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On large time behaviour of small solutions to the .
Vlasov-Poisson-Fokker-Planck equation
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Graduate School of Mathematics, Kyushu University
(LK - #08)

1. Main Result

We consider the Cauchy problem for the Vlasov-Poisson-Fokker-Planck
equation (without friction term)

Of+u-Vof —E(f)-Vuf —Af =0, (z,u)e RNx RN, t>0
f|t=0=f0-

Here N > 2, f = f(x,u,t) is the unknown function, which describes the
number density of particles at position £ € R" and time t with velocity

(1)

u € R" in a physical system under consideration s Ve = (0,0, 0oy ),
Viu=(0u,  ,0uy) ; Ay = 02 +---+ QfN is the Laplacian with respect to
the variable u ; and
E(f) = —wT——x— *x/ f(z,u,t)du, w : a constant,
|SN=1] 2|V [

|SN=1] is the (N — 1) dimensional volume of the N-dimensional unit sphere,
and x; denotes the convolution with respect to z. A

In this article we present the results on the large time behaviour of small
solutions of (1), which were obtained in [1], and give some remarks. (The
detailed proofs of theorems are thus found in [1].)

Theorem 1 ([1]). Let n be an integer satisfying 0 < n < 3N — 5 and let r
be an integer satisfyingr > n+3N + % Assume that for initial value f,, the
quantity

I(fo) = (1 + |zI* + 'u|2)r/2f0”H"'(RNxRN)

is finite for some m > [X — 114+ N + 1. Here H™(R" x RY) denotes the
L?-Sobolev space of order m and [q] denotes the largest integer less than or

equal to q. Then for any e > 0, if I(f,) is sufficiently small, there ezists a
unique global solution f(t) of (1) in C([0,00); H™) and f(t) satisfies

Bl 2N £03/2  L1/2 _ ~ .k -
tll)lgt 2 ”t @z, t%u, t) Zt 2 Z B. pga(z, u)”Lg?u = 0.
k=0 3lal+|Bl=k
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Here gag(a,u) = 92(3: + 0.)%g(z,u) and g(z,u) = e=3F=31; B,y
are constants determined by fo and the nonlinearity. In particular, Boo =

[ fo(z,u) dzdu.

Remark 2. In Theorem 1 the range of n is restricted as 0 < n < 3N — 5.
One can, however, obtain the asymptotics of f with error estimate of order
O(t‘n_;r—l) for any nonnegative n € Z, if the weight is taken large enough in
such a way that r > n+ 3N + %

In fact, for n in the range in Theorem 1, the asymptotics is similar to
that for the solution of the linear problem (i.e., the problem without the
term E(f) - V.f). The only difference from the linear problem appears in
the constants B, g’s ; in the linear case B, g’s are given by some moments of
fo only, while in the nonlinear case B, g’s also involve some additional terms
depending on fy and the nonlinearity.

If n is beyond the range in Theorem 1, i.e., if n > 3N — 4, then the effect
of the nonlinearity becomes much stronger and the asymptotics is given by
not only =% and g ’s but also some terms with log? and other functions
besides g, g's. For example, if n = 3N — 4, then we have

n-—1

2N f(322, 8 2u,t) ~ Y 77 Y Bapgas(e,u)
k=0 3lal+Ifl=k _
+t7% > (Bap + Baplogt) ga,s(z:4) + h(gas:t)

Z’»Iorl-flﬁl=n
+O(t="5+),

where B, g and Ba s are some constants and h(ga,s,t) = O(t~7). See the
argument in Section 3 below as for the dependence of A on gop’s- In case
n > 3N — 3, the form of the asymptotics becomes more complicated.

Remark 3. We mention some related works on large time behaviour of
solutions of (1). Carrillo, Soler and Vézquez [4] obtained the asymptotics to
the first order for weak solutions of (1) belonging to certain classes. The proof
is based on the re-scaling argument. Carrillo and Soler [3] then proved the
existence of weak solutions belonging to the classes given in [4] for initial date
small in some sense. Carpio [2] obtained the asymptotics to the second order
for small solutions by a detailed analysis of the linear problem and using the
re-scaling argument. We also mention the work by Ono and Strauss [8], in
which sharp decay rates of small solutions were proved and also it was proved
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that small solutions approach to those of the corresponding linear problem
. . 1
with error estimate of O(t~2).

