gooooooooo 12250 2001 0 46-98

A Study of the Relativistic Euler Equation

Tetu Makino (% #)
Faculty of Engineering,

Yamaguchi University

This is a joint work with Cheng-Hsiung Hsu (National Central Univer-
sity, Chungli, Taiwan) and Song-Sun Lin (National Chiao Tung University,
Hsinchu, Taiwan).

1 Introduction

In this article we study the Cauchy problem to the one-dimensional rela-

tivistic Euler equation

B p+ P/t 9 (p+ P/ _

ot 1—u?/c2 Oz 1—u?/c? =0,
2+ PO 0 Pipt n
ot 1—u?/c? 0z 1—u2/cz ' )
Ple=0 = po(z), u]e=0 = uo(z). (1.2)

Here c is a positive constant, the speed of light, and P is a given function of
p. The equation (1.1) governs the one dimensional motion of a perfect gas
in the Minkowski space-time. When ¢ — oo, (1.1) tends to the usual Euler

equation of gas dynamics

pt + (pu)z =0,
(pu)e + (P + pu’); = 0. (1.3)

Many mathematical investigations for this non-relativistic Euler equation
were done. But the first mathematical investigation for the relativistic Euler
equation (1.1) was done recently by Smoller and Temple [6]. They assume
P = 02p, where o is a positive constant < c¢. Under this assumption, they
showed that if the initial data po(z) and ug(z) satisfy

c+ up

T.V.logpy < o0, T.V.log p—
— U

<w,
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then there exists a global weak solution to the Cauchy problem (1.1)(1.2).
The result was obtained by Glimm’s scheme and it is the relativistic version
of Nishida’s result [5] for the non-relativistic problem.

However we would like to consider a more realistic equation of states. We

keep in mind the equation of state for a neutron stars, which is given by

P=KSf(y), p=Kcg(y)

f()—/y—i——d

V=) Vixe
y

g(y)=3/0 ¢*V/1+ ¢2dq.

For this equation of state, we have P ~ %p as p — oo but P ~ %Kz/aps/s
as p — 0. So we assume the following properties of the function P (p):
(A): ; ,
P(p) >0, 0<dP/dp<c?  0<d’P/dp’
for p > 0, and
P=A4p"(1+[p"""/c’l)

as p — 0. Here A and ~ are positive constants and

N being a positive integer, and [X]; denotes a convergent power series of
the form 3, ., ap X
The result which we want to generalize to the relativistic problem is those

by G.-Q. Chen et al [2]. So we assume that the initial data po(z), uo()
satisfy

c. c+up(x)
< - —_— .
0_p0(Z)SM0’ |210gc_u0(z)|SM0
A weak solution of (1.1)(1.2) is defined as follows.
We write
g p+ Puz/c4,
1—u?/c?
P (p+ P/c*)u
1—u?/c?’
¢ = Prew
1—u2/c?

= (E,FT, fU)=F".
" Then (1.1) can be written as

Ut+f(U)z = 0.



Let us denote by Uo(z) the initial data. Then a weak solution U(t,z) is a
bounded measurable function which satisfies

/ / (U®: + f(U)®;)dzdt + f Uo(z)®(0,z)dz = 0

for any test function ® € C§°([0,+0o0) x R).

2 Riemann problems

The Riemann problem is the problem to the special initial data of the

Us(z) = Up fz<0
7Y Ur ifz>0

In order to slolve this we introduce the Riemann invariants

form

w=z+y, z=z—y

where
. clo c+u _ [ VP
TR w y o p+ P/c? P

Then (1.1) is diagonarized as
wy + Aawy =0, zt+ Az, =0,

where
A = “-_‘/ﬁ Ay = _“_{{w_
1—+/Plufc?’ 14+ vVPlu/c?
the possible states U = Ugr connected to Uz on the right by rarefaction
waves are

R; : w=wp,z >z

and
Ry : w>wL,z=2zL.

The Rankine Hugoniot jump condition
o[U] = [f(V)],
where [U] = Ur — UL, [f(U)] = f(Ugr) — f(UL), gives the shock curve

(ur —ur)? ___(pr—=pL)(Pr - PL)
(1 —uk/c®)(1—u}/c®) ~ (pr+ Pr/c?)(pr + Pr/c?)’

Along this curve we have shocks

S:: PL < pr,ur < ur,
Sy PR < pL,ur < UL.
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The Riemann problem can be solved uniquely by using these rarefaction
waves and shock waves and vaccuum state. The detailed discussion can be

found in J. Chen [1].

If we look at a region of the form
EB={(waz)|_BSsz_<.B}’
we have the following

Proposition 1 If the initial data Uz, Ur belong to Y. g for some large B,
then the solution of the Riemann problem is confined to L.

Moreover if we consider the image of £p in the (E, F)-space, we have
Proposition 2 The region £p is convex in the (E, F)-plane.

Proof. Let us consider the above hedge F' = F(E) which corresponds to
w = B,—B < z < B. We have to show d?F/dE? < 0. Along the hedge

w = B, we have

u = ctanh - (B fp+P/c2 dp),

from which

By a direct calculation we have
dFF  u—+P'
E ™ 1—+Pujez
Differentiating once more we have
d’F 1—u?/c? ( P +a P’) VP
dE? ~  (1—+/Plu/c?)* 2P 2’5t P/
This was to be seen. QED.

From Proposition 2, we have

) < 0.

Proposition 3 If U(s),s € [a,b], is confined to a region T, then the

average
1 b
T /a U(s)ds

Let us look at the shock wave which connects the left state Ur to the
right state Ug with the shock speed o.

The right state Ug and o are parametrized by p = pr. Then we have the
following fact, which will be used in Section 4.

belongs to Xp.
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Proposition 4 AlongS)(pL < p), we have do/dp < 0, and along S»(p <
pL) we have do/dp > 0.

Proof. Without loss of generality we can assume u; = 0. Then u = ug

1s given by

3 [p][P]
(pL + P/c?)(p+ PL/c?)’

where [p] = p — p1,[P] = P — PL. We have

_F1 _ (p+ P/c*)u
~ [E] T p+ Pu?/ct — pr(1-u?/c?)’

By a direct but tedious computations, we have

u =

o

do (p+ P/c*)(pL + PL/c*)[p)X

& T ot Pl = pr(1- w2/2) ulpr + PIA)(p ¥ L)
X = (p+PL/P)(p+P/SP)P[p] +
+ (p+ PL/P)(—(p+ Pr/c®) + [P]/c*)[P] +
— (pL+ P[P/ .

Since P"” > 0 we know [P] < P'[p]. Thus

X > (p+PL/S)(p+ P/ P]+
+ (p+PL/P)(=(pL + PL/S) +[P)/?)[P] +
— (pL + P/P)[P*/c?
= [Pl((p+ Po/?)([p) + [P1/€) + ([p] — [P)/c?)[P]/c?).

[l - [PV _ . _ o
1>Z 2 —=1-P

Using this, itis easy to see X > 0 both when [p] > 0 and when [p] < 0.
Since u < 0, this completes the proof. QED.

(pL +0(p — pL))/c* > 0.

3 Entropies

A pair of functions 7 and q is called an entropy- entropy flux if it satisfies

the equation
Dygq = Dyn.Dy f. (3.1)
Using the Riemann invariants, we can write (3.1) as

0 o0 o, o

w low’ 0z 0z



By eliminating g from the equation, we get the following second order equa-

tion: 92 5 L6
n Ui n
1 0 _ 2= 2
Owdz + Q(Jc'?w J 62) 0, (3-2)
where
_ 1 P p+ P/,

1 —+v/Plu/c?
14+ VPu/c?

Since this equation tends to the Euler-Poisson-Darboux equation

J =

d%n N 0n 0n,
8waz+w—z(%—5;)—

(3.3)

as ¢ — 0o, we shall call (3.2) the relativistic Euler-Poisson-Darboux equa-
tion.

Among entropies of (3.3) when ¢ = oo the kinetic energy

1 P
n=spu’ + — (3.4)
2 ¥ = .

plays an important role. Therefore we want to find an entropy of (3.2)
which tends to (3.4) as ¢ — co. Let us look for an entropy-entropy flux of
the form

‘n=H(p,u?), ¢=Q(pu")u.

Inserting this to the equation it is easy to find an entropy-entropy flux

* v Pu2 c4 .
T= (1- u“sfz?)l/? 62(p1+_ uz//cz ); (3.5)
* v P/c?
¢ = [ (1- u2(722)1/2 +¢? fju2//cz')u’ (3.6)
v = exp(/l" p+d}p3/c2 + Ko), (3.7)

where K, is determined so that n* tends to the kinetic energy (3.4) as
¢ = co. We call the entropy n* defined by (3.5) the relativistic standard

entropy. The important fact is

Proposition 5 The Hessian D3n* is positive definite. For any fized B

there is a positive constant k such that
(E|DEn" (U)€) > kI,

for any U € £p and & = (o,&1) with €] = €2+ €2.
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Proof. The proof is due to direct but tedious calculations. We note

0p 1+u?/c?

8E ~ 1- Plu?jc*

ou (14 P/cH)(1-u?/cH)u
0E —  (p+ P/c®)(1 = P'u?/ch)’
dp 2u/c?

OF — 1= Pu?j’

ou  (1-u?/c?)(1+ P'u?/c?)
OF ~  (p+ P/?)(1— P'u/cd)’

Using these, we have

on*
OF
on*
oF

62 1’* _
O0E?

82 T’t

OEOF
82 77*
0F?

e+ P/ (1- /)

v 2

iz T¢5
Yu/c?

(o + P/ = w?/ )T

¥/c? , )
(1 - P'u2/cH)(1 —'{2/02)1/2(P+P/c2)2 (P' +2P'u?/c? + u?),
—¥/c? . s
(1_P'“2/04)(1—U2/62)1/2(p+P/c2)2(2P /C +14+ Pu /c )u,
\I’/c2 /.2 [ .4
(14 3P'u*/c?).

(1 = P'u?/e)(1 — u?/c2)1/2(p + P[c?)?

Therefore we get

(€|Dg 7€)

oy

v +

NEeés + 20gréof1 + nFrE]
¥ /c? 7
(1= P'u?/c*)(1 - u?/c?)Y/2(p + P[c?)?""
(P’ +2P'u?/c? + u?)€l — 2(2P'/c® + 1 4 P'u? /ch)uboly +
(1+3P'u?/c*)e}
2P'(1 — u?/c?)2(1 — P'u?/c?)
A+C++/(A-C)2+4B?
P +2P'u?/c? 4 w2,
(2P’ /S + 1+ P'u?/c*)u,
14 3P'u?/ct.

(€2 + £2),

This completes the proof. QED.

