotic expansion in terms of the
space-time derivatives of Gaussian-like functions up to (and including) the order n, the space
dimension, provided the initial velocity a satisfies appropriate decay conditions and moment
conditions. This result, stated in Section 2, improves that of Carpio [2], in which is deduced
the first-order asymptotics of two kinds, one in R? and the other in R%. Our proof shows
that one and the same result holds in all dimensions n > 2. Moreover, our argument .utilizes
only the Taylor expansion of smooth functions, elementary results on the Fourier transform,
and (improvement of) decay results on the L>-moments of solutions as given in [6], [14].
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In Section 3 we state our result in R7}. In this case our asymptotic expansion involves
only the normal derivatives of Gaussian-like functions in contrast to the case of flows in R";
but the essential feature is the same. Namely, the functions describing the profiles are of
the form ¢t~ "3 K (mt‘%), where K stands for some specific functions which are bounded and
L-integrable for all 1 < ¢ < oo. However, it should be emphasized here that in the case of
flows in R" the functions K are all in L!, while this is not always true for flows in the half-
space. This suggests that the Stokes semigroup over the half-space would never be bounded
in L'. We then apply our expansion result to the analysis of the modes of energy decay of
Navier-Stokes flows in the half-space and prove in Corollary 3.8 a characterization of weak
solutions which admit the lower bound of rates of energy decay of the form Nu(@®)]l2 > ot
This result extends a result of [13] to flows in the half-space.

In Section 4 we sketch the proofs for flows in R", and in Section 5 the proofs are outlined
for flows in R}. We deduce our asymptotic expansion only for strong solutions. The full
proofs are given in [3], [4]. '

2. Results for flows in R"

In this section, we consider the Navier-Stokes system in R", n > 2, which will be treated in
the form of the integral equation:

u(t) = e *a — /ot e~ =PV - (u® u)(s)ds. (2.1)

Here, A = —A is the Laplacian, {e~*4};>o is the heat semigroup, and P is the bounded
~ projection [8] onto the spaces of solenoidal vector fields. _

In dealing with strong solutions, we will always assume that the initial velocity a is
solenoidal, bounded, smooth and satisfies

[+ lyDle()ldy < oc. (2:2)

Assumption (2.2) implies a € L'; so the divergence-free condition ensures (see [11])

/qw@=u (2.3)

As for the strong solutions, we know (see [8], [11]) that a unique strong solution u exists in
general LP-spaces, satisfying ’

1_1

IV*u(@)]l, < CA+£) 5 30FD  (k=0,1, 1<g< o), (2.4)

if @ is bounded, smooth, small in L™ and satisfies (2.2). Hereafter, ||-||» denotes the L"-norm
and V = (61, ce ,6,,), 6, = 6/3.’12]
We first recall that the kernel function of the projection P onto the solenoidal fields is
represented via the Fourier transform in the form P(z) = (Pjk(2))} k=1, With
-~ ) , 1€.1 ) . n
ij(g) = /e—’”'erk(x)dx = (5,1, + —Eé_-lgﬁ (l = v —1, T € = 237]6]) (25)
. j=1
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So, the kernel function Fy = (Fy;¢)?:; of the operator e~*4 P8, has the Fourier transform

Foin(€,t) = i€ee™ 7 (850 + itjiga/ IEP) = Flia(6,1) + F20(, 1).
Denoting the heat kernel by
Ey(z) = (4mt)~% exp(— L)

and writing 07 = 0" --- 93~ for any multi-index @ = (e, ---,a,) of nonnegative integers,
we easily see that F};(z,t) = (8,E;)(z)d;x, and so

18+ _n ¢y 1
0P Fysu(t)llg < Gt~ 7 30700 (1< g < 00). (2.6)
To deduce similar estimates for F7;;, we invoke the relation |¢|~2 = [° e=*I"ds, to get
F‘Zj,,(f,t) = i{gifjifk/t e~ ds, so that 8fF,2,j,,(x,t) =/t 020,0,0E,(z)ds
From this we easily obtain

18P BEF2,( D)l < Cot™ S5 -30-D (1 < g < o0).

Combining this with (2.6) gives

s )

18202 Fogu(-, )y < Cot™ (1<q<oo). (2.7)

We now state the results for flows in R"®. Here and in what follows the summation con-
vention will be employed.