2. Finite Dimensional Invariant Manifolds for the VPFP

We derive the long-time asymptotics given in Theorem 1 and Remark 2 by
constructing finite dimensional invariant manifolds. To construct invariant
manifolds, we change the variables into the ”similarity” variables:

t=log(t+1), &=z/(t+1)*?, @=u/(t+1)?
flyu,t) = (¢t + 1) f(=/( + 1), u/(t + 1)/2,log (¢ + 1)),

where v = % + 2. Then the equation for f is written, after omitting tildes,
as

2) atf—(%x—u)'va:f—%u-vuf—'yf—E(f).vuf_Aufzo’

f |t=0 = fo-
We write the problem (2) in the form

Of =Lf+N(f), f(0) = fo,

where Lf = Auf+(%x—u)~vzf+%u-vuf+7f and N(f) = E(f)- V.f.
We first consider the linear problem in the weighted space X! which is
defined by |

X = {f(z,u) € L*(RN x RM): (1+ |22 + |ul>)/2000%f € L*(RN x RYM),
0<l|a| <1, 0<|B] <m},

where I, m and r are nonnegative integers.

We are given a nonnegative integer n and we fix this n hereafter. For this
n we take the weight large enough in such a way that r > n+ 3N + 2. Then
as for the spectrum o (L) of £ in X2°, we have

o(L) C{or:k=0,1,--- ,n} U{Reo < 0,41} (0; =—(2N —v)-1).

Here each of o (k =0,1,--- ,n) is a semi-simple eigenvalue ; the associated
eigenspace is spanned by functions g, 3’s with a and 8 satisfying 3|a|+|8| = k
; and the eigenprojection P, is given by

Pf = Z (fvg;,ﬂ)gcx,ﬁ'

3la|+18l=k
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Here g7 5(z,u) = ca,p(0z +38.)*(9: +20,)g(z, u) denotes the adjoint eigen-
function (c, g is a constant) ; and the inner product (-,-) is defined by

(f,q) = / f(z,u)g(z, u)e = dadu, p(z,u) = 3|z — L + Lul?.

We denote by P, = Y__, P: the projection onto the spectral subspace cor-
ressponding to discrete eigenvalues {0} }7_, ; and define Q, by @, = I —Py.
Then X!™ is decomposed into the direct sum :

X =Y, ®Z, Y.=P.X'"™ Z=Q.X™,
and the solution e'* fy of the linear problem is decomposed as

€ fo = yu(t) + 2(t), Ya(t) € Ya, 2(t) € Z,
un(t) = > € Pifo, 2(t) = Que' fo.

k=0

As for the part z(t) = Q,e'c fo on the subspace Z, the estimate

1Qne’ foll xiom < C(L+178)e™ 2| fol| gt

holds for { > 0, m > j and j = 0,1. Therefore, the large time behaviour of
solutions of the linear problem is described, up to O(e?*+*), by the behaviour
of solutions on the finite dimensional invariant subspace Y.

For the nonlinear problem we have the following theorem, from which the
long-time asymptotics given in Theorem 1 and Remark 2 are obtained.

Theorem 4 ([1]). Let n > 0 be an integer and let v be an integer satisfying
r >n+3N+3. Then for any fized integers m > 1 and [ > [Z —1]+1, there
ezists a finite dimensional invariant manifold M for (2) in a neighborhood
of the origin of X™+'™  ie., there exist ® € C'(Yy; Z) and R > 0 such that
®(0) =0, D®(0) =0 and

M= {yn + q)(yn)1 Yn € YTH “yﬂ” S R}7

where Y, = PnX,T’”'I’m and Z = QnX;"“’m ; and M is invariant under
semiflows defined by (2). Furthermore, solutions near the origin approach
to M at a rate O(el»+1+)) as t — oco. More precisely, if || fol| xm+im is
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sufficiently small, then there uniquely ezists a solution f(t) of (2) on M
such that

(3) 1£() = f()ll gmerm < Celomitel,

Remark 5. Wayne [9] constructed finite dimensional invariant manifolds in
Sobolev spaces with polynomial weights for certain semilinear heat equations
on whole spaces by using the similarity variables transformation. The method
in [9] is then extended to various contexts as in [5, 6, 7, 10].

