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Lar%e-time behaviors of solutions to an inflow
problem in the half space for a one-dimensional
system of compressible viscous gas

BAREE VEE & (Kenji Nishihara)
PRKE  fakt BB (Akitaka Matsumura)

1 Introduction

We consider the initial-boundary value problem on R, = (0,00) for a system of
one-dimensional barotropic viscous flow in the Eulerian coordinate:

pe+ (pit): =0, (%,t) €Ry xRy

(i) + (BT + P)z = pilss (11)
(ﬁ, '&)'t=0 = (ﬁo,flo)(i) - (p+,U+) as & — +oo '
(B, @)|z=0 = (p-, u-),

where the conditions
’ p+ >0, po(Z£) >0 and u_>0

and the compatibility conditions are assumed. Here j is the density, i is the velocity,
and the pressure f is given by § = p?(y > 1). Since u_ > 0, the flow with (p-,u-)
goes into the region under consideration through the boundary # = 0, and hence
the problem (1) is called the inflow problem. In the case of u_ =0 the condition
pls=o = p— is not imposed. The asymptotic behaviors in the case u- = 0 are
investigated in [3,7]. The present problem is treated in Matsumura and Nishihara
(8].

We first rewrite (1.1) in the Lagrangian coordinate: The mass of the gas inflowed
for (0,t) is p_u_t = %=t, v_ :=1/p_. Hence, the problem (1.1) is transformed into
that with the moving boundary z = s_t, s- = —u_/v_(< 0) in the Lagrangean
coordinate:

v —ug =0, (z,t) € {(z,t);z>s_t, t >0}

us + p(v)s = /"'(!vl)za p=p(v) =v"" (1.2)
(v, u)|s=0 = (vo, uo)(x) = (v4,u4) = (1/p4,uy) 88 T — +00 o
(v, ) |z=0 = (V—au—) = (l/p_,u_), »

where (v, u)(z,t) = (1/5,8)(Z,1).

Our aim is to investigate the asymptotic behaviors of the solution (v, u) to (1.2),
equivalent to (1.1).

The characteristic speeds for the corresponding hyperbolic system are Ai(v) =

(-1)iy/=p'(v), i = 1,2. Comparing the speed s_ of moving boundary with the
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characteristic speed \;(v), we devide the quarter space into three resions

Qs = {(v,u); 0<u<cv), v>0, u>0}
Tirans =  {(v,u); u=c(v), v>0, u>0} (1.3)
Qouper = - {(v,u); u>c(v), v>0, u>0},

where c(v) = vy/—p/(v) = \/'7'0"1#(= \/7(P)) is the sound speed. So, we call them

the subsonic, transonic and supersonic regions, respectively. See Figure 1.1.

u u| c(v)
Qsuper Quper
1}———— Trane c(v)
Qaub Qaub Ftram
v v
Figure 1.1(y = 1) Figure 1.1(y > 1)

If (v_,u_) € Quu, then );(v.) < s_(< 0), and hence the existence of a traveling
wave solution (V,U)(z — s_t) with (V,U)(0) = (v—,u-), (V,U)(+00) = (v4,uy) is
expected. Substitute this into (1.2); 2 (this means the first and second equations in
(1.2)) to have

—s . V'-U"=0, '=d/d¢, €E=x—s5_t>0
s U4 p(V) = (5 (1.4
(V,U)(0) = (v-,u-), (V,U)(+00) = (v4,u4).

When the solution (V,U) to (1.4) exists, it is called the boundary layer solution, or

BL-solution simply. Seek for the condition for the existence. When (V,U) exists,
the integration of (1.4) over (0, 00) and (£, 00) yields

() memu =0
-y = ) + plos) — plo-) = —p D (15)
and
-5 (V-vy)—(U~u)=0 , _ L6
{ =3 (U —uy) +p(V) — p(vy) = #%- (

From (1.5), and_(1.6)1

__UO v
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and hence we define BL-line through (v_,u_) € Q4 by

BL(v_,u_) = {(v,u) € Qsup U Ptmns;% =4 —-s_}.

Especially, denote ['irans N BL(v—,u-) = {(v:, u.)}. By (1.6) we have the ordinary
differential equation of V:

u%% - 'gvf{—sz_(V —vy) = (p(V) — p(vs))} = ’s‘éh(v) (1.8)

V(0) =v_, V(—i—oo) =v,.