Theorem 2.1. (i) Let a be bounded, smooth, solenoidal and satisfy (2. 2) Let u =
(41, -, un) be the corresponding strong solution of (2.1). For 1 < 75 <ocoandj=1,-
we have

Jim 3079 fus6) + GBIC) [ wwas)dy + Fesn() [ f (wem) (v, s)dyds| =0. (28)
(ii) Suppose a = (a;,---,a,) satisfies the following additional conditions :

[ 161™la(w)ldy < oo, e@I<CA+BD™", o= aba .

k=1 ( . )

Ibix ()| < C(A + [y))™, bjr are small in L!,

Jor some integer m with1 < m < n. Then, for 1 <qg<oocand j=1,---,n, we have

21—

lim ¢t7
t— o0

—1)el ~
M- ¥ S eE)0) [rewa
11<|a|<m : (2.10)
v > Eorn 0 [T v o), dyds

131
18l+2p<m—1 piA!

q
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Theorem 2.2. (iii) For every a € L? which is solenoidal and satisfies (2.2), there exists
a weak solution u which admits the expansion (2.8) with 1 < q < 2.
(iv) Let n = 3,4, and suppose that

[+ taldy <o [+ luhlew)ldy < oc. (2.11)
Then there exists a weak solution u satisfying (2.10) for 1 < ¢<2and1 <m<n-—1

Remarks. (i) (2.4) implies |ju(s)||2 < C(1 + s)7%7, so the last integral in (2.8) is finite.
(i) Convergence of the integrals in the second sum of (2.10) is ensured by the estimate:

/Iy]mlu(y, s)[Pdy < C(1+ s)~ = (0<m<n+1), (2.12)

which holds if « satisfies (2.9). Estimate (2.12) is deduced in the following way: First, as
shown in [11], assumption (2.2) implies |ju(s)|; < C(1 +35)~2. Secondly, we know (see [12])
that (2.9) ensures |y|"*!|u(y, s)| < C for all y € R™ and s > 0. Therefore,

/Iyl"“lft(y, s)[2dy < sup(|y|" u(y. 5))) / lu(y. s)|dy < C(1 +5)7%.
v
Since |ju(s)||2 < C(1 4 s)~%7! by (2.4), we get (2.12) via Holder’s inequality.

(iii) Theorem 2.1 improves an asymptotic result of Carpio [2] in the following sense.
First, the result of [2] ignores the vanishing of the average (2.3), and so contains the trivial
term E,(z) [ a(y)dy = 0. Secondly, [2] deals only with the case discussed in assertion (i) of
Theorem 2.1, but the results given there are incomplete in the two-dimensional case.

(iv) The proof of Theorem 2.2 is almost the same as that of Theorem 2.1 (ii). It differs
only in estimating the nonlinear convolution integral of (2.1) in a neighborhood of s = t.
The restriction m < n — 1 in assertion (iv) is needed since for weak solutions we can prove
only that

/|y|’"IU(y,s)|2fly <C+s)" D02 (0<m<n, n=3.4), (2.13)

which is weaker than (2.12). Estimate (2.13) is due to [6], [L4].

3. Results for flows in R}

We first prepare a few specific properties of solutions v = (v',v"), v = (v!,---,v"h), of the
Stokes system

Ov=Av—Vp (r eRY, t>0)
V-v=0 (x €RY, t2>0) (S)
U|8R1 = 0, 1’|i=0 = .

Consider the Helmholtz decomposition ([1]):

L'(RY) = (LR =L@ L, 1<r<oo,
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Li={ueL'(R}) : V-u=0, u"|op; =0},

L, ={Vpe L'(R}) : pe Lj (R})}.

and let P = P, be the associated bounded projection onto L. Then problem (S) is written
in the form

v+ Av=0 (t>0), v(0)=a€ L, (8

in terms of the Stokes operator
A=A4,=-PA, DA)=L,Nn{uc Wz"(]Ri) : '"-'8111 =0}.

We know (see [1]) that — A, generates a bounded analytic semigroup {e~**},5¢ in L’ so that
for each a € L. the function v(t) = (¢, ") = e~t4q gives a unique solution of (S') in L.
Ukai [16] gave the following representation of the solution v :

v"(t) =Ue *Pla" - § - d]; v'(t) = e7*Bla’ + Sa] - Sv". (3.1)

Hereafter, B = —A denotes the Dirichlet-Laplacian on R} ; {e7*B},5¢ is the bounded analytic
semigroup in LP-spaces generated by —B; S = (S, - - - ,Sn—1) are the Riesz transforms on
R*™'; and U is the bounded linear operator from L"(R}) to itself, 1 < r < oo, which is
defined via the Fourier transform on R*™! as

TDE an) = €1 [ e K10 ¢ y)ay. (3.2

As is well known, we have
e Pf=FE *f*

(3.3)

R%’
for a function f defined on RY, where E, is the heat kernel on R™ and f* is the odd extension
of the function f defined on R :

fe,2a) (22> 0),
& xa) = (3.4)
—f(2',—x,) (2o <0).
Let || - |lg; 1 < ¢ < 0o, denote the norm of LY(R"?). The following are the standard L'-L9
estimates for the Stokes semigroup. ’

Proposition 3.1. There hold the estimates

k n(l 1

IV e~ a]ly < Ct™37670 g, (3.5)

with k =0,1,2..., provided either 1 <r < g< 00, or1 <r < q< o0.
Furthermore, 1
Ve 4all, < CEHlall, (r=1,00). (3.6)

Note that in (3.5) the exponents r and ¢ may take on values 1 and oo, respectively, although
the Stokes semigroup would not be bounded in L!, nor in L®. Estimates (3.5) are proved
in [1]; and estimates (3.6) are proved in [5] for r = 1 and in [15] for r = oo, respectively.