4 Construction of approximate solutions

Let us construct approximate solutions using the Godunov scheme. The

construction is similar if we use the Lax-Friedrichs scheme.



Suppose that the initial data Uo(z) is confined to an invariant region Xp.
Put Ag = sup{|\;(U)|lj = 1,2,U € Xp}. Fixing A1 > Ao, we take mesh
lengths Az, At such that Az = A;At. We denote A = Az.

Let us construct the approxomate solution U2 (¢, ). First we put

US (z) = Uo(z)X[-1/a,1/4]-

We define

UA(+0,15) = m vin
JAT

UL (z)dz

for 2jAz < = < (27 +2)Az. Solving the Riemann problem on each interval
[2(j-1)A,2(j+1)A], we define UA(t,z) for 0 <t < At. Since the Courant-
Friedrichs-Levi condition is satisfied, the wave from the center 2jA does not
intersect. If U2 (t,z) for 0 <t < nAt has been defined, then we define

1 (2]+2)A .
UA(nAt,z) = ) U2 (nAt — 0,z)dz
J

for 2jA < z < (2j+2)A. Solving the Riemann problem, we define U At, )
for nAt <t < (n+ 1)At.

By Proposition 1 and 3, it is inductively guaranteed that U2 remains in
Y, say, A

Proposition 6 The approzimate solution UA(t,z) satisfies US(t, z) € T,
therefore,

c+uA(t,x)|<M

A Clog ¥ 0 T)
0<p7(tz) < M, |2logc_uA(t,x) <

Moreover we shall prove
Proposition 7 For any test function ® it holds>that
/ / (@ U2 + @, f(US))dzdt + / 8(0, z)UL (z)dz = O(AY?).
In order to prove Proposition 7, we prepare

Proposition 8 For any shock wave from Uy to Ur with the shock speed o

and for any conver entropy 1, we have
on] — lg] 20,

where [n] = n(Ur) — n(UL), [g] = ¢(Ur) — ¢(UL)-
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Proof. The right state of shocks can be parametrized by p = pg. Putting

Q(p) = o[n] - [q],

we shall see dQ/dp > 0 along S; : [p] > 0 and dQ/dp < 0 along S : [p] < 0.
Using the equation (3.1) and the differentiation of the Rankine-Hugoniot
condition, we have

% - ‘j—;([nl—uun(v).w])

d 1
= _E%/ 8(U — UL|DEn(UL + 6(U — U).(U — UL))d6.
0

We supposed D%n > 0. By Proposition 4, we know do/dp < 0 on S; and
do/dp > 0 on S;. QED.

Proof of Proposition 7.

We fix T to consider U2 on 0 <t < T. First we shall show

. (2i+2)a
) / U(nAt— 0,2) — UnAt +0,(2j + DA)Pdz < C.  (4.1)
in 2jA

Let us consider the standard entropy n*. Then we have

0 = /n*(U(T,z))dx—fn‘(U(O, z))dz+ L+ X,

(2j+2)A

L = Z/. (7*(U(nAt — 0, 2)) — n* (U(nAt + 0, (2j + 1)A)))dz,
jm 72

2= [ ¥ Gbl-lrha
0 shocks

We write Up = U(nAt + 0, (25 + 1)A),U; = U(nAt — 0,z). Since

1 [Zi+2)a
U = oA ia Updz,
we see
(2i+2)a 1
L = Z/m /0 (1= 8)(Ur — Us|DE9* (Uo + (U — Up)).(Uy — Uo))dfdz
> 0

On the other hand we have ¥ > 0 from Proposition 8. Thus L < C, X < C.
But from Proposition 5, we have DZn* > k. Therefore

k (2i+2)A
CZLZ—E] |U; — Uo|?dz.
2 im J24
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Thus we get (4.1).

Now let us consider a test function ®. Put
J= //((DtUA + q)xf(UA))d:Edt—f- /‘I)(O,:L‘)U()Ada:.

Since U2 is a weak solution on each time strip nAt < t < (n + 1)At, we

have
J = Z / ®(nAt, z)(U(nAt — 0,z) — U(nAt + 0,z))dx
= Jl + J2)

(2j4+2)A
J = Z/ ®(nAt, jA)(U(nAt — 0,2) — U(nAt +0,z))dz,

in 2jA

(2j+2)A
Jy = E/ (®(t, z) — B(nAt, jA))(U(nAt — 0,z) — U(nAt +0,z))dz.
jn 2ja
Since
(2j+2)Aa .
UnAt+0,z) = — U(nAt —0,z)dz
2A 2;A

for 2jA < = < (2§ + 2)A, we see J; = 0. It follows from (4.1) that
(25+2)A \
| < CAY2||®l|e: (Z/ \U(nAt — 0,z) — U(nAt +0,z)|2dz)"/
in 254 ) ‘

< C'AY2,

Here we have used T/At = O(1/A). QED.

Summing up, we have the following theorem.

Theorem 1 The approzimate solution U (t,z) satisfies

 Jog c+ ub(t,z)

—log ——F——=| <M
I2 c——uA(t,z)|—

0< p2(te) <M,
and |
/ / (@UB + @, f(US))dzdt + / (0,2)UA (z) = O(AY?)
for any test function ®.

We expect that U2 tends to a weak solution everywhere. For the non-
relativistic gas dynamics, this was done by DiPerna (3] and G.Q.Chen et al
[2]. In their proof the Darboux formula

1= [ “ (0 = 5)(s — 2)V d(s)ds

which gives solutions of the Euler-Poisson-Darboux equation (3.3) , ¢ being
arbitrary, plays an important role. Section 6 will be devoted to find such an

integral formula for the relativistic Euler-Poisson-Darboux equation (3.2).
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5 Remark

We note that

(1 — 12 [p2
Ay — Ay VP(1 u/c)>0

1—u2P'/ct ’
oA 1—u?/c? P (p+ P/c)P"
5 = 2(1_\/131‘/62)1—c—2+————2p, ) >0,
B | _1-wd P (4 PR
ow — 2(1+4+VPu/e) 2P/

for p> 0 and |u| < c.
This says that the system is strictly hyperbolic and genuinely nonlinear
on p > 0. Therefore the Glimm’s theory can be applied if

Us(z) — U*||z + T.V.Us

is sufficiently small, where U* is a constant state such that p* > 0, |u*| <
¢. But the vaccum may not be covered by this application of the general

theorem.

6 Generalized Darboux formula

In this section we seek an integration formula for solutions of the rela-

tivistic Euler-Poisson-Darboux equation. Let us introduce the variables

2= 1o c+u _[* VP d
T w y= o p+ P/c? P

Then the relativistic Euler-Poisson-Darboux equation is

(EPD) Nez — Myy + A(z,y)ny + B(z,y)n: =0,
where
1 P p+P/?_, 1+ Pu?/ct
Ay = Z50-a - PIT"puja
2u/c? P p+ P/c?
B = ZUC G ___PTT/C pmy,
(2:9) 1— Plu?/ct (1 c? 2P’ )
The coefficients A and B are of the form
2N
A = T+a, a= c%(ao+[x2/c2,y2/c2]1),
4N =z

= —yriadtE /e /o),



where [X,Y]; denotes a convergent power series ) ;x> cjk XYk, In or-
der to remove the singularity in A, we use the trick of Weinstein [7]. We

introduce the sequence of variables 7;,j =0,1,,..., N by

On;
ay - yT’J'*'l’

or
Yy
ni(z,y) = Inj+1(z,y) = /o Yni41(z,Y)dY,

where 19 = 7. The sequence of formal integro-differential operators L; is
defined by

92N

| j j
+ jaV+ Y Fpl*Ve+ Y Hil*V,

k=1 k=1
where 9 .
~ a a 2,2 .2/,.2
ad=—+—-=—[z“/c*, c“lo.
5y 3 =/ Y/ lo

The coefficients Fj; and Hji are determined inductively by

Fpn+15% if k=1

Fj-{-l,k = ) 198 .
. Hj1 +j-3172—z- fk=1
e Hje+ 12 Hjpor ifk>2

It is easy to see that Fji are of the form -c%[a:z/cz,yz/c2]o and Hji are of
the form c%[:c2 /c2,y%/c*)o. By the definition we have formally

10
2 (Lin:) = Lit1Minn.

y@y( iM5) J+175+1

Now we consider the equation LyV =0 for V = ny with the initial condi-
tions

V=0 V,=2N"Nlg(z), aty=0.

The problem is

(Q) Vyy — Voz = aVy + BV, + NaV+
N N
+ Y F IV, + Y He IV,
k=1 k=1

V=0 V,=2NV"INlg(z) aty=0.

b7
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Proposition 9 If ¢ € C*(R), then the problem (Q) admits a unique solu-
tion V in C%(R x [0, 0)).

Proof. Let us denote by H(z,y,V) the right hand side of the equation
Ly = 0. Then (Q) is transformed to the integral equation

T4 z4y-Y
V(z,y) = 2NN!/ ¢(€)dE + = / / H(X,Y,V)dXdY.
T—y -y+Y
We can solve this integral equation by the iteration
N z+y
Vo(e,y) = 2VA! f $(6)de,
a:+y r+y-Y
Vitl(z,y) = 2NN'/ £)d£ + = / / H(X,Y,V™)dXdY.
z—-y+Y
Fixing L arbitrarily, we consider |z| < L. Then it is easy to get the estimates
Mn+1yn+1
(n+1)!

Therefore V" tends to a limit V uniformly on |z| < L,0 < y < L. The limit
is the unique solution of (Q). QED.

Now we put

[V**(z,9) - V*(z,9)| <

v =1V, IN—k = IMN_k41.

Since ny_x and its derivatives of order < 2 all vanish on y = 0 for k¥ > 1,
we see 1) = 1o gives a solution of the relativistic Euler-Poisson-Darboux
equation (EPD).

Next we give an integral formula for the solution V of (Q).

