On large time behaviour of small solutions to the Vlasov-Poisson-Fokker-Planck equation

Yoshiyuki Kagei (隠居 良行) Graduate School of Mathematics, Kyushu University (九大・数理)

1. Main Result

We consider the Cauchy problem for the Vlasov-Poisson-Fokker-Planck equation (without friction term)

(1)
$$\begin{aligned} \partial_t f + u \cdot \nabla_x f - E(f) \cdot \nabla_u f - \Delta_u f &= 0, \quad (x, u) \in \mathbf{R}^N \times \mathbf{R}^N, \ t > 0 \\ f|_{t=0} &= f_0. \end{aligned}$$

Here $N \geq 2$, f = f(x, u, t) is the unknown function, which describes the number density of particles at position $x \in \mathbb{R}^N$ and time t with velocity $u \in \mathbb{R}^N$ in a physical system under consideration; $\nabla_x = (\partial_{x_1}, \dots, \partial_{x_N})$, $\nabla_u = (\partial_{u_1}, \dots, \partial_{u_N})$; $\Delta_u = \partial_{u_1}^2 + \dots + \partial_{u_N}^2$ is the Laplacian with respect to the variable u; and

$$E(f) = \frac{\omega}{|S^{N-1}|} \frac{x}{|x|^N} *_x \int_{\mathbb{R}^N} f(x, u, t) du, \quad \omega : a \text{ constant},$$

 $|S^{N-1}|$ is the (N-1) dimensional volume of the N-dimensional unit sphere, and $*_x$ denotes the convolution with respect to x.

In this article we present the results on the large time behaviour of small solutions of (1), which were obtained in [1], and give some remarks. (The detailed proofs of theorems are thus found in [1].)

Theorem 1 ([1]). Let n be an integer satisfying $0 \le n \le 3N - 5$ and let r be an integer satisfying $r \ge n + 3N + \frac{3}{2}$. Assume that for initial value f_0 , the quantity

$$I(f_0) = \|(1+|x|^2+|u|^2)^{r/2}f_0\|_{H^m(\mathbb{R}^N\times\mathbb{R}^N)}$$

is finite for some $m > [\frac{N}{2} - 1] + N + 1$. Here $H^m(\mathbf{R}^N \times \mathbf{R}^N)$ denotes the L^2 -Sobolev space of order m and [q] denotes the largest integer less than or equal to q. Then for any $\varepsilon > 0$, if $I(f_0)$ is sufficiently small, there exists a unique global solution f(t) of (1) in $C([0,\infty); H^m)$ and f(t) satisfies

$$\lim_{t\to\infty} t^{\frac{n+1}{2}-\varepsilon} \|t^{2N} f(t^{3/2}x, t^{1/2}u, t) - \sum_{k=0}^n t^{-\frac{k}{2}} \sum_{3|\alpha|+|\beta|=k} B_{\alpha,\beta} g_{\alpha,\beta}(x, u)\|_{L^\infty_{x,u}} = 0.$$

Here $g_{\alpha,\beta}(x,u) = \partial_x^{\alpha}(\partial_x + \partial_u)^{\beta}g(x,u)$ and $g(x,u) = e^{-3|x-\frac{u}{2}|^2-\frac{1}{4}|u|^2}$; $B_{\alpha,\beta}$ are constants determined by f_0 and the nonlinearity. In particular, $B_{0,0} = \int f_0(x,u) dx du$.

Remark 2. In Theorem 1 the range of n is restricted as $0 \le n \le 3N - 5$. One can, however, obtain the asymptotics of f with error estimate of order $O(t^{-\frac{n+1}{2}})$ for any nonnegative $n \in \mathbb{Z}$, if the weight is taken large enough in such a way that $r \ge n + 3N + \frac{3}{2}$.

In fact, for n in the range in Theorem 1, the asymptotics is similar to that for the solution of the linear problem (i.e., the problem without the term $E(f) \cdot \nabla_u f$). The only difference from the linear problem appears in the constants $B_{\alpha,\beta}$'s; in the linear case $B_{\alpha,\beta}$'s are given by some moments of f_0 only, while in the nonlinear case $B_{\alpha,\beta}$'s also involve some additional terms depending on f_0 and the nonlinearity.