Conversely we can show the existence of the solution V' to (1.8) and hence U for
(v4,us) € BL(vo,ul). At (ve,m), —82 = —(ue/v:)? = —(c(vs)/0.)? = =y 77" =
p'(v,). That is, —s? is the slope of the tangential line of p(V) at (v.,p(v.)). Hence
we find that h(v,) = 0, h(v) > 0 and 4 < 0 for v, < v < v- if vy < v_, and
h(v) < 0 and % > 0 for v_ < v4(< v,) if v- < vy. Thus, we have the following
lemma.

Lemma 1.1 (Boundary Layer Solution) Let (v_,u-) € Q. and (v4,uy) €
BL(v_,u_). Then, there exists a unique solution (V,U)(€) to (1.8), which satisfies

|(V(€) — 3, U(€) —uy)| < Chexp (—cle]) if vy < v,
I(V(€) = vs, U(E) — us)| < CHlEI™ if vy =,

where § = |(vy — v—,up —u)|.

On the other hand, since 0 > A;(v) > s— in Qgyper, the 1-characteristic field
is away from the moving boundary. Since A2(v) > 0 > s, the waves along the
2-characteristic field, of course, go away from the boundary. Hence, in these cases
the behaviors of solutions are expected to be same as those for the Cauchy problem
(See Matsumura and Nishihara [4,5,6]).

Hence, the large time behaviors to be expected devide the (v,u)-space as the
following figure, Figure 1.2.

Ra(v-,u-) 1?‘2(‘,”‘.1') R.],(V-,u-)

vo,u.)

BIZ Sa(v., u.)
‘ S2(V‘r U._)

v

Figure 1.2(y > 1)
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Here,
BLy(v-,u_) = {(v,u) € BL(v_,u_);v_ <v < v,}
BL_(v_,u-) = {(v,u) € BL(v_,u_);0 <v <wv_}

Ry(vi,u.) = {(v,u);u=u, — /v Ai(s)ds, v > v}
Ry(v_,u_) ={(v,u)ju=u_ — /v A2(s)ds, v < v}

Ry(vs,u.) = {(v,u);u=u, — /v Aa(s)ds, v < v}
So(v-,u-) = {(v,u);u=u_ — s;(v —v_), v>u_}
Sa(ve, u,) = {(v,u);u = u, — s,(v — V), v > v},

together with s, = /~(p(v) — p(v-))/ (v — v_) and 5. = \/—(p(v) — p(v.))/ (v — o).
Our aim is to investigate the stability of the BL-solution or a superposition of
the BL-solution and nonlinear waves. Our results are, roughly speaking, as follows.

(I) If (vy,uy) € BLy(v_,u_), then the BL-solution is stable.

(II) If (vy,uy) € BL_(v_,u_) , then the BL-solution is stable provided that
|(v4 —v_,uy —u_)| is small. That is, the BL-solution is necessary to be weak.

(III)  If (vy,uy) € BLiRy(v_,u_), then there exists (3, @) € BL,(v_,u_)
such that (vy,u,) € Rp(7, %), and the superposition of the BL-solution connect-
ing (v—,u_) with (7, %) and the 2-rarefaction wave connecting (7, %) with (vg,uy)
is stable provided that |(v; — @, u; — @)| is small, where

BLiRy(v-,u_) = {(v,u); u> —s_v, u>u_ —/v Ao(s)ds, u< u*—/v A2(s)ds}.

That is, the rarefaction wave is weak, but the BL-solution is not necessarily weak.
(IV) 1If (v4,u4) € BL_Ry(v_,u_), then the superposition of the BL-solution and
the 2-rarefaction wave is stable provided that |(v; — v_,u, — u_)| is small, where

BL_Ry(v_,u_) ={(v,u); u> —s_v, u<u_ —/ A2(s)ds}.
In this case, both the BL-solution and the rarefaction wave are weak.
(V) If (v*,u*) € BL+('U-7U—)7 (U+1u+) € R1R2(’U*,U,.) and I(’U+ = U, Uy —

u,)| is small, then the superposition of the BL-solution, 1-rarefaction wave and
2-rarefaction wave is stable. Here,

Ry Ro(v., us) = {(v,u); u>u, —/ Ai(s)ds, i =1,2}.
Similar to (/17), the BL-solution is not necessarily weak.