19

We further need the following estimates :

Proposition 3.2. Let a € LY for some 1 < ¢ < oo and

[ (1 yn)la()ldy < co. (3.7)

+

Then,

lle~*all, < C(1 + t)_i_%(lﬁg) ("a”q + /Rn yn|a(y)|dy)
| + (3.8)
[Vie~tAa||, < Ct~ 5 —30=7) /R yala()ldy (1 <r<oo, j=0,1).
+

Proof. We use representation (3.1) for e~t4q. It is easy to see that
e——tBS ] Cl., — etAS . (al)*,

where e*® means convolution with the heat kernel on R”. The Fourier image of the kernel
function of the convolution operator e2S is e~™Fig'/|¢'|, & = (&1,...,€n—1). Inserting
€71 = nY/2 5o pre K P dn gives

R g 16| = mEigle P /0 F o he e dy = n e /0 * higle~ T gy,
Thus, the kernel function F, = (F},--- JEFP) of 25 is
Fia) = (¢*8)(2) = 7 Eu(zn) [~ 073V Egpale’)d, (3.9)

where V' = (8y,--+,0,_1) and A’ = Y72 82. It is easy to see that

2¢ 1
m -2 (1-3)

Norv™Fil, < Cct™ ™3 forl<p<ooand{, m=0,1,.... (3.10)

We now prove (3.8). In what follows integration with respect to the space variables will
be performed on the whole space R" unless otherwise specified. Suppose (3.7) holds. Since
2 (Y yn)dy, =0 for ae. y € R™! whenever f € L*(R?), direct calculation gives

2@y = [Eua' = )Ben = vn) = Bza)l(@) @)y
1
=~ [[E& — ) (@B (@n — n6)(a") W)y

So, application of Minkowski’s inequality for integrals yields

_l_nn_1
le~Zal, < CUENI0.Ely [ lon) - 0"y @)ldy < O 450D [ yalalw)ldy.
+

(3.11)

Similarly, we get

_l_nn-1
let®s-ally < CEE0D [ yala(y)ldy.
+
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Since U and S are bounded in L"(RY}) for 1 < r < oo, these calculations imply that

1_n

le~ta||, < Ct~7(1-9) /R" Ynla(y)|ldy  forall1 < ¢ < oco.
+
On the other hand, we have |le=*4al|, < C||a||, by Proposition 3.1 so we obtain

+
The above argument and Proposition 3.1 together yield

Ve *al|, < Ct_%"e_t"/?a", < it /R” Unla(y)ldy  foralll < r < oo.
+

This proves (3.8) in case 1 < r < co. When r = oo, we apply Proposition 3.1 to get
le*alleo < Ct~Hle™*42%ll, < Ct* [ yafa(y)ldy,
Ry

IVe~*a|lo < Ct2]le~*4/2a||,, < Ct71-% [R Ynla(y)|dy.
+

This proves Proposition 3.2.
We write problem (NS) in the form of the integral equation

t
u(t) = e“Aa.—/ e~ t=)AP(y . Vu)(s)ds

o (IE)
= e 4a - /0 e~ =IAPY . (uQ u)(s)ds

with u®@u = (ujuk);,k:l, and discuss the existence of weak and strong solutions with specific
decay properties that are needed in proving our main result.

We first deal with the weak solutions, which are known (see [1], [10]) to exist globally in
time for all a € L2, satisfying the identity :

t
(u(t), 9 = (e™a,0) + [ (u @ u, Ve =) ds (3.12)
0
for all p € C3°(R}) with V- ¢ = 0 and the energy inequality :

t
lu(®)l +2 [ I1Vullfds < Jlal} ~ forallt > 0. (E)

Theorem 3.3. Suppose a € L2 satisfies
/m (1 + yn)la(y)|dy < oo. (3.13)
+

(i) There ezists a weak solution u, which is unique in case n = 2, such that

lu@)lls < CA+8)7F. (3.14)
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Furthermore, this weak solution satisfies

lu(t)l, < C(L+ 8773078 foralll <g<2. (3.15)
ii) When n = 3,4, the weak solution u gwen n i) is constructed via approrimate
g

solutions {uy} as given in [1], [7], [13], which satisfy

fim [ [un(t) — u(t)]2dt = 0.