If n is beyond the range in Theorem 1, i.e., if $n \ge 3N-4$, then the effect of the nonlinearity becomes much stronger and the asymptotics is given by not only $t^{-\frac{k}{2}}$ and $g_{\alpha,\beta}$'s but also some terms with $\log t$ and other functions besides $g_{\alpha,\beta}$'s. For example, if n = 3N-4, then we have

$$t^{2N} f(t^{3/2}x, t^{1/2}u, t) \sim \sum_{k=0}^{n-1} t^{-\frac{k}{2}} \sum_{\substack{3|\alpha|+|\beta|=k}} B_{\alpha,\beta} g_{\alpha,\beta}(x, u) + t^{-\frac{n}{2}} \sum_{\substack{3|\alpha|+|\beta|=n\\+O(t^{-\frac{n+1}{2}}+\varepsilon)}} (B_{\alpha,\beta} + \widetilde{B}_{\alpha,\beta} \log t) g_{\alpha,\beta}(x, u) + h(g_{\alpha,\beta}, t)$$

where $B_{\alpha,\beta}$ and $\widetilde{B}_{\alpha,\beta}$ are some constants and $h(g_{\alpha,\beta},t) = O(t^{-\frac{n}{2}})$. See the argument in Section 3 below as for the dependence of h on $g_{\alpha,\beta}$'s. In case $n \geq 3N-3$, the form of the asymptotics becomes more complicated.

Remark 3. We mention some related works on large time behaviour of solutions of (1). Carrillo, Soler and Vázquez [4] obtained the asymptotics to the first order for weak solutions of (1) belonging to certain classes. The proof is based on the re-scaling argument. Carrillo and Soler [3] then proved the existence of weak solutions belonging to the classes given in [4] for initial date small in some sense. Carpio [2] obtained the asymptotics to the second order for small solutions by a detailed analysis of the linear problem and using the re-scaling argument. We also mention the work by Ono and Strauss [8], in which sharp decay rates of small solutions were proved and also it was proved

that small solutions approach to those of the corresponding linear problem with error estimate of $O(t^{-\frac{1}{2}})$.

2. Finite Dimensional Invariant Manifolds for the VPFP

We derive the long-time asymptotics given in Theorem 1 and Remark 2 by constructing finite dimensional invariant manifolds. To construct invariant manifolds, we change the variables into the "similarity" variables:

$$\tilde{t} = \log(t+1), \quad \tilde{x} = x/(t+1)^{3/2}, \quad \tilde{u} = u/(t+1)^{1/2},$$

$$f(x,u,t) = (t+1)^{-\gamma} \tilde{f}(x/(t+1)^{3/2}, u/(t+1)^{1/2}, \log(t+1)),$$

where $\gamma = \frac{N}{2} + 2$. Then the equation for \tilde{f} is written, after omitting tildes, as

(2)
$$\partial_t f - (\frac{3}{2}x - u) \cdot \nabla_x f - \frac{1}{2}u \cdot \nabla_u f - \gamma f - E(f) \cdot \nabla_u f - \Delta_u f = 0,$$

$$f|_{t=0} = f_0.$$

We write the problem (2) in the form

$$\partial_t f = \mathcal{L}f + \mathcal{N}(f), \quad f(0) = f_0,$$

where $\mathcal{L}f = \Delta_u f + (\frac{3}{2}x - u) \cdot \nabla_x f + \frac{1}{2}u \cdot \nabla_u f + \gamma f$ and $\mathcal{N}(f) = E(f) \cdot \nabla_u f$. We first consider the linear problem in the weighted space $X_r^{l,m}$ which is defined by

$$X_r^{l,m} = \{ f(x,u) \in L^2(\mathbf{R}^N \times \mathbf{R}^N) : (1 + |x|^2 + |u|^2)^{r/2} \partial_x^{\alpha} \partial_u^{\beta} f \in L^2(\mathbf{R}^N \times \mathbf{R}^N), \\ 0 \le |\alpha| \le l, \ 0 \le |\beta| \le m \},$$

where l, m and r are nonnegative integers.