In the proofs of the above assertions, the sign of U, = V, is important, similar
to those of the Cauchy problem. So, to show (/) and (/) are essential. The cases



(IIT), (V) are the applications to (1), and (IV') is to (/I). In the next section we
mainly state the stability thorems of the boundary layer solutions.
The other cases are still open. For example, when

(v4,uy) € BL_Sy(v_,u_) = {(v,u); v < —s_v, u<u_.—s(v— v-)},

the asmptotic state is conjectured to be (V, U)(z—s_t)+ (Vs , U5 )(x—sat+a) — (0, )
together with a suitable shift «, where (9,%) € BL_(v-,u_) such that (vy,uy) €
S»(,%), and (V,U) is the BL-solution connecting (v—, u-) with (9,%) and V3, Us)
is 2-viscous shock wave connecting (7, %) with (v, uy). Even though the shift o is
conjectured by the same way as in Matsumura and Mei [3], this case is not solved
yet.

2 Stability of the boundary layer solution

2.1 The case (vy,us) € BLi(v-,u_)

Assume that
(v_,u_) € Qe and  (v4,u4) € BLy(v-,u-), (2.1)

then a boundary layer solution (V,U)(€), € = z—s_t >0, s_ = —u_/v_ connecting
(v_,u_) with (vy,u,) is uniquely determined in Lemma 1.1. Note that

Ug = —3_V§ > 0, (2.2)

which plays an important role in the a priori estimate. The perturbation (¢, ¥)(§,t)
defined by
(v, u)(z,t) = (V,U)(§) + (6, %) (&), (2.3)

satisfies

b= s-be—he =0, £>0, t>0 .

o= s+ ((V +9) —p(V)e = (G = 3 2

(d): ¢)|§=0 - (0’ O)

(¢1 ¢)|t20 = (¢0v 7»00)(5) = (’l)o - Va Uo — U)(S)a

from (1.2) and (1.6).
To solve (2.4) we apply the L*-energy method. The solution space is defined by

X (0,T) = {($,9) € C(0, T); H) | 6= € LX(O, T5 L), s € LA(0, T3 HY)
with sup (¢, ¥)(O)h <M, inf oV FHOED 2m),

for positive constants m, M. Here, we denote ||f|lx = ( k1184 f11%)H? and || fll =
(J&° |f(z)|?dz)/2. To obtain a time-global solution, we combine the time-local exis-
tence of the solution with the a priori estimates, which are given as follows.
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Proposition 2.1 (Local existence) Let (¢o,%0) be in Hy(R.). If ||¢o, %ol <
M, and 1nfR+x[0 71(V + ¢)(§,t) > m, then there exists ty = to(m, M) > 0 such that
(2.4) has a unique solution (¢,) € Xim2m(0, o).

Proposition 2.2 (A priori estimates) Let (¢,) be a solution to (2.4 ) in X 1
(0,T). Then, for a suitably small e > 0, there exists a constant Cy > 0 such that

16,9 + [ We(0, 72 + 1/Vehlr)I? + I8e(r)I? + () < Colldo, ol

Remark 2.1 If € is suitably small, then infg, . oV + @) t) > m/4 is auto-

matically satisfies by the Sobolev inequality. Hence we denote X,, (0, T) simply by
X1.(0,7). :

The stability theorem is derived from these two Propositions in a standard way.

Theorem 2.1 (Stability of BL-solution) If [[vg — V,ug — Ul||; is suitably small
together with the compatibility condition (vo—V,uo—U)(0) = (0, 0), then there erists
a unique solution (v, u) to (1.2), which satisfy (v — V,u — U) € C([0,00); H}) and

sup|(¢,¢)(E,t)l = sup |(v,u)(z,t) = (V,U)(z = 5-)] >0 as t— o0

.'178..

We first sketch the proof of the local existence theorem, Propositions 2.1.
By (2.4);, ¢ has the explicit form

/t Ye(§+s-(t—71),7)dr, 0<E<—s_t
t+5

¢(§7 t) = (25)
%@+Lﬂf£%@+au—mﬂm,§z—Lt

Eq.(2.4); is written as an initial-boundary value problem for the linear parabolic
equatioin of ¥:

Ve \ _
(0_:;(1/ n ¢)e = g := g(¥e, ¢, P¢) 2.0
Y(&,0) = $o(§),
where
9(Ye, ¢, bc) = s—pe — (P(V + @) — V + 3 V)

To use the iteration method, we approximate (¢o, %) € Hj by (dok, Yor) €
H? N H} such that

(dok> Yor) — (¢o,%0) strongly in H*
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as k — co. We may assume