N—oo JO

Proposition 3.2 implies |le~*all, < C(1 + £)="F, so the existence of a weak solution with

decay property (3.14) is deduced in exactly the same way as in [1]. The assumption implies
a € LY for all 1 < ¢ < 2; so Proposition 3.2 and (3.13) together imply

le~*all, < C(1+1)7771070)  foralll <g<2. (3.16)

By using this, we can deduce assertion (3.15) in a standard manner.
To deal with strong solutions, note first that (IE) can be rewritten as

¢
u(t) = e *a-— / e~ (IAPY . (u @ u)(s)ds
- 0

t
— e_tA/2'lt(t/2) _ / e—(t—s)APV . (u & u)(s)ds.
/2

We need this representation to prove the following

Theorem 3.4. Let a € L% for all1 < g < oo. Given 1 <p < 2, there is a number
m, > 0 so that if ||alln < mp, @ unique strong solution u exists for all t > 0, satisfying
u € BC([0,00) : LY) for all p < ¢ < o0, and

for all p < g < ooc. (3.17)
[Vu(t)]l, < C+27567)

Theorem 3.4 is proved by following the argument given in (8], [9], [11]). Applying Proposi-
tion 3.2 and Theorem 3.4, we can deduce

Theorem 3.5. Let a € LY(R}) N LY for all 1 < ¢ < o0 and satisfy (3.13). If a is small
in L, the strong solution u given in Theorem 3.4 satisfies

lu(t)lly < C(1+ $)F=E01-)
oralfl<a=ee (3.18)

IVu(t)], < ct™ 0D

To deduce our main result, we need some specific functions of (x,t) which will describe
the profiles of general solutions as t — oo. We use one and the same notation E; to denote
simultaneously the heat kernel of one variable and several variables.
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The following is the complete list of necessary functions.
Fiz) =n~4Eu(za) [ 0 VB ('),
Eju(z,t) = /0 " 0,0k00Erpa()dr, ik =1.....n
Fi(x,t) = /0°° 0iOk0nFrpa()dr,  jk=1,...,n
Gi(e.t) = [ [ (V' Erse)(a’) sgn (20)x
X Ey(xp, — zp)Er(2p)dz,dT (Jk<n-1).
Grn(z,t) / / (V'E. 1) r')sgn (z,)x (3.19)

X (OnEy)(2n = 24)(0nE;)(2n)dzndr.

[ 10,0 ) () s8n (20)
X (OnE¢)(xn — 20)(0nEr)(2n)dzndndr (JJk<n-1).

H,n(z,t) = —%/ // n_fAE,,+T+t(.t)sg11(~,,)
X (OnEy) (25 — 20)(0nEr)(2n)dzndndrT.

Nlu—-

ij.l,‘t

Here sgn (2,) = z,/|za] for z, # 0 and sgn(0) = 0. The important fact is that all of the
above functions except Fy are written in the form Ky(z) = t~"F I (xt~ 2) in terms of some

functions A" which are bounded and LP-integrable on R” for dll 1 < p < o¢ together with
their derivatives. So each K, satisfies

10fV™ Koll, = Coet™ " F730-D (1<g<oo, €, m=0,1,2,...).
By using the functions listed above, we can prove

Proposition 3.6. (i) Let u = (uv/,u") be the strong solution given in Theorem 3.5. For
all1 < ¢ < o0,

11m tf"‘%(1
t—oco

"<t)+2v[(a E)() [ " W)dy = @uFC) - [ wne }

#20 |0, [, WPads = @u) - [ wutdyas]
' (3.20)

Jk-

+2U Z Ej(-t) [ / wikdyds + Epn(-t) /0°°/R , |u"|2dyds]

=0

—2U Z Hj(,t / / wurdyds + H,p,(-,t) /ooo/;ln |u"|2dyds}
+

| J.k=1

q9
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lim t”+ (1-9)
t—o0

uw'(t) +2 {(&,Ft)(-)/m yna" (y)dy + (anEt)(')/Rn yna'(y)dy]

25U [(0uENC) [, 1" = 0.F)C)- [ e 0]

+2 [ (OnEy)( / /n u™u'dyds + (0, F;)( / / lu"lzdyds]
— 28U [(a Ey)( / / |u"[2dyds — (8, F,)( / / ] u"u'dyds]

+2 ZGJk // wiubdyds + Grn(-, t// |u"|2dyds}

chl

(3.21)

+2 ZF,k / / wukdyds + Fon(-, t [ / |u"|2dyds]

| J.k=1
— 98U Z Ejul-, / / wukdyds + Enn(-, / / |u"|2dyds}
Jik=1
425U Hyu(-, wiukdyds + Hon(-, |u"|2dyds} = 0.
$ o [, Yo

(i) The weak solutions u given in Theorem 3.3 (ii) satisfy (3.20) and (3.21) for 1 < ¢ < 2.
Expansions (3.20) and (3.21) are simplified into the following form:

Theorem 3.7. (i) For alll < q < 0o, the strong solution u given in Theorem 3.5 satisfies

ll,n;,tz-i_%(l_%) un(t) +2U6nEt(.) /};n yna"(y)dy
¥ (3.22)
—2U0Fy() - ( yna' (y)dy + u"u'(y,s)dyds) =0
CRYA b q
and
Jim #5079 |/ (1) + 2(0. () — ,SUanEt(-))/Rn yna"™(y)dy
+
. 1/, e n,.! dud
+20,E4(") (/R+ Yot (y)dy+/0 /Rzu o (y, 5)dy s) (3.23)
+2SU3, Fy(-) - (/R+ Yna (y)dy+f0 /Riu u (y,S)dde) q =0.