We are given a nonnegative integer n and we fix this n hereafter. For this n we take the weight large enough in such a way that $r \ge n + 3N + \frac{3}{2}$. Then as for the spectrum $\sigma(\mathcal{L})$ of \mathcal{L} in $X_r^{0,0}$, we have

$$\sigma(\mathcal{L}) \subset \{\sigma_k : k = 0, 1, \dots, n\} \cup \{\operatorname{Re}\sigma \le \sigma_{n+1}\} \quad (\sigma_j = -(2N - \gamma) - \frac{j}{2}).$$

Here each of σ_k $(k=0,1,\cdots,n)$ is a semi-simple eigenvalue; the associated eigenspace is spanned by functions $g_{\alpha,\beta}$'s with α and β satisfying $3|\alpha|+|\beta|=k$; and the eigenprojection P_k is given by

$$P_k f = \sum_{3|\alpha|+|\beta|=k} \langle f, g_{\alpha,\beta}^* \rangle g_{\alpha,\beta}.$$

Here $g_{\alpha,\beta}^*(x,u) = c_{\alpha,\beta}(\partial_x + 3\partial_u)^{\alpha}(\partial_x + 2\partial_u)^{\beta}g(x,u)$ denotes the adjoint eigenfunction $(c_{\alpha,\beta}$ is a constant); and the inner product $\langle \cdot, \cdot \rangle$ is defined by

$$\langle f, g \rangle = \int f(x, u) g(x, u) e^{\mu(x, u)} dx du, \quad \mu(x, u) = 3|x - \frac{u}{2}|^2 + \frac{1}{4}|u|^2.$$

We denote by $\mathcal{P}_n = \sum_{k=0}^n P_k$ the projection onto the spectral subspace corresponding to discrete eigenvalues $\{\sigma_k\}_{k=0}^n$; and define \mathcal{Q}_n by $\mathcal{Q}_n = I - \mathcal{P}_n$. Then $X_r^{l,m}$ is decomposed into the direct sum:

$$X_r^{l,m} = Y_n \oplus Z, \quad Y_n \equiv \mathcal{P}_n X_r^{l,m}, \quad Z \equiv \mathcal{Q}_n X_r^{l,m},$$

and the solution $e^{t\mathcal{L}}f_0$ of the linear problem is decomposed as

$$e^{t\mathcal{L}}f_0 = y_n(t) + z(t), \quad y_n(t) \in Y_n, \quad z(t) \in Z,$$
$$y_n(t) = \sum_{k=0}^n e^{\sigma_k t} P_k f_0, \quad z(t) = \mathcal{Q}_n e^{t\mathcal{L}} f_0.$$

As for the part $z(t) = Q_n e^{t\mathcal{L}} f_0$ on the subspace Z, the estimate

$$\|\mathcal{Q}_n e^{t\mathcal{L}} f_0\|_{X_r^{l,m}} \le C(1 + t^{-\frac{1}{2}}) e^{\sigma_{n+1} t} \|f_0\|_{X_r^{l,m-j}}$$

holds for $l \geq 0$, $m \geq j$ and j = 0, 1. Therefore, the large time behaviour of solutions of the linear problem is described, up to $O(e^{\sigma_{n+1}t})$, by the behaviour of solutions on the finite dimensional invariant subspace Y_n .

For the nonlinear problem we have the following theorem, from which the long-time asymptotics given in Theorem 1 and Remark 2 are obtained.

Theorem 4 ([1]). Let $n \geq 0$ be an integer and let r be an integer satisfying $r \geq n+3N+\frac{3}{2}$. Then for any fixed integers $m \geq 1$ and $l \geq [\frac{N}{2}-1]+1$, there exists a finite dimensional invariant manifold \mathcal{M} for (2) in a neighborhood of the origin of $X_r^{m+l,m}$, i.e., there exist $\Phi \in C^1(Y_n; \mathbb{Z})$ and R > 0 such that $\Phi(0) = 0$, $D\Phi(0) = 0$ and

$$\mathcal{M} = \{ y_n + \Phi(y_n); y_n \in Y_n, ||y_n|| \le R \},$$

where $Y_n = \mathcal{P}_n X_r^{m+l,m}$ and $Z = \mathcal{Q}_n X_r^{m+l,m}$; and \mathcal{M} is invariant under semiflows defined by (2). Furthermore, solutions near the origin approach to \mathcal{M} at a rate $O(e^{(\sigma_{n+1}+\epsilon)t})$ as $t \to \infty$. More precisely, if $||f_0||_{X_r^{m+l,m}}$ is

sufficiently small, then there uniquely exists a solution $\bar{f}(t)$ of (2) on $\mathcal M$ such that

(3)
$$||f(t) - \bar{f}(t)||_{X_r^{m+l,m}} \le Ce^{(\sigma_{n+1} + \varepsilon)t}.$$

Remark 5. Wayne [9] constructed finite dimensional invariant manifolds in Sobolev spaces with polynomial weights for certain semilinear heat equations on whole spaces by using the similarity variables transformation. The method in [9] is then extended to various contexts as in [5, 6, 7, 10].