3 ) 2
| bor, Yorll1 < §M, 1}1{1f(v + dor) > =m
-+

w

for any k > 1. Define the sequence {(¢™, ™)} := {( () ™)} for each k so that

(¢9, ) (&, 1) = (dok, Yor) (£),

and, for a given (¢~ 1,y =1)(£,1), ¥™ is a solution to
(n) ¢(n) 1 (n—1)
P~ M(m)e = g™V = g(h(n — 1), oD, 6 )

$p™(0,t) =0
¢(") (5’ 0) = 'l/)Ok(E);

(2.6)

and
t
/ ¢ wén)(£ +s_(t— T),T)dT, 0<€< —s_t
P

o= (2.5)
Por (€ + s5-t) +/ ¢(n) (E+s_(t—7),7)dr, &= —s_t

From the linear theory, if g € C°([0,T); L?), %o € H? N Hy, then there exists a
unique solution 1 to (2.6) satisfying

¥ € C([0, T]; H* 0 HY) n CY([0,T); L*) N L*(0, T; H®).
Using this, if (¢, 9%"™V) € X1, 50, then we have
3 .
(6™, ) (@B)]* < ((EM)2 + C(m, M)to) exp (C(m, M)to) (2.7)
< (@2M)? if 0<to:=to(m M) <1

and also

[ 19 ) dr < Clm, M)M?

Hence, direct estimates on (2.5)’ give
[ W s t= il < OVEM

and

| [ 4 +s-(t =), m)drll < CVEaM.



106

Hence, for a suitable small t, we have

@), < 2M i > 1
oS lIg™ @)l < and o lof (VHED) > om. (2:8)
By (2.7)-(2.8), (¢™,y™) ¢ X1m2m(0,%0). By a standard way, (¢, y™) can

be shown to be the Cauchy sequence in C([0,t0]; H'). Thus we have a solution

(S k) € X 11 204(0, o) t0 (2.5) and (2.6) by limyao (6™, Y(™) = limy, o0 (6, %{™).
Here, we note that

¢r € C([0,%]; H* N H}) and
i € C([0, to]; H? N Hy) N C([0, to]; L?) N L2(0, to; H3),

since g((Yr)e, Px, (dr)e) € C([0,to); L?) and (dox, vor) € H2 N H}. Again, show-
ing that (¢, 1) is a Cauchy sequence in C([0,to]; H!) (taking t, smaller than the
previous one if necessary), we obtain the desired unique-local solution (%) €

X%m,ZM(Ov to). .

Next, we show the a priori estimate.

Let (¢,%) be a solution in X 1me(0,T) = X.(0,T). First, Multiply (2.4); and
(2.4)2 by ¥ and —(p(V + ¢) — p(V)), respectively, and add these two equations to
have a divergence form

{%1/;2 + (v, V)},
2
Hoo, V) = S0+ 00) e - % - Yy (2g)

2
+{u% - ﬂs—vifx;p—f —s-Ve(p(V +¢) —p(V) - p'(V)¢)} = 0,

where Vi
2w, V) =p(V)p— [ pndn. (2.10)

Here and after we will often use the notation (v,u) = (V + ¢,U + @), though the
unknown functions are ¢ and %. Since p"(V) > 0, put

p(V+¢)—p(V) —p(V)$ = f(v,V)¢?, (2.11)

then f(v,V) > 0. Hence (2.2) is effective, and the last three terms in (2.9) are
regarded as the quadratic equation:

Q:= I‘ﬁ — ps_v—‘j# —s_Vef(v,V)¢?

v

= (VR - S el 1 VB =5 Vel 0,V + (/= Ve (0 V)

Vyvf(v, V)
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The discriminant of @ is

—ps-V __—hV)

D= i) =T Ver,v)

—4. (2.12)
Since v4 > v_,

—h(V) = s2(V —vy) + p(V) — plvy) <p(V) =V7". (2.13)
Moreover, by putting X = V/v,
Vo™ =V + V-7 Hv - V))

vV =
'Uf('U, V) ('U _ V)2
(2.14)
:v_A,.X‘Y+1 (7+1)X+'y> W,
(X —1)?
because X! — (v +1)X 4+ > y(X — 1)? for X > 0. By (2.12)-(2.14),
V= 1
D < —4=--4<3. 2.
< V= 5 <3 (2.15)

Thus, integrating (2.9) over (0,00) x (0,t), we have the following basic estimate.