(ii) The weak solution u given in Theorem 3.3 i(ii) satisfies (3.22) and (3.23) for1 < ¢ < 2.
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Theorem 3.7 can be applied to characterizing flows with the lower bound of rates of energy
decay. The result below extends a result of [13] to flows in the half-space.

Corollary 3.8. The weak solution u given in Theorem 3.3 (ii) satisfies
llu(®)lls > ct="%  for large t >0 (3.24)

if and only if

( / , U 0)dy + [ , ()0, 5)dyds, [ : yna"(y)dy) £(0,0.  (3.25)

The characterization by [13] for flows in R" involves all of the quantities Jyja*(y)dy and
Jo°f (v?u¥)(y, s)dyds, while Corollary 3.8 shows that in characterizing flows in the half-space a
distinguished role is played by the normal components a” and u" and the normal derivatives
OnE; and 0,F;. Moreover, the integrals fffRi(ujuk)(y,s)dyds, 5k =1,...,n—1, and
) R (u"u")(y, s)dyds do not appear in Corollary 3.8.

4. Proof of Theorem 2.1
We prove Theorem 2.1 by estimating linear and nonlinear terms separately.

Theorem 4.1. Suppose a is solenoidal and satisfies

J@+1u)"la()ldy < oo (4.1)
for an integer m > 1. Then for 1 < q < oo,

—1)lel
ta- ¥ EerE)0) [yraway

1<]al<m

lim ¢3+30-¢)
t—o0

=0. (4.2)

q

Outline of Proof. Since a is solenoidal and integrable, it satisfies (2.3). So,

(e*4a)(@) = [[Bula - y) - Eulx)la(y)dy.

Applying Taylor’s theorem to E;(x — y) and estimating the remainder, we can prove (4.2).
Consider next the nonlinear term

w(t) = (wi(t), -+, wyp(t)) = — /ot e APV . (u @ u)(s)ds. (4.3)

Theorem 4.2. Under the assumption of Theorem 2.1 (ii), we have

—1)18l+p 00
wo+ 3 EET @R [ )y, s)dys

181+2p<m~1

(4.4)

q
=o(t" 2 2074)) as t = oo,
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foralll1<g<oo,m=1,---,nand j=1,---,n

Proof. By (4.3) and the definition of F} ;. given in Section 2, we have

t/2 t
w;(t) = — (/0 + t/Z)/ Fpik(z — y,t — s)(ugur)(y, s)dyds = J; + J,

and
7l <C [ (6= ) Hu(a)lyds = o373 ast o

To estimate J;, we write

t/2
S o= —/0 Frin(z —y,t — s)(ueur)(y, s)dyds
(_1)|ﬂ|+17 t/2
= - 3 (00O Fuje) (2, 1) sPyP (ueur) (y, s)dyds
|8|+2p<m-—1 p'ﬂ' 7 / /

t/2
-—/0 /R;f’jk(x,y; t,s)(ueur)(y, s)dyds,

obtaining

-1 |Bl+p X )
n+ Y EET @R [T o3 ). s)duds

Blatpem—t PP
(_1)1/3|+P ) 5
= Y L@ [ [ (ww) . )dyds
8|+ 9perm—1 p!p! . t/2 (4.5)
1/2
—/0 /szk(m,y,t,s)(wuk)(y,s)dyds
= Ji + o
Recall (2.6), (2.7) and (2.12), i.e., that
(8702 Fegu) (D)l < Cot™ 53070,
(4.6)

/'9p|y|wl|“(yw $)Pdy < C(1+ )~ 770,

~-2(1=

n41 1
If | 3] + 2p < m — 1, each term of J;; behaves in L7 like AR ) as t = 0o hence

m

tEHEO=D| )l < CHFE < CtF 50 ast — oo

So we need only estimate .J)5, which is a finite linear combination of terms of the form

t/2
// / 0)1BH=1 (PP Fy 1) (x — yf,t — 58)sPy° (ueur)(y, s)dydsdf,
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with |3| + 2p = m, and this term is written as
1 pt/2
= (PO Fy jx)(x, 1) /0 /0 (1= 6)PHP=1gPyB (youy)(y, 5)dydsdd

1 /2 |
+/0/0 /(1 — 0)|/3|+p—1[(3{’ang,jk)(.r —yb,t — s6) — (a;’ang,,-k)(x, t — s6)]x
X sPy? (weur) (y, s)dydsd

1 pt/2 |
+/0/(; /(1 — )PP (OPOFy 1) (.t — $6) — (OPOP Fe ji) (2, 1)] %
x sPy8 (weur)(y, s)dydsdo
= Ry + R, + R;.