Proposition 10 There is a CN+2-func_tion G(z,y,€) of |x] < 00,y > 0,z—
y < & < z + y such that the solution V of (Q) satisfies

o4y
V(z,y) = [ Gz, y,€)$(€)de. (6.1)
r—y .
Moreover

G = 2NN'+0(y/c?),
a1 0L705°G = O(1/c®)  for1<pi+p2+p3s<N+2

Proof. We consider the approximate solution V" (z, y) which appeared in
the iteration of the proof of Proposition 9. By writing H as

H=(aV)y+ (BV)s + bV + > (FI*V). + Y _ HeI*V,



1
b = Na—ay— B = —c—i[z2/cz,y2/cz]o,

1
He = Hi-(F)e= 512"/ 9" /¢,

it is easy to see inductively that there is a kernel G" (z,y,€) such that
z+y
Ve = [ G u ek

-y

In fact G° = 2 and G™ are determined inductively by the formula

1
G = 24 2(GF+ Gl + Gl + Y Ghve + 3 G,

2
Y
G = / a(z —y+Y,Y)G(z -y +Y,Y,6)dY +
(—z+y+€)/2
Yy
+ / a(z+y—Y,Y)G(z +y—Y,Y,£)dy,
(z+y—€)/2
Yy
G = / B(z+y-Y,Y)G(z+y-Y,Y,£)dY +
(z+y—€)/2 '
Yy
— / B(z—y+Y,Y)G(z -y +Y,Y,§)dY,
(—z+y+€)/2

Gir = // b(X,Y)G(X,Y,€)dX dY,
D(z,y.£)

where
D(z,y,6) = {(X,Y)X-Y<E<X+Y,z—y+Y <X<z+y-Y,0<Y <y},
Yy
Grve = / Fe(e +y—Y,Y)J*G(z +y—Y,Y,£)dY +
(z—y+€)/2
Y .
- / Fe(z — y+Y,Y)J*G(z — y+ Y, Y, £)dY,
(—z+y+§€)/2
where oy
JG(z,y,€) = YG(z,Y,£)dY,
|lz—¢]
and

Gvk = f / Hi(X,Y)J*G(X,Y,£)dXdY.
D(z,y,8)

It is easy to see inductively that

A4n+1yn+1

|IG™* (2, y,€) — G (2,9,€)| < TSI
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therefore G™ converges to a limit G uniformly and (6.1) holds. Mo
can differentiate G"*! supposing that G” is differentiable. In fact

Gre = 2aG((z~y+8)/2(z+y+8)/28)

— J9G(=+y+O/2(z+y- /2,6 +

y
+ / (aG)z(z -y +Y,Y, §)dy
(—z+y+€)/2

Yy
+ / (@G)z(z — Y +Y,Y,€)dY,
(z+y-¢)/2
Gre = —5aG((z—y+6)/2 (-2 +y+£)/2.6) +

+ F9G((z+y+8)/2 (e +y-6)/2.6)+

y

+ / aGe(z —y+Y,Y,6)dY +
(—z+y+£)/2
y

+ / aGe(z +y-Y,Y,£)dY,
(—z+y+€)/2
1

Gry = —39G((z -y +£)/2, (-2 +y+£)/2,6) +

~ F9G(=+y /2 (2 +y-€)/2.6) +
+ 2aG(z,y,€) +

Yy

- / (aG)z(z —y+Y,Y,£)dY +
(—z+y+¢€)/2
Yy

+ [ (aG)a(z +y - V,Y,£)dY;
(~z+y+6)/2

Giie = —3BG((z+y+6)/2(a+y—£)/26) +

— 2BG(=~y+O/2, (<2 +y+6)/2.6) +

Y
+ [ (BGLG+y-vY.0dr+
(z+y—¢)/2

Yy
-/ (BG)s(z - y+Y,Y,6)dY,
(—z+y+€)/2

Gre = zBG(=+y+6)/2(+y-£)/26)+

+ 3BG(=—y+ /2 (-2+y+/2,6 +

v
+ / BGe(z +y-Y,Y,£)dY +
(z+y-§)/2

y
- / BGf(z_y'*'Y;YaE)dY)
(—z+y+€)/2



1
Giry = —5BG(@+y+8)/2(z+y-8/2.8+
1
+ 5BG(z-y+6)/2(-z+y+8)/20+
v
+ / G)(z+y-Y,Y,£)dY +
(z+y- E)/2
y
+ Gz -y + V.Y, )4
(—r+y+€)/2
y Y
Grrrez = / Z+y—Y,Y,£)dY—/ bG(z—y+Y,Y,§)dY,
(z+y- E)/2 (—z+y+£)/2
(z+y-£€)/2 (—=+y+£)/2
Grire = / bG(E +Y,Y,£)dY + / bG(€ -Y,Y,£)dY +
0 0

+ // bG(X,Y,€)dXdY,
D(z,y,¢)

Griry

and the derivatives of Gy, are similar to Gy and the derivatives of Grvk
are similar to Gyyr. Then it is easy to see inductively that

n,n

M™y
n!

|Gzt — G|+ |GE - GE | + Gyt — Gyl <
Thus the limit G is differentiable. In a smilar manner we see

Gt - Gr | + |G - Gol + G2y - Gyl +
+1 +1 +1
+ 'G?E - G?&‘ + IGgy - ?y| + |G;y - GZyl <
Mn—l n—1
< =Y
=  (n-1)!
Thus G is twice continuously differentiable. In a similar manner we see that
G is N + 2-times continuously differentiable. The rough estimates stated in
the propositions is obvious since the coefficients are all of O(1/ c?). QED.

The solution ny_x enjoyes an integral representation

z+y
Nk = / Knoi(z,9,€)B(€)de,

-y
where

Kn-k(z,y,8) = JKN_ks1(2,9,6) = J*G(z,9,€).

So the solution 7 of the relativistic Euler-Poisson-Darboux equation is given
by

Tty
e = [ K@vos©k,

-y

y y
/ bG(z+y-Y, Y,E)dY+/ bG(z —y+Y,Y,£)dY
(z+y—§€)/2 (—z+y+€)/2
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K(z,y,6) = IV G(z,9,6).
By induction we see

2N NI

JkG(z’ y!E) = 2kk'

(v* = (z = €)*)* (1 + O(y/c?)).

Thus we have

Proposition 11 There is a kernal K(z,y,£) which is of CN*2-class in
|z] < 00,0 < y,z —y < € <z +y such that

T4y
n(z,y) =/ K(z,y,£)¢(£)d¢
z-y

gives a solution of the relativistic Euler- Poisson-Darbouz equation for any

smooth ¢. Moreover

K(z,y,6) = (v - (£ - £)*)" (1 + O(y/?)).

But in order to apply this integration formula, the generalized Darboux
formula, to the study of the relativistic Euler equation, more detailed esti-

mates of the remainder are necessary.
Proposition 12 We have
Gy = O(y/c?).
Proof. Since a = O(y/c?), it is clear that Gy, = O(y/c?). Next we see

Grry = —B((z+y+£)/2, (z+y—£)/2)+ B((z—y+£) /2, (—z+y+€) /2))+O0(y/?).

On the other hand we can write
1
B = 5 Bo(z) + O(y?/c?)

and
z+y+§_ y+Z z—y+§_ -y+2Z e
5 =r+ 7 2 =z+ 7 Z=¢—z.
Therefore we see Grry = O(y/c?). 1t is clear that Gri1,y = O(y/c?) and

G1vk,y,Gvik,y = O(y?/c?). QED.

Proposition 13 We have
1
G = 2N+ 5 Co(z,0) € — 2) + O(?/c?),
where Cy(z, c) is a function of the form

2%/ + —512*/*o.
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Proof. It is clear that Gy = O(y?/c?) since a = O(y/c?). Next we see

G = 2NN!/
(z+y—€)/2

Y y

B(z+y=Y,Y)dY -2" N1 / B(z—y+Y,Y)dY +0(y?/c?),
(—z+y+§€)/2
since G = 2V N!' 4+ O(y/c?). If we write

B = 5Bo(z) + 0/, Z=f-z

, then we see

y y
/ B(z+y-Y,Y)dY - / B(z—y+Y,Y)dY =
(z+y—£€)/2 (—z+y+6)/2
1, [ ‘ 2/.2
= —c—-z-(-/:; Bo(s)ds— ‘/z+_ : 2 Bo(S)dS) + O(y /C )
1
= E-2-Bo(:'c)Z + 0(y%/c?).

Note |Z| < y. It is clear that Grrr, Grvk, Gvik = O(y?/c?). QED.
Proposition 14 We have

G+ Ge = O(y/cz).
Proof. First we see

y
Grz+Gre = / ((aG)z + aGe)(z —y +Y, Y, 6)dY +
(—z+y+§€)/2

+ /y ((aG)s + aGe)(z+y-Y,Y, §)dyY
(z+y—£)/2
= 0(92/02))

~since a,a; = O(y/c?). Next we see

y
Griz+Gre = / ((BG)z) + BGe)(z +y—Y,Y,£)dY +
(z+y—¢€)/2

_ /y ((BG): + BGe)(z — y +Y,Y,£)dY
(—z+y+€)/2
= O(y/c).

It is clear that Gyrs 2, Grire, Gvi,o, Gvie = O(y/c?). Grvez + Grvig is
estimated in a similar manner as Gy + Grr¢. QED.

Proposition 15 We have

(Gz + Ge)y = 0(y/c2).



Proof. First we see

(Grs+Grg)y =

since a,a; = O(y/c?)

(Grrz+Grrg)y =

2((aG)s + aG¢)(z,y,€) +
2(@0): +aGe)(z — y+€)/2, (—2 +y+)/2,6) +

S((@G)x +aGe)(z +y+8)/2 (z+y— /2,6 +

v
/ ((aG)z + aGg)z(z —y+ Y,Y,£)dY +
(—z+y+€)/2

Y
/ ((aG)z + aG¢)z(z + y - Y,Y,£)dY
((z+y-€)/2

O(y/c?),

. Next we see

~5((BG) + BGQ) (= +y+8)/2 (+y—£)/2.6) +

1

5((BG)s + BGe)((= — y+6)/2, (<2 + y +)/2,6) +

y
f (BG)s + BGe)o(z +y— Y, Y, £)dY +
(z+y—€)/2

y
/ ((BG)z + BG¢)s(z — y+Y,Y,£)dY
(—z+y+€)/2

2VTINIB((z — y+£)/2,(—z +y +£)/2)
Y INB.((z+y+8)/2,(z+y—€)/2) +
O(y/c?),

since G = 2N N!+ O(y/c?) and G, + G¢ = O(y/c?). But

and

B, = = B}(z) + O(s*/?)

_32

Bo((z—y+8)/2(-z+y+£)/2) - B:((z+y+8)/2,(z+y—§)/2) =

It is clear that

(Grrrz + Grrrg)y

= ;1336’(z)(-y)+0(y2/02)
= O(y/cz)

y
— / (6G)z +bGe)(z + y - Y,Y,£)dY +
(c+y—6)/2 A

y
+ / ((6G)z +bG¢)(x —y + Y, Y, £)dY
(—z+y+8)/2

= O(y/cz).
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Similarly we can estimate (Grv z + Grvk ¢)y, (Gvk,c + Gvi,¢)y bearing in
mind that (JG)s + (JG)¢ = J(Gz + G¢). QED.

Proposition 16 We have
Ge +Ge = Cile,0)(€ — 2) + O/,
where C1(z, c) is a function of the form
[2?/e%o + (/.