3. Outline of Proof

We here outline how to obtain the long-time asymptotics given in Theo-
rem 1 and Remark 2. (See [1] for the proof of Theorem 4.)

Our starting point is the estimate (3) in Theorem 4. We can rewrite the
estimate (3) in the form

) 19n(8) = GOl raim < Celomir o
and '

(5) 12(2) — @(Fa(t) || xmtr.m < Celontite)t
where

F() = ya(t) + 2(2), f(t) = Fa(t) + @(Fa(2)), ynlt), Gu(t) € Ve, 2(t) € Z.

Thus, to obtain the asymptotics of f(t) up to O(el“»+1+9)) it suffices to
investigate the behaviour of ,(t), which is governed by a system of finite
number of ordinary differential equations. Since #,(¢) can be written as

Gn) = D Yeus(!)9aps Yas €R,
Slal+151<n

the problem is reduced to the analysis of the behaviour of y, 4’s.
_ We now derive a system of ordinary differential equations for y, s’s. Since
f(t) = Ga(t) + ©(9n(?)) is a solution of (2) on M, it satisfies

Of = Lf+N(f).
Taking the inner product of this equation with 9 3» We have

Ya,8 = OkYa,8 + Ha,ﬁ(gn)v 3'“' +8l=k, 0<k<n,
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where § = % and Hap(fn) = (N (Un + 2(Fn)), 95 5)-
For = 8 = 0, one can easily verify that Hoo(y,) = 0. Hence,

yo,o = 00Y0,0) i.e., yo,O(t) = egotyO,O(O)-

Recall that oo = —(2N —v) = —(2N — 2) < 0. For (o, ) # (0,0), we have,

by the variation of constants formula,

t
(6) Yas(£) = €7y 5(0) + €' / €7 Hap(n(s)) ds
0

with k = 3|a|+|8|, 1 < k < n. Since o = go— X, one can expect that ya,s(t)
decays strictly faster than yoo(t). Therefore, the slowest term in Ha,p(9n(s))
behaves like €279°, since the lowest order terms of H,(7») are quadratic in
{yap}- As a result, the integrand in (6) behaves like e(200=7x)s

Now let n < 3N — 5. This is just equivalent to |on| < 2|oo| (and to
|ont1] < 2|00|). It then follows that for 3|a| + |8 =k, 0 < k <n,

ya,ﬁ(t) ~ const.e7*t 4+ O(eZUot),
where const. depends on y,5(0) and H,,s. We can also obtain
Hz(t)Hx:_"-{'l,m S Ce(an-l-l'!'s)t-

Therefore,

FO ~ e S Bupgas + O+,

k=0 3lal+|ol=k

Here we write the solution of (2) and the time variable with tildes. Since the
similarity variables f and f are connected with the original variables f and ¢
by t = logt and f = t'f, we obtain the asymptotics given in Theorem 1 for
n <3N -5. '

We next consider higher order asymptotics. In higher order cases, the
estimates (4), (5) and equations for y,g’s, of course, take the same forms.
Let n > 3N — 4. Then |o,| > 2|oo| and |on41] > 2]oo|. Therefore, the
integrand in (6) does not decay as s — oo for some o and S, and the effect
of the inhomogeneous term is no longer weak. Also, one must take the effect
of ®(J,(t)) into account, and, thus, the form of the asymptotics becomes
complicated.
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For example, if n = 3N — 4, then we have o, = 20, and, therefore, the
integrand in (6) with 3|a| + |8] = n is of O(1). It then follows that for
3lal + 18] = n,

Ya,8() ~ c1€7" + co te™™ + O(e”+),

where ¢, and c; are some constants. One can also see that ®.5(Tn(2)) =
O(e’'). Combining these with (4) and (5), we see that, in the original
variables,

n-1
t2Nf ~ Z t_g Z Ba,ﬁga,ﬁ
=0 3|a|+|Bl=k N "
+7F )" (B + Baplogt) gas + h(Fa(t) + Ot~ ),
3|a|+1B]l=n

where B, 3 and Ea,p are some constants and h(¥,(t)) = O(¢t~2). This gives
the asymptotics presented in Remark 2 for n = 3N — 4. For n > 3N -3, it
is possible to obtain the asymptotics in a similar manner as above, but the
form of the asymptotics becomes more complicated.
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