So the proof will be complete if we show that

lim t¥*30-D|Refl, =0  (k=1,2,3, 1<g< o). (4.7)

t—o0

Since m < n, for R; we have

n—m

f%+%(1—%)||R -1 [ =21 -t f! =17
, 1l L Cypt2 A (1+s)777 Tlds < Cyt2 0(1+.s) ds -0

as t = oo. To estimate Ry, note that we can write O70°F, j, = t=* E mI\'(J:t‘%) in terms

of a function K which is bounded, integrable, and uniformly continuous over R". Hence,
denoting

01(y,5,0) = ||K(- — yb(t — 58)"7) — K(-)||,

and invoking the boundedness of y;, we get
myn-l) -1 t/2 Pl,.118] 2 -1 t —_n-—m_,4
tz272 73| Ry||, < Cyt 2/0 /s [y u(y, s)|*dyds < C,t~2 /0 (14s)""2 ~'ds,
so that, since m < n,
m n t
£FHE0-D|| Ry, < Ct—%/ (1+5)7ds -0  ast— oo,
0
Finally, we write R3 in the form
11 ptf2 " .
Ry = / / / / (B 0P Fy ji) (x,t — sO7)sPH P (ueup)(y, s)dydsdddr.
- 0Jo Jo
Since |3| + 2p = m < n, we have
m_ n 1 3 t/2 n-m 1
t2+20=0)|| Ry, < Ct“f/ (1+s) 7 ds<Cts 50
0

as t — oo. This completes the proof of (4.7) and so Theorem 4.2 is proved.
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5. Proof of Proposition 3.6, Theorem 3.7 and Corollary 3.8

We first deduce Corollary 3.8 from Theorem 3.7, and then Theorem 3.7 from Proposition 3.6,
and finally, we give an outline of the proof of Proposition 3.6.

Proof of Corollary 3.8. In view of (3.2), the functions U0, E; and Uo, Ft’, j=1,- -1,
have the form t~*+ K (zt™7), so

UB.EIE = Cit=* >0,  |UB.Fi|3=Cat™™% > 0.

We easily see that Ud,E; is an even function of ', and UJ, FJ are odd functions of z'.
Furthermore, let j <n—1,k<n-—1and j#k. Then Ud,F} is odd in z; and even in zj,
while U8, FF is odd in zj and even in z;. Therefore,

(U, E,,Ud,F}) =0, j=1,...,n =1,
|UBFL|3 = ... = |UBFI I3, (5.1)
(U8, F{,Ud.FF) = 6;llUB.F/ |13,

where (-,-) is the inner product of L*(R7}). Using (5.1) we see that if we set

a=2/ Yna" (y)dy, —2/ yna' (y)dy, 7—2// u')(y, s)dyds,

then
|UBnEi(-) = UBE(-) - B+ = [IUn Et|| a® + ||UB.F 1318 +/?
= Ct_ 2

(5.2)
We shall apply (5.2) to the proof of Corollary 3.8. Firstly, suppose that (8 + -, a) # (0,0).
Then (5.2) implies
(U8 Er(-)a — UdFe(-) - (B+)l2 = Ct—"% >0 forallt>0;
o (3.22) yields, for large t >0, |
lu"(t)ll2 > UBE()ax = UBFi(:) - (B + 2
, —[[u" () + UBp Ee(-)x = UBFi(:) - (B +Y)l2
= ot oty > T
Secondly, suppose that ||u”(t)||2 > ct—*+ for large t > 0. Then (3.22) implies
IUBEi()ex = UBnFi(-) - (B + )2
> [t (D)2 = 1" (8) + UdEe()a = UBRF(:) - (B +)ll2

> ot~ —o(t™ ™ )>0
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for large ¢ > 0, and so we conclude that (8 + +, a) # (0,0). Suppose finally that
liminf "5 u"(t)lo =0  and  |fu(t)], > et~ (5.3)
In this case we invoke
C = t*P|UB,E()a— UduFi() - B+l

< V() + USLEi(Ja — UBaFi(-) - (B + )z + 5 " () .