Proof. We already observed that G, +Gre = O(y%/c?). Next we look at

Y

Griz + Grrge= / ((BG)s + BGe)(z +y—Y,Y,£)dY +
(z+y—£)/2

Y
-/ ((BG)z + BGe)(z ~y +Y,Y,£)dY
(—z+y+€)/2

y Y
= 2NN!/ Bx(a;+y—Y,Y)d'Y—2NN!/ B:(z—y+Y,Y)dY +
(z+y-€)/2 (—z+y+€)/2

+ O(¥*/c?),

since G = 2 + O(y/c?) and G, + G¢ = O(y/c?). Bearing in mind that
By = O(y/c?), we see

v y
/ Be(z+y-Y,Y)dY - B:(z—y+Y,Y)dY =
(z+y—§€)/2 - S(—z+y+€)/2
y y
=—/ (=B, +B,)(c+y-Y,Y)dY - / (B + B,)(z — y+ Y,Y)dY
(z+y—£€)/2 (—z+y+€)/2
+ O(y*/c)
=—-2B(z,y) + B((z+y+&)/2,(z+y—-£)/2)+
+B((z—y+8)/2 (~z+y+£)/2) + O(y*/c®)
1 +7Z —y+Z
= (=2Bo(2) + Bola + £57) + Bola+ —5)) + O*/<’)
1 )
= EEB{,(:L‘)Z+ O(y?/c?).
Next we look at
y y
Grirz +Grire = / bG(x+y-Y,Y, £)dY — bG(z —y+Y,Y,£)dY +
(z+y—-¢€)/2 (—x+y+€)/2

(z+y—¢€)/2 (—z+y+€)/2 '
+ / bG(E+Y,Y,€)dY — / bG(€ -Y,Y,£)dY +
0 0

+ // bG(X,Y,£)dXdY.
D(z,y,¢) '
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b(z,) = bo(2) + O /%),

we see
=+ 42 z
Gz +Grire = 2NN!(/ bo(s)ds—/ bo(s)ds +
z a2
z+“d,'£ T+Z -
+ / bsds—/ bo(s)ds) + O(y°/c
oz o(s) - o(s)ds) + O(y"/¢”)
= 0(y*/S).

Grvk,z + Grvk,e can be estimated in a similer manner as Grr - + Grr¢.
Finally Gy z,Gvik ¢ = O(y3/c?) since J*G = O(y?/c?) for k > 1. QED.

Proposition 17 We have
(Gx + Gf)x + (Gg: + Gf)f = O(y/c2).

Proof. First we see

(Grz:+Grg¢): + (Grz+Gre)e =

y
= [ (G)er +2(aG): + aGee) &~y + Y. Y, +
(—z+y+€)/2
y
+ [ ((a6)es +2aGe): + aGee)(z +y— V.Y, )Y
(z+y—£€)/2
= 0(y2/c2),
since a,az,az; = O(y/c?). Next
(Gr1,e + Grre)s+ (Griz +Grre)e =
y
— f ((BG)s + BG¢)s + ((BG)s + BGe)e)(z +y - Y,Y,6)dY +
(z+y-¢€)/2 }
y
+ [ ((BO):+BGe). +(BO): + BGYe)(z +y - V.Y, E)dY
(—z+y+€)/2
= O(y/c).
It is easy to see
(Gri1,z + Grre)z + (Girre + Grrrg)e = O(y/c?).

The estimates of Gyvx and Gy can be seen similarly. QED.
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Proposition 18 We have
(G +Ge)a + (s + Ge)e = 5 Cala, )€ = 2) +O(*/<?),
where Ca(z, c) is a function of the form
[2/co + =/l
Proof. We already observed that
(Grs+Grg)s + (Gre + Gre)e = Oy’ /).

Next, bearing in mind that G; + G¢ = O(y/c?) and (Gz + G¢)z + (G +
Ge)e = O(y/c?), we see
(Grr: + Grrg)e+(Grz+Grrgle =
y
= / (BzsG + 2Bz (Gs + Gg) +
(z+y-€)/2
+ B((Gs + Ge)s + (Gz + Ge)e))(z +y = Y, Y, £)dY +
y .
(—z+y+£)/2
+ B((Gs + Ge)s + (Gz + Gele)(z —y + Y, Y, §)dY
Yy y .
= 2NN!/ Bm(:c+y—Y,Y)dY—2NN!/ Beo(z —y+Y,Y)dY +
(z+y=¢€)/

(—z+y+£)/2
+ 0(¥/e).

The same discussion to that of the proof of Proposition 16 can be applied
by replacing B by B;. Let us look at (G1r1,¢ +Grrr¢)e+(Grrr 2 +Grrre)e-
Note that

= 2NN, + O(y/c?),
G = 2VNWb4+0(y/c).

Applying the discussion of the proof of Proposition 16 by replacing b by b,

we see

(Grrre + Gring)z + (GIII e+ GIIneg)e =
4+ Z

- sz(/ bo(s)ds—/x ., bole)ds) +

+=5
+ O(y*/c)
= —9N¥Nlby(z)Z + O(¥%/c?).

The estimates of Grvk, Gvk are paralell. QED.
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Proposition 19 We have
' 1
G = 6—203(2:,0) + O(y/c?).
Proof. It is sufficient to note that

Gre = 2VTINYB((z+y+6)/2(z+y—£€)/2) + B((r—y+£)/2,(~z +y + £)/2)) +

+ O(y/c?)

= 2N;21N!(Bo(z + y_—;_Z) + Bo(z + —y2+ -Z)) + O(y/c?)
N

= 2 c,f’ ! Bo(z) + O(y/?).

QED.

Proposition 20 We have

1
(Ga: + Gf){ = '0_204(3) C) + O(y/c2)'
Proof. We see
(Gr,s + Gre)e = O(y/c?)
by a,a; = O(y/c?). Next we see

Gz + Grrg)e=

2VTIN B ((z +y+€)/2,(z +y— €)/2) +

+ B:((z-y+8)/2 (-2 +y+£)/2)) +O(y/c?)
2! By(e) + O(u/?).

c2

And we see

(Grre + Grrrg)e =

= 2VNb((z —y+€)/2, (-2 + y+£)/2) + O(y/<?)
2V N 9
= bo(z) + O(y/c?).

c2?

Other terms can be estimated similarly. QED.

7 Estimates of the derivatives of entropies

Let us consider the entropy 7 generated by ¢ of C3-class, that is,

T+y
n(z,y) = K(z,y,£)o(€)d¢.

=y
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In this section we will find estimates of the derivatives of n with respect to

E, F. As auxiliary variables we introduce
R=y N+l M =ay?NtL (7.1)

We are going to prove the following

Proposition 21 We have

1
'36—1?4 = 22V / (s — )N Dg(z + (25 — 1)y)ds + O(y*/c?),  (72)
0
on 2N+1 /1 2\N
— = 2 — ds +
3E ; (s —s°)" ¢ds
1
2N +1 2\ Y _
2 /0(3 )V ( :c+2N+1(2s 1))Dé¢ds +
o(*/e), (7:3)
2 1 .
'5% — 22N+1y—2N—1/0 (s—sZ)ND2¢dS+O(y_2N+1/02), (7'4)
O _ gavn -2N-1/1(s—32)’*’(—z+ Y__(25—1))D’¢ds +
dROM y o 9N + 1
O(y~2N+1/c?), (7.5)
O’ aN41, ~aN-1 ' 2\N y 2
SRE = 2 0] /o(s—s) ((—1:+2N+1(2s—1)) +
4 _ 2\ 12 _ -1/.2
————(2N T 1)25(1 s)y2)D*¢(z + (25 — 1)y)ds + O(y~'/c*)7.6)

Proof. We write
1
n= 2Rw‘n/ K(%—,Raw‘n,%+(2s—1)Rﬁr‘ﬁ)¢(%—+(2s—1)Rm‘n)ds.
0
Differentiating n with respect to M, we have

on
6—]\7 - (1)+(2)’

N 1
(1) = 2R+ / (K + K¢)(z, 9,2 + (25 — )y)¢(z + (25 — 1)y)ds,
0
1
(2) = 2RFHT / K(z,y, + (25 — 1)y)Dé(z + (25 — 1)y)ds.
0
Since K (z,y,€) = JNG(z,y,&)ie.

K(2,9,6) = [ _q YV i YNo1 - fam g YiG(e, Y1,6)dY1 - Yo,



by Proposition 16 we see

(K +

Kf)(zv y,l‘-l- (28 - l)y)

/y
12s-1jy

YN Y
YN/ YN_1°'-/ Yl(G,,.+Gg)(:l:,Y1,x+(2s— 1)y)dY1
[2s-1]y |

Ci(z,c) ,n
NIy (25—

_2NCI(3': €). aN41 d

(N +

1)!c2y

2s—1)y

(1= (2s - 1))V + O(y*N+2/c?)

_d_s(s _ S2)N+1 + O(y2N+2/62).

Therefore by integration by part we get

(1)

K(z,y,£)

R3NFT y2N+2 2

O(y*/c?).

By Proposition 13 we see

y YN Y;
= / YN / YN—l o
lz—¢l Iz le—¢|

— 22N(s_s2)N 2N_‘_2 Co(.’c c)(2 —1)(3

N+ICI (zic)
(N+1)lez J,

Nlc2

Therefore by integration by parts we get

1
(s — s)N 1 Dgds + O(y?/c?)

YIG(zI Yl’f)dYI o 'YNa

)N 2N +1 +0( 2N+2/c)

(2 = 22N+1R%ﬁy2N /l(s(l — 5))VDé(z + (25 — 1)y)ds
, 0

+ R%O(y”’“/cz).

Thus we have (7.2). Next we show (7.3). We have

on
R

(3 =
() =

6) =

(3)+ (4

2
2N +1

1
2R2_7~'%/ (—z(K. + K¢) +
0

)+ (8),

1
R¥Fr / K(z,y,z + (25 — 1)y)é(z + (25 — 1)y)ds,
0

1
2N +1

¢(z + (25 — 1)y)ds,

1
QR / K(z,y,2 + (25 — 1)y)(~z +
0

By Proposition 13 we get

3) =

22N+1
2N +1

2N+ 7(2s -

/0 (s — )N g(...)ds + O(y?/c?).

As for (4) we use Proposition 16 and

y(Ky + (25 — 1)Ky)) x

1)) D¢(...)ds.
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Ky + (25— 1)Ke =y ""'G~ (25— 1)(€ - 2)G(a, ¢ — 2|,£) V11 + (25 — 1)IV G



2N -1Cy(z, c)

= PNFIN(5— s2)Ny2N-1 4 T

(2s —1)(s — s*)Vy*N +
2N Cs(z, )

+ Nlc?