Lemma 2.1 (Basic estimate) For the solution (¢,%) € X.(0,T ), it holds that

S+ [ o0, V)(E )de

t proo 2
st [ [0 4 v 1) - plv) — P (V)
< Lol + [ @0, V)(EE < Cldo, ol

Next, following {7], change ¢ to ¥ := v/V. Since
p(V+¢)—p(V)—p (V)¢ =V —1+7(0-1)

and

®(v,V) = VHO(9),

where
7—1-Ino (y=1)

d(7) = 1
T—1+——@ " =1) (y>1),
v-—1

Lemma 2.1 is rewritten as follows.
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Lemma 2.2 [t follows that

SO + [T VT80, 0)de

_ t roo 2 Vi V-
+C 1/0/0 {%+|%1./’5|+V—§(ﬁ‘7—1+7(6—1))}d§dr

< Cli¢o, %oll*.
Eq. (2.4); is also written as
(W% =)= 5 (w2 — e+ 2L Ve g
t K Vgl VA v - )— . (216)

Multiplying (2.16) by @¢/%, we have a divergence form

(%) —¢(§)}t

v _ yh(V) © it SN /w— 've)z} e

Hy, -+ P + Vreia (2.17)

Ve | 5-BUeVe W H(VIVT—h(V)WVL =11
=& - { +Inv}.
v vV S_p V2 ¥

By (2.2)
[the final term of (2.14)| < CV (07T =1+79(0-1)).

Hence, the right hand side of (2.14) is controllable by Lemma 2.2. Thus, integrating
(2.14) over (0, 00) x (0, t) yields the following lemma.

Lemma 2.3 It holds that
~ ~9
fore [ [

< CllIgoll + Iol®) + C [ (2)2(0,7)ar

(2.18)

We note that the estimates until now have been obtained without smallness
condition. Hence we wish to control the final term of (2.18), C f§(%£)2(0, T)dr,
without smallness condition, in a similar fashion to [6,7]. But, we could not do it.
However, we can control it provided that the initial data is small. Since

(E207) = 40,1 = 7020, < Clelle)l, (219)



it is necessary to estimate f{ || (7)||2dr, which is controllable for small the initial
data.
We now assume that

N(T) := sup [l($,¥)(#)h <e <1
0<t<T

Multiplying (2.4)2 by —¢¢, we have
2

(%d}?)t + (= + 3?—1/’2)5 + #3%5

_ Pe (Ve + ¢¢) U U
={-n V£ Vid Vg)—((V+¢ P(V))e H—ee)

and, after integrating the resultant equation over (0,00) x (0, t),

+

eI + [ (0,7 + e e
(2.20)

oo
< ClugllP+C [ [ 62+ Ved® + wpdear

Here, we have estimated the amount (¢ete)? as

/ot /owwé'/’&)?dfdf < /0 e el 1|

<o [ leliar + CNTY: [ ge(ldr

for a small constant » > 0. By Lemma 2.1, (2.20) is reduced to

eI+ [ We0,7) + Ise(r) )
(2.21)

Cliooll® + ol +C [ e(rlar

For a small constant A > 0, (2.18) + (2.21) - X together with (2.19) yields

55 )1+ MO+ [ e+ 2077 + Allee (DI
< Cllgo, Yoll + € [ (CEP(0.7) + Age(r) e

< Clldo, vl + [ (eI + Cullbe(r)I + CAllge(r) P)dr
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el = [7(Z6 ~ Yl

> [0 - Y > qpoeioll - clsoe

and
|, WelPdr 2 eo [ geryiiar - ¢ [ [* vigagar,

we fix A such that CX < ¢p/2 and v such that » < A\/2. Then, the following lemma
holds.

Lemma 2.4 If N(T) = supgc,<r [|[(#, %) (2)|l1 is suitably small, then

e O + [ We0,7) + (e, Yee) () P)r < Clidw, vl

Combining Lemmas 2.1-2.4 completes the proof of Proposition 2.2.

We briefly mention the case (vy,u;) € BLy Ry(v_,u_), Ri(v.,u.)or Ry Ry(v.,u.).
For example, for (vy,u;) € BL,Ry(v_,u_), there is a unique (7,%) € BL, such
that (vy,uy) € Ry(9, %), and there exist a BL-solution (Vy, Up)(z — s_t) connecting
(v-,u-) with (9,%) and a 2-rarefaction wave (vf,uf)(z/t) connecting (7, %) with