Passing to the limit as t — oo and'applying (3.22) and (5.3) gives C = 0, since
lim inf[f(t) + g(¢)] = lim f(t) + limnf g(t).
This implies that (8 + -, a) = (0,0), so (3.22) and (3.23) together yield
lim £ lu()]l> =0,

contradicting the assumption (5.3). Hence ||u(t)||s > ct~** implies lu(#)]lz > et~ "+, and
so we get (8 4+, a) # (0,0). This completes the proof of Corollary 3.8.
Proof of Theorem 3.7. Let

ik _ [ Jok
c —/o /1(u u”)(y, s)dyds,

wherel1<j<n-land1<k<n-1lorj=k=n. By (3.20) and (3.21), it suffices to
show that . '
OnErc™ + Ejpc® + Epne™ — (Hjd™® + Hppc™) =0 (5.4)

and
OnFyc™ + Gj?* + Gruc™ + Fjic?* + Frpe™ = 0. (5.5)

Here, and in what follows, we will employ the summation convention for repeated indices
with respect to 1 < j <n—1and 1<k < n—1. We apply the Fourier transform with
respect to ' € R™! to the left-hand side of (5.4) ; then multiply the resulting function by
|¢'1et€'” ; and use 8, E,(z,) = 82E,(z,), to get

[€'](c™|€'|? — 7% 84) /0 e P8, B, y(x,)dr

o0 o0 (5.6)
+ ("¢’ - cikfjfk)[ e"mz/ g0 (21)0n Et(Tn — 20)0n Er(2,)dzpdr.
0 —00
We regard the above function as an odd function of x,, € R and apply the Fourier transform
with respect to z,, to conclude by direct calculation that the function in (5.6) vanishes
identically. This proves (5.4). The proof of (5.5) is almost the same as that of (5.,4).
We next prove Proposition 3.6. We begin by establishing
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Theorem 5.1. Let a € LL(RY) satisfy (3.7). Then, for v = (v/,v") = e "a we get

ST Un(t)4.ch[<anza>(»_[;1yna"(y>dy-—(an1%><» -/;nynaxy>dy] ~0
=D |y (1) + 2 [(anEt)(-)/Rn yna'(y)dy + (BnFt)(-)fn y"“n(y)dy}
— 28U [(a E)( f yna"(y)dy — (0. F1)( / Ynt'(y) dy] —0

q
as t = oo. Here, Fy is the function given in (3.9).

Proof. We can rewrite (3.11) in the form
etA(an)* — a Et / yn
—A/%mw—ymmamu—%m—@ﬂm%mwmw@w

- (aﬂEt)(zn)/yn[Et(x, - y,) - Et(x,)](an)*(y)dya

since [ yn(a™)*(y)dy, = 2 [5° yna™(y)dy,. Thus, for 1 < g < oo, we obtain

Ue —tB a” +2(](a Et )/ Yna Z])d,j

q

n

< C 5307 //“ (0uE1)(- — Yn “59) (OnE1) (lglynl - [(a™)* (y)|dydd

+CtamE0Y) /IIE1 = y't77) = Ei()llqlynl - ()" (9)dy.
But, |[(8.E1)(- — ynt™76) — (3 E1) ()|l and ||E1(- — ¥ 't=7) — Ey(-)||, are bounded and
Jim || Ey (- — yt72) — Byl = lim [[(0n Ey) (- = Yot 28) — (OuE1)()llg =0
for any fixed y and 6. So the dominated convergence theorem gives

lim $2+30-¢)
t—o0

=0.

q

Ue™Ba™ + 2U (9, Ey)(- /'% (y)dy

Similarly, we rewrite e!2(S - a’)* as

e'2(S-d) = —20.F)(x /yn y)d

!\.'7—4

ot [ (OB = 1) = (Bu B )] %
X V' Bypela' = y') - (a')" (y)dndyds

- W—%(anEt)(In) //Ooo ynn_%V,[EnH(x, - y,) - En+t(xl)] ) (a’)*(y)dndg
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and apply
th—glo [{(OnE1) (- — ynt™28) — (8 E1)(:)|lg =0
lim (VB —y'(n+1)7%) = (VE) (), =0,
to obtain
tl_l’rgt"* 1= Ue™tBS . o' + 2U (8, F,)( / yna'(y)dy|| = 0.

The other terms of formula (3.1) are similarly estimated, and we obtaln the desired result.
This proves Theorem 5.1.
Let u be the strong solution given in Theorem 3.5. We write the nonlinear term of (IE)

s t/2 t
- (/ + ) e~ AP L (u© u)(s)ds.
0 t/2

By (3.18) and the boundedness of A‘éPV- the second term is estimated in L! as
<C ” (t — 5)77||u(s) 5)|[34ds < C/ t—s) 3(1+s)" 7175 ds = (¢~ EE G )
2

as t = oo. Therefore, in view of Theorem 5.1, we need only estimate the function
t/2
w(t) = — / e (=IAPY . (u S u)(s)ds
0

= wi(t) +wa(t) = (w}(8), w (1)) + (wh(t), wi(t))

where v @ u = (wu*)7,_, and

=~ /t/ Ue =BV . (wu™) — S - (V - (utt'))](s)ds

t/2
Wl () = — / e~ =IB[(V . () + SV - (wu™))](s)ds — Swi(¢)
0 (5.8)
wi(y) = / Ue™(t=9B[3, N (8;0 (wiu*)) — S - (V' N(0;0k (w'uk))](s)ds
t/2 ) .
wy(t) = —/ e~ B[(V'N(8;0 (wu*)) + S8, N (9;0(wu*))](s)ds — Swi(t).
0
Here, g = N f denotes the solution of the Neumann problem
—Ag=f inR}; Onglory = 0.
Since u = 0 on IR}, by using the summation convention we have
PV - (u @ u) = 8;(u'u) + VN(9;0 (v u¥)). (5.9)