(25 — 1)(s — s*)NVy*N + O(y?*N ¥/ c?)

(See Proposition 19). Then by integration by parts we have

22N+2N 1

(4) = SN T1 J, (s — s2)Ng(...)ds + O(y?/c?).

As (2) we get
1

(5) = 22N+ /0 (5= )" (-2 + 5L (2 — 1)) Dg(.)ds + O(4?/<).

Thus we get (7.3).
Next we show (7.4). We have

-
L = O +M+ ),
1
©) = 2R [ (Kot K)o+ (Ko + Ke)o) 2,0, -) x 9(-)ds,
(1) = 4R'z++‘x‘/ (K + Ke)(z,y,...)Dé(...)ds,
0
1
8) = 2R | K(z,y,..)D%(...)ds.

0

By Proposition 18 we have

(K 4+ Ke)o + (Ko + Ke)e)(a, 9,2+ (25— 1)y) =
2NCQ(23,C)

e (S - S2)N(2s _ 1)y2N+1 + 0(y2N+2/02)‘

Thus by integration by parts we get
(6) = O(y~*N*1/c?).

By the same discussion as (1) we see (7) = O(y~2*+!/c?). By the same
discussion as (2) we see

1
(8) = 22N+1y=2N-1 / (s — s2)ND2¢(...)ds + O(y~2N*1 /c?).
0
Thus we get (7.4).

Next we show (7.5). We see

0%y

sag = (9 +(10)+(11) +(12) +(13) + (14),
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—4N-1 1
9) = ~SN 1 1R INFT /0 (Ke + K¢)(z,y,...)¢(...)ds,

(10) = 2RIFF /1(—1‘(Kz + K¢)s + (Ko + K¢)e) +

o (Ke + Koy + (25— )(Ke + Ke)e)g(..)ds

(1) = 2Rk /0 (K= + Ke)(~2 + 55 (25 — 1)) Do,

(12) = _2131113%%"4‘,—‘ 01 K Dgds,

(13) = 2RWH /0 (oK + Ko+ + 5L (Ky + (25 = 1)K)) Dads
(14) = 2R F /0 l K(-z+ 2Ny+ +(25 — 1)) D?¢ds.

We already know that (9) = O(y=2¥+1/c2). (Recall (1).) Next we look at
(10). The first term is O(y~2¥+!/c?). (Recall (6)). By Proposition 16 and
20 we see

(Kz+K¢)y + (25-1)(K» + K¢)e =
_ 2V- 'Ci(z,¢) y?N 2\N
= (—N——I)T (23 1)(3—3 ) +
2N Cy(z,c
——#yﬂv (25— 1)(s —s¥)V +
2N-10y(z,¢) on

(N —1)!e?
By integration by parts we see (10) = O(y~2N+!/c?). We already know
(11) = O(y~2N+1/c?). Clearly
22N+2N
2N +1

(2s — 1)3(s — )V 4 O(y?VH1/cP).

(12) = -

1
y—2N—-1/ (8 _ sz)ND¢ds + O(y_2N+1/62).
0

We see

1
(13) = O(y~2N+1/?) + RN+ / (Ky + (25 — 1) K¢) Déds.
0

2N +1
As (4) we have

22N+2N

13 =871

1
y—2N—1/ (s—-sz)ND¢ds+O(y‘2N+l/c2).
0

Finally we see

1
(14) = 22N+1y‘2N‘1/ (s—8%)N (—z+(25—1) ==—=)D2%¢ds+0(y~ 2N+ /c?)
0 2N +1



(Recall (5)). Summing up we get (7.5).
Next we show (7.6).

o*n. 0 0 0
R - BR(3)+_6—R(4)+8_.§(5)’
8
=) = (15)+(16)+(17)
4N1
= d
19 (2N+1)2 /K¢ v
2 —4N-1
— 2N +1 —_— - d
(16) = sgRP /0( (K + Ke) + g (Ko + (2 = DKQ)dds,
1) = —2 R Kozt = (2s — 1)) Dgds
1) = 3x+1 0'(‘”2N+1 "
8
g = (18) + (19) + (20),
(18) _ 4N R—4N 1 1(—I(K +K')+
T 2N +1 0 =T 2N+1

1
(19) = 2R3N+ / K"¢ds,
0

where
K" = x(Kx+Ks)+x2((Kx+Ke)x+(Kx+Ke)e)+
+ 2N =((Ks + Ke)y + (25 = 1)Kz + Kede) +
- Q;i (Ko + Ke)y + (25 = 1)(Kz + Ke)e) +
+ -2—]\-;1—1—1—((K + (25 — 1)Kg)y + (25 — 1)(K, + (25 — 1)Ke)e) +
+ (Q—NTI—);(I\y + (25 — 1) Ke),
(20) = 2R3FE 01( (K, +I&§)+2N+1(Ky+(2.s—1)Kf))
x (- 2N (25 — 1)) Déds,
26 = N4+ + e, |
@) = -~ R 01 K(-z + 52— (2s — 1)) Déds,
(22) = 2RN# /01(—:,;(K,+KE)+2N (K, + (25 — 1)K¢))
x (—:c+2Ny (25 — 1)) Déds,

(23) = .2R‘z%’+11/ K(z 2N+1) —~——(2s — 1)) D¢ds,

— —(Ky +(2s — 1)K¢))¢ds,
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(2s — 1))2D?¢ds.

1
(24) = 2RFNeT / K(-z+ —2
0 2N +1

First we see

—22N+2N —9N-1 ! 1N —2N+1/,.2

(15) = -my /0 (s —s*)"¢ds +O(y /c%),

22N+2N 1
(16) = my_w 1/ (s—s*)Nods + O(y~ 2N+ /c?),

22N+1 _2 - —aN+1
17 = a1 1Y / (s=s)N(-z+ 2N (2s— 1))Déds + O(y /c?).
Thus we have
3 0) = gy [ (o) (o g (20-1)) D 041 )
3R\ T N +1 | 9N +1 '

Since (18) is similar to (16), we have
PNEIN? e [1 2\N 2N+1 .2
0

Next let us look at (19). We already know

1
2RFNE | oK.+ Ke)eds = O(yN+1/e2),
0

4N -1 1
2R7NH / 2?((Kz + K)o + (Ko + Ke)e)dds = O(y~2N+1/¢?).
0

(18) = —

Recalling (10), we see

1
N T IR_”SI*T!// ((Kz + Ke)y + (25 - 1)(Kz + Ke)e)gds = O(y~2M*1/c?),
0

R_’"ﬁzy‘/ol((Kx + Ke)y + (25 — 1)(Kz + Ke)e)pds = O(y~>V+1 /).
When N =1, we have
(Ky + (2s—1)K¢)y+ (25— 1)(Ky + (25 — 1) K¢)e
= 8(s—s?)+ %(23 -1)y- %(23 -1)%y —
- Brs-10y+ 002/,
When N > 2, there are bounded functions Fj(z, ¢) such that
(Ky + (2s—1)K¢)y+ (25 — 1)(Ky + (25 — 1)K¢)e =
= 2NHINGN —1)(s — s2)Ny?N-2 4 M(% —1)(s— s?)N-1y2N-1 4

F. F:
+ 2(;2"70) (23_ 1)(8— s2)N—2y2N—1 + 3("; )(2 1)3(8 )N 2y2N 1+
+ F4(c§, C) (23 _ 1)3(8 _ s2)N—1y2N—l + (c2 )(28 _ 1)5(8 _ s2)N—2:‘12N—1 +

+ O™ /).
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Thus we see

—4N-—1 2 !
2R / (K, + (25 — 1) Ke)y + (25 — D)(Ky + (25 — DK¢)y)dds

22N+3N2 N 1 N 92N+2 Ny _oN-1 1 o\ N
= Wy 2N 1A(S—32) ¢ds—my /O(S—S) ¢d$

+0(y"2N+1/c2).

We have

2 —4aN-1

1
— _RENTT 25 — 1)K¢)¢d
22N+2N

1
= T [ st eds 4 OGT,

Therefore
22N +3 N2

(19 = Gy

1
y—ZN—I/ (s—s2)N¢ds+O(y"2N+1/cz).
o .

We see

22N+2N
(20) T 9N +1.

Therefore
F) 92N+2 [y
e = vt

1
y—2N-1/0 (s_sz)N(_z+2Ny+1(23_1))D¢ds+0(y-2N+1/c2).

1
—2N-1 C2\N(_ y _ —2N+1 /.2
y /(; (s—s°)" (—z+ oN T 1(23 1)) D¢ds+O0(y /c?).

Next we see

2N+2Ny o o ! 2\N Yy —aN+12
(21) = SN 1Y /0 (s —s°) (—:c+2N+1(2s—1))D¢ds+O(y /%),
(22) = N v / "5 — )N (=2 + =L (25 — 1)) Déds + O(y~ 2"+ /%)
2N + 1 . 9N + 1 ’
1
9 — 92N+l —2N—1/ 2\ y _ d —2N+1 /.2y
8) = 2yt [ o e+ (s — D)Deds +OGTE)

1
(24) = 2WNHy~2-1 / (s — )N (—z + 2Jg_*_(2s —1))?D?¢ds + O(y~N*1/c%).
: 0

Therefore we get

—6—(5) = 92N+1y—2N-1 /1(3 —s)N(z + Y (25 —1))D¢ds +
3R v 0 (2N + 1)

1
+ 22N+1y—2N—1 / (S _ 82)N(—(c + y (28 _ 1))2D2¢ds + O(y_2N+1/02)
0 2N +1

Summing up, we have

32') aN+1,,—2N-1 ' 2\N
-_— 2 y oo / s—s§ -z +
OR? 0 ( ) (

y
OV T 1(2s —1))Déds
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1
2N+1, -2N-1 _2\N y _
+ 2 Yy /o (s=s")"(z+ ——(2N+ 172 (2s — 1))Déds

(2s —1))2D?%¢ds

+ 22N+1 -2N - 1/ (S N( —z+

_ 2V¥(N+1) y—2N-1 VY
= oN +1)° / (s —5*)"(2s — 1)yDéds +

1
+ 22N+1y—2N—1/ (8 )N( —z+

2N

22
2N+1(2s 1))*D*¢ds

22N+3 2N-1 N+1 2 2
= Yy~ D“¢d
@N+1)? / (o= ¢ds +

(2s —1))2D%¢ds.