(v4,u4). The behavior of solution (v,u) to (1.2) is expected to be
(v,u)(2,t) ~ (Vo(z — s_t) +v5(2/t) — 3, Up(z — s_t) + uf(z/t) —w)  (2.22)

as t — oo. To show (2.22) we first construct a smooth approximate rarefaction wave
(Va, Uz)(z, t) satisfying
{ Vor = U =0
U2t + p(%)z =0

with Up; = Vo, > 0 and lim,,o sup [(Vz, Uz)(z, t) — (v&, uff)(z/t)| = 0(See [5,6,7)).
Then, the perturbation (¢,%)(£,t) = (v — (Vo + Vi — 9),u — (Up + U, — @) =:
(v — V,u — U) satisfies

'¢t—3—¢£—1/’£:0 Use + % U
Yo = st + PV + @) = (V) = W= = 7o)
‘ —(p(V) = p(Vo) — p(V1) + p(D))¢
(&%) |e=0 = (Vi — 0, Uy — @)|e=0 =: (bv, bu)(t)
\ (¢’ ’w)lt:O = (UO - V't:O: U — Ult:O) =: (¢0’ ¢0)(€)

Since the last term of (2.23), and the boundary value (by,by)(t) are small as
t — oo if |(vy — ¥,uy — @)| <K 1, we can treat (2.23) as essentially same as (2.4).
In particular, since U = Uy + Ulg > 0, the basic estimate similar to Lemma 2.1 is
obtained, and hence the stability theorem for (V,U) = (V, + V1 — 9,Up + U, — @)
holds provided that |(v4 — 7, uy — @)| < 1. We omit the details.

(2.23)




2.2 The case (vy,u;) € BL_(v_,u_)

In this subsection we assume that
(v_,u_) € Qep and (v4,us) € BL_(v_,u_).

The situations are all same as the case (vy,uy) € BLy(v_,u_) except for uV; =
;th(V) < 0. Hence, the perturbation (¢,) satisfies (2.4), but the proof of Lemma
2.1 is not available. In this case, we have, from (2.9),

d oo oo 2
47 ot e+ [ nliag

<o [TWilgtde+v [ uddg+C, [ Vil ePde

for a small constant v > 0. If § = |(vy —v_,uy —u_)| K 1land ||(¢,%)(t)]1 < e K1,
then

GO + [ l(rIPdr < Cligo,voll+C [ [~ Velole, m)dedr.  (224)

The estimate of the last term is a key point. Applying the idea by Kawashima and
Nikkuni [1], we have

H(E1) = 60,) + [ de(n,Odn < (0,
and
¢ [ [ ilote, 7ragr < [ 1os(IP [ 6(-Vel@dar < O [ lge(r) P
Thus we have
16, 9O+ [ Ieldr < CQldo wol? +6 [ Iee(nlian).  (225)

Moreover, we seek for the estimates of higher order derivatives.
Similar to the proof of Lemma 2.3, we can show

I6sO+ [ o) P < Clldo,sollt+ [ 060,07+ [ [~ 1VelgPder). (226)
Since
0 [0, = 5 [ w0 <o [ eetr)Par + G, [[er)IPer
(2.26) yields

861 + [ lige(r)IPar

. | (2.27)
< (ll¢pos %oll?) +/0 {w[ec (M2 + C8llge()II* + Cullpe(m) ||}
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Further we have, by multiplying (2.4); by —,

eI + [ (0e(0,7)? + e(r) P)ar

. (2.28)
< Cligo, vollt +C [ (lge(rI* + ()|}

Add (2.27) to A-(2.28) for a fixed number A > 0 such as 1 — C\ > 1/2 and
v =\/2, then
I@e BN + [ 0,77 + Iger)I + Iee(r)P)dr
< Clligo, ol + [ lwe(r)|Par).
0
Again, add (2.29)-A(A > 0) to (2.25), then
(e, VYD + All (e, ) O
+/0 {1 = CNIYe(MI* + Mee(0,7)% + |l ()12 + ||sbee (7)||?}dr
t
< Cllgo, volf? +C6 | llge(r)dr.

(2.29)

Taking A as 1 — CA > 1/2 and restrict § as A — C§ > A/2, we obtain the desired a
priori estimate.
Thus we reach the following theorem.

Theorem 2.2 If lvy —v_,uy —u_| + |lup — V,up — U||; is suitably small with
the compatibility condition (vo — V,ug — U)(0) = (0,0), then there erists a unique
solution (v, u) to (1.2), which satisfies (v —V,u — U) € C([0,0); H}) and

sup |(v,u)(z,t) — (V,U)(z —s_t)] =0 as t— oo.

z>s_t
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