Let @, be the fundamental solution of —~A. We easily see that
f(&,zn) (zn > 0)

Nf — Q"f*|Ri = Qn *f*|31 ) f*(z ,-’I?n) = { f(.’l?’.—'xn) (zn < 0)
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The integrals in (5.8) are estimated by applying
Lemma 5.2. Letx € R}, y €R", ¢ >0, and consider the function
K(z,y,t) =t F KOt 5 ,yt77),
where K°(€,n) is smooth and satisfies IVE K (5 n)llg £ Cqm for allm =0,1,2,..., all
n € R™ and some 1 < ¢ < 0o. Then

14244m

18V K (g, )l < Coemt™ 2 “30-9 4, m=0,1,2,..., (5.10)

T,

for all y € R". Moreover, if we set
t/2
L(z,t) = / K(z,y,t — 5)(u ® u).(y, s)dyds,
0

I'(z,t) = /0 Y 2/ K(z,y,t — 5)(u ® w)* (y, s)dyds,

with u the strong solutions given in Theorem 3.5, then

L.(t) — 2K(-,0,t) /ooo/m (u @ u)(y, s)dyds

1 1
lim ¢2+2(=d)
t—o0

=0 (5.11)

q

and )

lim #4301 (2)]|, = 0. (5.12)
Via complicated calculation we can show that the kernel function of each term of (5.8) has

the properties of function K (z,y,t) treated above. So we can prove (3.20) and (3.21) by
applying Lemma 5.2. The details are given in [4].

Proof of Lemma 5.2. We here prove only (5.11), since (5.12) is proved similarly and (5.10)
is directly verified. We can write

I(x,t) = 2K(z,0,t) /0°°/Rn (u ® u)(y, s)dyds — K(z,0, t) [ﬂ/(u ® u).(y, s)dyds
+
t/2
+ /0 /[K(a:,y,t — 5) = K(z,0,t — 5)](u ® u).(y, s)dyds
t/2
+ /0 /[K(I,O,t —5) — K(2,0,t)](v ® u).(y, s)dyds
= 2K(z,0,t) /0 '/;‘fi(u Q u)(y,s)dyds + I + I + Is.

We easily see that }_Lm t15+%(1"%)||11||q — 0. Since t — s > t/2 if 0 < s < t/2, application of
Minkowski’s inequality for integrals and a change of variables gives

1,n¢1__1 t/2 - _ -~
F30-Dn), < [ [IE Gyl = 9)78) = K°C0)llfunly, o) dyds

/2 t/2
C/Ot /cpt(y,s)dyds = C’/o Pi(s)ds.

I
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By the assumption on K°, the function ¢4(y,s) = ||K°(-, y(t — 5)77) — RKO(-,0)]||4]wa(y, s)|?
satisfies 0 < p¢(y,s) < Clu.(y, s)|*. Furthermore, tll)rg) ©1(y,s) = 0. Indeed, from the relation

K°z,y(t —s)"7) = K(z,0) = y(t — s)~% - Jo (VyK°)(z,y(t — s)~%6)d6 and the assumption

on K we obtain the pointwise convergence
-1 -1
2e(y,9) < |yl(t = 8)72 sup |V K°(-, 2)lglua (3, 8)* < Clyl(t ~ )~ F s (y, 8)* = 0

as t = oo. Since |u,(y,s)[? is integrable in y € R™ for fixed s, the dominated convergence
theorem gives tli)r{.lo Yi(s) = lim [ oy(y, s)dy = 0. Since 3;(s) < C|lu(s)||3, we get

T
lim /0 Yi(s)ds =0  for each fixed T > 0.

t—o0

Now, given an € > 0, choose T > 0 so that [ ||u(s)||2ds < e. For t > 2T, we have
t/2 T ) T
. 2 '
/0 i(s)ds < /0 i(s)ds + C /T llu(s)|2ds < /0 e(s)ds + Ce.

Hence, limsup fi/2 Yy(s)ds < Cé¢, and this proves tl_ip t%+%(l_%)”12”q = 0. To estimate I,
t—o0 oo

note that K(z,0,t) — K(z,0,t — s) = — [y s(0,K)(z,0,t — s6)df; so for 0 < s < t/2,

B

Since |[u(s)|| < C(1 4+ s)~'"% and n > 2, it follows that

1 n 1 t/2 t
t2t20-9) L), < Ct™! sllu(s)|Zds < Ct™' [ (1+s)"'ds =0
9 0 2 0

as t — o0o. This proves Lemma 5.2.
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