2N+1, —2N -1 2N
T Al (IR L

Thus we get (7.6). QED.
Let us recall the standard entropy n*. This is generated by

* 1.2 1 1
¢*(z) = A'c (l—uz/cz_ m),

where

= (2N +1)72N((2N + 1)/(2N + 3)A) 5 @N — 1)1V +1 N,
We note that

D%¢*(z) = A'(1 + %6—2) —VI=-u?j2) > A
We are going to show that the Hessian D% 7n* dominates any D%

Proposition 22 For each ¢ fired in C® we have on each compact subset of
{p >0}
|€1DEn£)| < C(€|DEn* €),

provided that c is sufficiently large.
By the assumption we have

R = y?N* = Kp(1+[p7F/c?)),

dR 2
= INFT
dp K+ [P /C ]17
d’R ~—+”
7 = bR/,
where K = ((2N + 3)(2N + 1)A) . Using these, we have
OR _ dR 1+ u?/c?

O0E ~ dpl- P'u2/ct



7

= K(1+w/) + 0/,
OR _ dR 2u/c?
oF dp 1 — P'u?/c*
J2u
= ——I&—c?+0( y?/c?),
oM R 14+ P'/c? xd—@ 1+ u?/c?
9E ~  p+ PJc? 1——P’u2/c4 dp 1 — P'u?/c?
= K(-u+z(l+v/c) +0(*/c"),
oM R 1+Pu?/c* dR 1
7z = 2a:u/c —_—
oF p+P/c21— Pu?/ct  dp — P'u2/c?
= K(1-2zu/c®) +0(y2/c). (7.7)
Differentiating once more, we see
0’R K? -
35 - —W2u2(1—u2/c2)/02+0(y N+ 2
02M K? -
357 = W“(—m‘z/cz — 2uz (1 —u?/c?)/c?) + Oly N+ /c2)
’R - K? -
BEGF yrv+1 cz(l— u?/c®) + Oy AN /e?),
0*M K? -
“EoF = —gm—l@uz/cz + 2zu(l — u?/c?)/c?) + Oy~ 2N+ /%),
9’R 2 K? _
8F y2N+1(1 —u?/c*) +O(y 2N+1/C ),
9*M K? -
—a'FZ— - = —W2(u + (E(]. - uZ/CZ))/CZ + O(y 2N+1/CZ). (78)
The chain rule gives
G _ PR, OROM O
5EZ ~ ‘OE’ OR? ' OE OE OROM

(6M)2 %y + 32R_Q71+ M on
OE’ dM? ' QE:QR = OE? OM’
and so on. Inserting (7.7)nd (7.8) into (7.9), and using Proposition 21, we
have |

(7.9)

9 22N+1I’£ G N )
(€lDgng&) = —yﬁﬁ—/o (s — s)N Z[e]D*¢ds +
2K? 5 0
- (=) ke - &) g +
2K? 1

0
- NG —(u+ (1‘-U2/02))(u€o-€1)25%+
+ O(y 2Nt /e?),

where

Z[€] = Zookd +2Zo1bobs + Z1:€2,
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Zoo = (1+u?/A)?*((—z+ 2N =i (2s—1))* + @N—i)—s(l -s)yh) +
+ 21+ u?/P)(—u+z(1 +u?/P?))(~z + 2N+1(2s—1))
+ (-uta(l+4’/c?)?,
Zon = =2(1+4?*/cH)u/c*((—=+ 2N+ l(2s 1))+ (—21#1)53(1 — s)y®) +
+ (1+43u?/c® — 4z(1 + u?/? Ju/c?)(—-z + 2N+1(2s 1)) +
+ (—u+z(1+u?/c?))(1 — 2zu/c?),
Zu = (et i s—l))umsu—s)ym
4u

- (1—2zu/c )(—z +
+ (1—2zu/c2)2.

2N+ 1(2.<>‘ 1))+

It can be shown that
Z[€] > ks(1 - s)yz,

where & is a positive constant depending on the compact subset of {p > 0}.

In fact we see

4
Z0wZ11 — 23 =(1- UZ/CZ)WSU - s)y’.

On the other hand, we can estimate
2K? 1 54 €
|y2N+1 (1 —u/c ) | < AN
2K? 1 2762
|y2N+1 —u+z(1-u/c ))WI < N

where ¢ = K’/c?. Let us introduce the parameters

¢o = &o, C1 =& — uéo.

Then we have

Z[€] = Qool? + 2Q01loC1 + Q11 C2,

and
Qo = Q& (z)(2s—1)y+ QP (z,5)s?,
Qu = QF(z)(2s- 1)y+Q(2)(z,s)y,
Qu = Z11=1+0(1/02)

Therefore if | D2¢| < C, we see

22N+1K2C
gl < g [ o - o aieias
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12¢ ' 2\N 2 —9N+1,.2
7N, (s—s%)"¢*ds +O(y /c%)

IN+1 g2
< Q_Tv_fTE/( s — s N(Q11(1+€)C1 + 2Q016061 + Qoo

+ O(y~*N*/e).

But since Qg%) = g(i) =0, fo s —s2)V(2s — 1)ds = 0, we see
1
/ (s — )N (=2€'Qo160C1 — € Qoo(5)ds = O(y~2N*1/e).
0

Therefore we get

2N+41 12 ! 1
(eDpne)l < T AT [ s Y Zigds + O/,

Similarly, if D?¢* > p, we have

22N+1 2 I/
(€13 n"e) > Ii;ﬁf} ) / )% Zields + OV /).

Thus we get

C !
(€DEm)| < ST EDTe) + 0l /).

But we know

(|DEn*€E) > wlePy 2V

Hence if ¢ is sufficiently large we get the required estimate. QED.

As for the first derivatives, the following conclusion is now clear.

Proposition 23 On each compact subset of {p > 0}, we have

on
1284 1ok <

8 Usefull entropies

Let us consider an entropy 7 generated by ¢, that is,

T+y
wew)= [ K(@v0s©d: ®
T—y :
The corresponding entropy flux ¢ is given by integrating the different
equations
0q Y 0n dq _ on
0w 25w’ 8z 18z



We can solve these equations as

Thus we get the formula

where

L(z,y,§) =

Ll(z)y’E) =

L2(z’y)€) =

l‘l(xr y) =

”2(z1 y) =

o+
(e, = [ " L(z,y,£)6(€)de, (8.2)

-y

AIK(z’ya E) + Ll(za y;&)
A21{(:':1 yyﬁ) + L2(xa y:f)’

Y
2/ m(z+y—Y,Y,)K(z+y—Y,Y,£)dy,
(z+y—€)/2

y
—2/ p(z—y+Y,Y)K(z —y+Y,Y,£)dY,
(—z+y+§€)/2
O

0z
1—u?/c? (l—ﬂ (p+ P/cz)P”)
2(1 — vVP'u/c?) c? 2P
N 2
v 1 T o),
ok
ow

1—u?/c? (l—il (p+ P/cz)P”)
2(1+ VP'ufc?)" ¢ 2P

N 2
a1 0/,

In this section we will construct various kinds of usefull entropies.

1) Let us put

z+y
mniz,y) = K(z,y,6)kN+1ekdg,
z-y
z+y N X
ni(z,y) = K(z,y,E)kN e *ds.
z—y

Proposition 24 If 1/c? is sufficiently small, we have

U
n

b

>

0, 7#>0 fory>0, (8.3)
2V NN (1 + O(y/c?))eF =+ (1 + 0(1/k)),
2V NN (1 +0(y/c?))e *==¥)(1 + O(1/k)) (8.4)

80
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uniformly on each compact subset of {y > 0}. Moreover

o = ne(X2+O(1/k)),

G =7

(A1 +O(1/k)) (8.5)

uniformly on each compact subset of {y > 0} and

21 _.12_ (oN 2, 2(N~1)
— N! -
Me e — N9k (2 ) Y (2N 1

1

+0(1/c?))e™ (y+O(1/k))>. (8.6)

Proof. Since K = (1+ O(y/c?))(y? — (z — £)2)V, we see

e =

where

It is easy to see

(14 O(y/c) /

T

z+y

(y2 _ (:l: _ 5)2)NkN+1€k€d€

-y

(1 + O(y/c2))22N+1yNesz(ky)

1
f(r) = 7‘N‘He"‘/0 (s(1—s))Ne**ds

= /Or(a(l—%))Ne-zvda.'

e~ f(r) = 2= N+ N1 4+ O(1/r)

This implies (8.4). We note

N =

N =

(1+0(1/c*)2V NiyN =1+ (y + O(1/k))
(1+0(1/¢*)2V Ny ~le eV (y + O(1/k))

uniformly on {y > 0}. Let us consider the flux. We have

Lg(lf,y,é) =

¢' =Xt =

But

]

Yy
=3 pa(z— g+ Y, YV)K (2 - y+ Y, V,6)dY
(—z+y+£)/2
N Yy
g +OW@) [ (¥ eyt Y -9y
2N +1 (—z+y+€)/2

—(

N
N+ 1)(N +1)
N

+0(1/M)y—-c+Ny+z -V,

z+y

RO R ER AR / -2+ y+z - IR

-y

(N + l)kN/

T-Yy

z+y

(¥*—(z -

-y

z+
/ y(y -7 +£)N(y +z— €)N+1kN+1'ek£d€

5)2)Ne’°5d§
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_ NkN/z+y( _ N-1 _ N+1 k¢
y—z+&)" T (y+z - Tletde

z—y
1 o 2 _ (. ADNLN+1 ke
< WA [ (- (- )V kY ek,
z—y

Thus

¢' = A2n' = O(1/k)n".
Since JE -

_ P'(1 - u?/c?) _ 1 9
/\2—'\1— I_P/uz/c4 _(2N+1+0(1/c ))y’

we have

+0(1/¢*)y + O(1/k)).

2,1 _ 1.2 _ 1.2
n°¢" —n'q nn((2N+1

This implies (8.6). QED.
2) Let ¢ be a function in C§°(—1,1) such that ¢ > 0,f v =1. We put

$a(z) = ¥n(z) = ny(n(z - a)),

$n(z) = —Din(z),
T4y

na(z,y) = K(z,y,€)¢3(€)d¢,
ziy

Ta(z,y) = K(z,y,€)¢3(€)d¢.
z-y

’(z,y) = K(z,y,0)X,

r)4(a:,y) = Kf(z,y,a)X,

*(z,y) = L(z,y,0)X,

q4(x,y) = LE(-’L’,y, G)X,_

X = (z—y<a<z+y)
(lz —a| = y)
(lz —a| > y).

(=2 Y

Proposition 25 As n = oo, we have

mon,  @-od¢ miont ot
Moreover
3l < My, g3l < My (|z] + y), (8.7
el < Myl gh| < My (2] + ), (8.8
P -1 = GrrnaTT(+ OWNW - (e - o)) (e
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Proof. We note
1

K¢ = —(E—W)G(x,|5-xl,f)m(y2— (z -6V 1+ JVNG,
= (2N(z— &) +0(1/P)(E - )y - (- &)V +0(1/P) (¥’ ~ (z -7,
lef = 2/ [.I,l(a,'-}-y—Y,Y)KE(Z‘-f-y—Y,Y,E)dY
(z+y—-¢€)/2

The estimates (8.7), (8.8) can be seen easily. Let us consider
n°q¢* — n*¢® = (KL¢ — LK¢)(2,y,0a).

Suppose £ —a > 0. Then

1 y
§(KLE—LK5) = K pKe(x+y-Y,Y,a)dY —
(z+y—a)/2
y
- Kg/ mK(z+y-Y,Y, a)dY.
(z+y—a)/2
We note
OSWSz—y+Y—an—a§y.
Hence we have
y
/ [Jle(Z-f- y—Y,Y, a)dY
(z+y—a)/2
N 2 Y 2 2\N-1
= ( +0(1/c*))2N (z+y-Y —a)(Y°—(z+y-Y —a)°)" 7dY +
2N +1 _
(z+y—a)/2
y
+ O(l/cz)/ (Yz—(:c+y—Y—a)2)NdY
(z+y—a)/2
e L0/ ety a2+ y+ )Y (v + (2N + 1)z — )
2(2N + 1) N(N +1)
+ 01/ (¥ - (z —a)H)V.
Thus
y
K p1KedY

(z+y—a)/2
(SN +]1\;(N ey O(1/¢))(¥* = (z — a)) M~z + y +a)(y + (2N + 1)(z — a))

+ 0(1/e)(y? - (z — a)2)2V.

Also we have

Ke [ pKdY
(z+y—a)/2
N2 O 1 2 2 2\2N -1
((2N+1)(N+1) + ( /c ))(z—a)(—x+y+a)(y _(z_a) )

+ O(1/*)(~z+y+a)(y® - (z—a)®)?N.
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N

22N +1)(N +1) + 0(1/02))(312 —(z—- a)Z)ZN.

1
‘2-(KL€ - LKf) = (
Here we have used

0
0

(z—a)(y—(z—a)) <y’ — (z—a)?,
(y—z+a)(y+ (2N + 1)(z — a))
2N +1)(y* - (z — a)?)

IA IA TA

provided that 0 < z —a <y. When z — a < 0, we can discuss in a similar
manner by using L,. QED.

3) Let @ be a function in C§°(—1,1) such that [ & = 0 and the support
supp® is [-1+ a,1 + o], where a is a small positive number. We put

Yn(z) = n®(n(z - a)),
z+y

m(z,y) = K(z,y,6) DNty (€)de,

T—y

r+y
$zy) = / L(z,y,6)DV+1y, (€)de;

-y

b(z) = 3‘-:;(1- /

"zn(z) = né(n(z_a)):

x

),
1

m(z,y) = r+yK(z,y,£)DN“d3n(§d£,
fety A
den) = [ LEnODYL e
B, = ey —md’,
B, = n'g —nld*,
Bn = 1545 —hgn.

Let us divide the domain £ = {~B < z—y < z+y < B} into the following
5 parts.

1 1 1 1
So = {-—<z+y-a<-,——<z-y-a<=}nI,
n n n n
1 1
Sl = {;<z+y—a,z—y-—a<—;}02,
St = { l< + a<lm a<—l}02
L = n z y =5’ Yy n ’
Sr = {l< +y—a l< —a<-1—}02
R = n Tty ) n_z Yy n )

S = ¥-(SuUSus U SL USR).
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Proposition 26 We have
B3| < M/n, |Bjl<M (8.10)

on X, and
|Bal < M/n (8.11)

on SoUS; US. Moreover, on Sr, we have .

B, = ny*N A, + yN Ay + As, (8.12)
where
N2V NY)? oy [PETY
A4, = (=22 Lo 3)2,
R ) I
n(z+y—a)
Azl < M / 8|+ |@(n(z +y— o)),
-1 R
M
|As] < —.
n
On Sk, we have
B, = nyzNC'1+yNC'2+Cg,
N(QNN!)2 9 ﬂ(-’”"y-a) 5
_ (N@N)” @
a = FEErowen ”,
n(z—y—a)
Cal < M / 8|+ [®(n(z — y — a))]),
. -1
M
ICs] < —.
n

Proof. For the simplicity, we write 7, = 0, n = gy in = nS,dn = q5.
It is easy to see inductively that, for G; = J'G = Kn-j, we have _

for j >p+1and
#Gp = (-1) (€ — )’ G(a, € — 2|,€) + JF Cp-1.

Therefore
K = %GN(m,y,E) =0

for p< N —1 and y = |« — £|. Thus by integration by parts we have

Ny = (——1)N6£’K(:c,y’,x+y)¢n(x+y)+
— ()N K(z,y,z - y)¥n(z—y) +
+ Fi(z,y),

T4y
Fiey) = (DY [ oK@ v



We see

y
agLZ(zvyiﬁ) = _2/ pgﬁé’K(z—y+Y,Y,£)dY
(—z+y+£)/2 '
for p < N — 1. Therefore
agLZ(x’yvz + y) = Bng(:c, Y,z — y) =0
for p < N — 1. Moreover we see

8 Ly(z,y,z +y) = 0.

Therefore by integration by parts we have

on(z,y) = Qn(z:y)—’\l’ﬂn(zay)
= —(-1)Vo{La(z,y,z — y)¥nlz —y) +
+ Fl(z,9),
z+y
Fi(z,y) = (—l)N“/ 0yt Ls(z,y,€)¥n (€)dE.
z-y
Similarly
&n(z)y) = qﬂ(-‘f, y) - Alrl'r'l(a:’y) =
= (—l)Naéle(I, y,z + y)lbn(l‘ + y) +
+ Fl(z,v),
) z+y
By = ()™ [ oML e, 00a(0d.
z—y
We note

o K(z,9,€) = ()N (E - 2)"G(z,|z — £,6) + JO) Gn_1.

It is easy to see inductively that

2HG =08 = ()PP _ap-ig(e - l.0)+

+ (6 - £)pHp(I,£) + Jang—li
where H, = O(1/c?). Therefore

K ewe) = (DY VG - o10)

+ (E—o)VHn(z,6) + IO Gn_1.

1) Suppose (z,y) € S. Then it is clear that 5% 9%, 4¢3, ¢, 95, ¢n,
B3, B:, B, all vanish.



2) Suppose (z,y) € Sp. Then we see

= O((4* - (zr—a))")
— O(n—ZN),
774 = Kf(xayya)
= Oz — a|(¥? — (z — &))" + O((¥* — (= — a)*)V)
— O(n_2N+l),
0° = Lo(z,y,0a)
y
= —2/ poK(z —y+Y,Y,a)dY
(-z+y+a)/2
—_ O(n—zN—l),
c* = La¢(z,y,a)
v ‘
= —2/ paKe(z —y+Y,Y,a)dY
(—z+y+a)/2
= O(n"zN).
Since y = O(1/n) and ¥, = O(n), we see

(-1)NO K (2,y,z + y)dn(z +y) +
- (—l)NaévK(z,y,z—y)wn(:v—y) =
= O(n_N+1).

Since F! = O(1), we have 5, = O(1). We see .

y
O La(z,v,2 ~y) = —2/ w0 K(z —y+Y,Y,z - y)dY = 0(n~N7").
0

Therefore
—(-1)NON Ly(z,y, 2 — y)¥n(x —y) = O(n~").
Since
ON* Lo(z,y,6) = pdf K((z—y+8)/2,(-z+y+£)/2,6)+
Yy
- 2/ Of ' K(z —y+Y,Y,£)dY
C J(=z+y+E)/2

= O((-z+y+&N)+0(z+y—9),

we see

zt+y :
Fz,y) = (~)VH / O+ Ly (2, y,€)¥n (€)dE

il
2
3
I
AN
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Hence ¢,, = O(n™1!). Therefore

B} = nPon—puo®= O(n~N-1),
BY = 1'0n—nao’=0(n""),
B, = 10,6, —flno, = 0(n7Y).

3) Suppose (z,y) € S1, where z+y >a+ 2 and 2 —y < a— L. Then

Yn(z+Y) = Ya(z—y) = Yn(z+y) = Yu(c— y)—O So, nn = Fy, an=F3,
and so on. But

T4y
Fl(z,y) = (1)¥*+! / ONIK (2,9, £ (€)de

z-y
1
= (- /il(aév+1K(3,y,a+ %) - 3év+lK(x,y,a))(I>(s)ds
= 0O(1/n)

since [ ® = 0 and Bév +1K is Lipschitz continuous. Same estimates hold for
F2 F! F2 Thus
B, = 7°F}-F,0°=0(1/n),
By = 9'F}-F,0*=0(1/n),
B, = FlF:-F}F2=0(1/n%.
4) Suppose (z,y) € Si, where |z +y —a| < 1/n. It is easy to see
2= 0(nN),n* = O(n~N+1),6% = O(n~N-1),6* = O(n~V). Since
n(z—y—a) < —1, we have ¢, (z—y) = 0. Thus 5, = O(n), 0, = F2 = O(1).
Therefore
B} = pPo,—nao®=0(n""V),
By = n'on—naot=0n'"N).
Let us estimate B, = 1,6, — fl,on. Since
, N N 1
oK = ()T ¢ ov-ig(e o g0+
+ (f—I)NHN(.’L‘,f)-{-JaéVGN_l,

we have

z+y
F! = (—p)N+ / T AN K (2, y, €)ga(€)dE =
z—y

n(z+y—a)
- (—1)”“((—1)”%2””!(“—I)N_l+F,(x’a))/ |
-1
+ O(1/n) =
n(z+y-a)
-1

+ O(1/n),
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where F/ = O(1/¢?)|z — a|¥, F” = O(1/c*). On the other hand
N K(z,y,z+y) = (-)Vy"Gl(z,y,z +y).
Hence

mm = ny"G(z,y,z+y)®(n(z+y—a)+
: n(z+y—a)

- —]W—Nzﬂl2NN!yN‘1(1+F"(z,y,a))/ o+

. -1 )

+ O(1/n).

Since

Ot La(z,y,8) = pOf K((z—y+8)/2(-z+ y+6)/2,6)+

y
- 2 O K (2 - y+ VY, 6)dY =
(—z+y+£)/2

N —z+y+E€
= (g + O/ DN (S

x Gllz+y+6)/2(-z+y+6)/2,8)+

we see
on = Fr%:

z+y
= 0¥ [ O Lo, v (€ =
-y
N 2NN| N(]. LI( )) /n(x+y—a) d
= - . + v 9
oN+1- Y RS

+ O(1/n),

where L' = O(1/c?). Here we have used
—-rz+y—+a r+y—a
(AN - (- TEIZGN = N 4 0(1/m)

Similar estimates hold for 7,,6,. Thus
B, = ny2NA1 + yNAz + A3,

where
N
2N +1
N__oN N1+ L8(8) /ﬁ =
9N + 1 »

R 2NNIG(1+L’)(/ﬁ<I>)2
2N +1 ' PR

B = n(z+y-—a).

A]_ = —G

b,
2”N!(1+L’)<I>(ﬁ)/ ® +

-1

+ G

)V
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The estimates on Sr can be obtained in a similar manner considering
a3, 5,. QED.
If we put
B} = n’my-nld
By = n'en—1ad’,

then the same estimates hold.

9 Compactness of 7; + ¢.

Let us consider an entropy 7 generated by ¢ through the generalized

Darboux formula and its flux ¢. In this section we will prove

Lemma 1 Let U2 be the approrimate solutions constructed in Section 4.
Then n(U%); + q(U2); lies in a compact subset of H;}(Q), Q being a
bounded open subset of {t > 0}.

Proof. Let ® be a test function and we consider
3= [ [0wse+ awt)eo)iza

= N+L+%
N = - / (U2 (40, z)®(0, z)dz,

L = 3 f [n(U2(¢, 2)l:2nat 1o B(nAL, 2)dz,

2= [ X (b~ e

shock

Since U2 is bounded, we see

IN| < M||®]lc.
Let us look at L. We see
L = L+ L21
. (2+2)4= A\t=nAt—0
L= Yemanei+as) [ pu)isatses,
in 2jAz
(2j+2)Az ‘
L = Y / (®(nAt, ) — B(nAt, (2 + 1)Az) x
in 2jAzx

x  [n(U)Znatsode-



We note
[UAEErAYLS = Dun(U*(nAt +0,2))[U%]
+ / 1(1 — 0)([UA]| D% (UA (nAt +0) + 9[UA)).[UA])d6.
0
and

(2i+2)Ax
/ [UA)dz =0
2j Az

by the scheme. Therefore
1
< Mielle Y [ [ (1 -olF@ o,
in 0

where

F(6,m) = ([U)|Dgn(UA (nAt +0) + 8[U2)).[U2)).
By Proposition 22 we know |F(8,1)] < MF(6,17*). But in the proof of

Proposition 7 we know

E//OI(l — 0)F(0,n*)dddz < C.

Thus we know
|L1| < M]|2]lc-
In the proof of Proposition 7 we know
(2j+2)Az
) / U212z < C.
jm V2

jAT

Therefore

Lol < 27®llce 3 / (Az)*|[n(U)))dz

IN

wjelce 3 [((42)° + (Ao IS ))de

IA

M- (A2)*F + (22)* 3 [ [0°)d
< M'(Az)*73||®]|ce,

where we use the boundedness of Dyn and n = O(1/(Az)). Next we look
at X. Along the shock we have ‘ '

- / :‘*(_% f 6(U = UL|Dyn(Uz + 8(U — UL))(U = UL))d),
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This implies
|lo[n] — [a]l < M(c[n*] - [¢*])-

But we know

[ T et -Da<c

shock
in the proof of Proposition 7. Therefore

1Z| < Mi|@lc.

Summing up , we know the compactness. QED.

10 Convergence of approximate solutions

We consider the approximate solutions U2 constructed in Section 4. Since
U2 is bounded, there is a sequence U2~ and a family of Young measures

vt » such that suppy; ; C ¥ = ¥ p and for any continuous function f
fUA(t,2)) > f=<vez, [ >

in L™ weak star topology. By Lemma 1, we can apply the compensated

compactness theory, and we can assume
(ng' — 7' Q)(UP") o< v,¢><v,¢ > - <v,n ><v,q¢>

in L>® weak star. Here 7,¢;7’, ¢’ are arbitrary Darboux entropy pairs. Thus

we have

Lemma 2 For any pairs (n,q),(n',q’) of Darbouz entropies-entropy fluz,
the identity

<vng —n'g>=<v><y,¢ > - <y ><y,g>
holds a.e.-(t,z), where v = v, 5.

Since entropies we will use are countably many, we can assune that the
above identity holds outside a null set which is common to all . We fix
(t,z) at which the identity holds, and we write v = v; ;. Of course supp.v C
Y. Suppose that supp.v N {p > 0} # ¢. Let Xy be the smallest triangle
{z0 < z < w < wyp} such that supp.r N {p > 0} C Ly. Let us denote by
P, the state (wp, zg). It will be verified that » = dp,. (the Dirac measure).

First we show

Proposition 27
Py € supp.v.
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Proof. Suppose Py ¢ supp.v. Since ¥y is the smallest triangle contai
supp.v N {p > 0}, w = wp and z = 2 intersect with supp.v N {p > 0}

neighborhoods of these intersection points we have

nl > _1__ek(wo—e),
172 > __l_e_k(zﬂ'{'f)

(See Proposition 24). Since v, 7', 7 are nonnegative, we see

1
<vpt> > Mek(wo—e),
1
2 —k(zo+€)
> — .
<v,n°" > 2 Me

SincePy € supp.v, we have |
< V, nqu —_ nlqz >-<_ Mek(‘WQ—ZQ—(S).

Taking 2¢ < 4, we have

<v > <v,g®>

< Vanqu —71192 >I
<ypl> <uyn?>

<y ><v,n?>
< Me-ké-20)

- 0
as k — oco. Let 3 be a sufficiently small positive number, and we put

By = {z2<2<w< w— P}
23 = {ZoSZSwao,UJQ—ﬂSw}.

Then
nte™ Y = (1+0(1/c?)2N NN~ (y + O(1/k))

is bounded on ¥ and we have
< vlg,,nt >< Mek(wo=5)
Taking ¢ = /2, we know

<vlg,,n" -
SV > ppe-skiz g,
<vg> - -

Since O\, /0w > 0, we know

Ao (w,z) > Ag(wo — B, 20)
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on X3. Therefore we have

<vg'>  <vg,, A > <vg,,n' A > +
<v,pt> <v,pl > <v,pl>
+ O(1/k)

> 0(1) + /\g(wo - ﬂ,ZO)
Similarly we see

<v,¢>

oS < o(1) + A1 (wo, 20 + B).

Therefore we have
Az2(wo — B, z0) — A1(wo, 20 + B) < 0+ 0(1).
Passing to the limit, we know
A2(wo, 20) < A1(wo, 20)-

But this means Py € {p = 0}, a contradiction. QED.
Let us fix a such that z5 < a < wy. We have

<vB}> = <P ><ygd>—<ugd ><y, >,
<y,Br> = <upt><ygd>—<und ><vgt>,
<uP¢t—ni®> = <P ><ugt> — <t ><u >,
<v,Bpa> = <upi><ud>—<ynd><ugd>.

From (8.8) we know
<rnigt =i >>0

and from(8.10) we know
<y,B3>50
Using these we can prove the following propositions. Proofs can be found

in Chen et al [2].

Proposition 28 As n = oo, < v,9 >,<1,¢3 >,< 1,45 >, < v,¢¢ > are
bounded.

Proposition 29 As n — oo, we have < v, B, >— 0.

Now, taking

e == if|z| <1
Po(z) = .
0 if |z] > 1



e pus
1 z+ 3 z—f
b(z) = = (Po(—5—)— @
() ﬂ(o(ﬁ) o(ﬂ))
for the generating function of 5. Here 8 = (1 — a)/2. We put
S¢ = {z<wlw—a <=2,
1-3
S- = {e<wlz—a<——)

Proposition 30 As n — oo, we have
< vlsy,ny?N >+ < v|s_,ny*N > 0.
Proof. Put S} =S4 NSp, Sk =S_ NSg. 1t is sufficient to prove that
< vlst,ny®N >+ < v, ny*Y > 0.
From (8.11) we have |
< V)sy, N Ay 4+ gV Ay > + < Vs, ny*N 1+ 4V Cy > 0.

Note
n(z+y—a) 1

+ouﬁ%K/ @) > 7 >0

-1

A_WN@NNW
1TV 9N 1
on S7. Put

.= {0<y< (D)4,

where p is a positive parameter. Then |yNA,| < M(1/n)*N = o(1) on
Sy NE, and |yN Az| < Mny*N (1/n)*~#Y on S — E,,. Choose d,, \, 0 such

that
l—a—dn -«
/ ¢=-/ & > (1/n)k.
—14a l—a—dp

Then

H

([ 92 (1/nye
-1

for |H|<1—-a-—d,, and

H
B (H)| + | / 9= o)

forl—-a—-d, <|H|<1. Put

l—-a-d,

St =8 n{lw—-a| < ~

}.

Then S7 C S} C Sp and
lyY As| = 0(1)
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on S, — S% and

1
N A+ Ae > ngP (S (1/m)0 — M(1/n) )

0

v

on ST — E,. Here we take 0 < 2up < 1 — uN. Then

< Vlsing.,ny*N AL > +
<Vlsy-p.,ny?N A +yV A, > +
o(1)

2 <V|stng,,ny?N >+

Mo Lf"l n)

< Vls,,—s;nE,.,nyzNAl >+

<Vls: -E., ny’V Ay +yV A, > +
<Vlsz-s; By A1+ YN Ap > +

o(1)

1 2N
E < VlsinE,.,f‘y >+

<Vs,,ny*N A +yN A >

v + +

vV o+ + + +

<vlsy—p.,ny*N (o= — M(1/n)' AN > 4

Moy
o(1)

1 2N
A < VIS:L,ny >+

o(1).

v + +

+

Similarly we know

1
< VISn,nyzNCI + yNC2 >2 — < Vls/ ,ny2N > +0(1)
2M, R

. Thus we see
<Vlsy,ny*N >+ < vls,ny®N > 0.
QED.
Proposition 31 We have
V|{p>0} = Op,.

Proof. Proposition 30 says that the projections P, i, P, of the measure
7 = y*¥v admits the Lebesgue lower derivatives which vanish at any a.

Therefore we can claime that

supp.v N {p > 0} = {Po}.
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Since v is a probability measure, we have

But
C(nPq* — n*d®) = C*(nPq* — n*¢%)
at Py. Hence C = 1. QED.

Summing up we get the final

Theorem 2 For any M, there is a positive number o such that if the initial
data satisfy '

¢+ up(z)

C
OSPO(‘U) SMO? l‘ilogc_uo(z)

| < Mo.

and if 1/c? < o, then a subsequence of the approzimate solutions UA con-
verges a.e. to a limit U which is a weak solution of the relativistic Euler

equation.
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