3. Outline of Proof

We here outline how to obtain the long-time asymptotics given in Theorem 1 and Remark 2. (See [1] for the proof of Theorem 4.)

Our starting point is the estimate (3) in Theorem 4. We can rewrite the estimate (3) in the form

$$||y_n(t) - \bar{y}_n(t)||_{X_n^{m+l,m}} \le Ce^{(\sigma_{n+1}+\varepsilon)t}$$

and

(5)
$$||z(t) - \Phi(\bar{y}_n(t))||_{X_r^{m+l,m}} \le Ce^{(\sigma_{n+1}+\varepsilon)t},$$

where

$$f(t) = y_n(t) + z(t), \quad \bar{f}(t) = \bar{y}_n(t) + \Phi(\bar{y}_n(t)), \quad y_n(t), \, \bar{y}_n(t) \in Y_n, \quad z(t) \in Z.$$

Thus, to obtain the asymptotics of f(t) up to $O(e^{(\sigma_{n+1}+\epsilon)t})$, it suffices to investigate the behaviour of $\bar{y}_n(t)$, which is governed by a system of finite number of ordinary differential equations. Since $\bar{y}_n(t)$ can be written as

$$\bar{y}_n(t) = \sum_{3|\alpha|+|\beta| \le n} y_{\alpha,\beta}(t) g_{\alpha,\beta}, \quad y_{\alpha,\beta} \in \mathbf{R},$$

the problem is reduced to the analysis of the behaviour of $y_{\alpha,\beta}$'s.

We now derive a system of ordinary differential equations for $y_{\alpha,\beta}$'s. Since $\bar{f}(t) = \bar{y}_n(t) + \Phi(\bar{y}_n(t))$ is a solution of (2) on \mathcal{M} , it satisfies

$$\partial_t \bar{f} = \mathcal{L}\bar{f} + \mathcal{N}(\bar{f}).$$

Taking the inner product of this equation with $g_{\alpha,\beta}^*$, we have

$$\dot{y}_{\alpha,\beta} = \sigma_k y_{\alpha,\beta} + H_{\alpha,\beta}(\bar{y}_n), \quad 3|\alpha| + |\beta| = k, \ 0 \le k \le n,$$

where $\dot{y} = \frac{dy}{dt}$ and $H_{\alpha,\beta}(\bar{y}_n) = \langle \mathcal{N}(\bar{y}_n + \Phi(\bar{y}_n)), g_{\alpha,\beta}^* \rangle$. For $\alpha = \beta = 0$, one can easily verify that $H_{0,0}(\bar{y}_n) = 0$. Hence,

$$\dot{y}_{0,0} = \sigma_0 y_{0,0}, \quad i.e., \quad y_{0,0}(t) = e^{\sigma_0 t} y_{0,0}(0).$$

Recall that $\sigma_0 = -(2N - \gamma) = -(\frac{3}{2}N - 2) < 0$. For $(\alpha, \beta) \neq (0, 0)$, we have, by the variation of constants formula,

(6)
$$y_{\alpha,\beta}(t) = e^{\sigma_k t} y_{\alpha,\beta}(0) + e^{\sigma_k t} \int_0^t e^{-\sigma_k s} H_{\alpha,\beta}(\bar{y}_n(s)) ds$$

with $k = 3|\alpha| + |\beta|$, $1 \le k \le n$. Since $\sigma_k = \sigma_0 - \frac{k}{2}$, one can expect that $y_{\alpha,\beta}(t)$ decays strictly faster than $y_{0,0}(t)$. Therefore, the slowest term in $H_{\alpha,\beta}(\bar{y}_n(s))$ behaves like $e^{2\sigma_0 s}$, since the lowest order terms of $H_{\alpha,\beta}(\bar{y}_n)$ are quadratic in $\{y_{\alpha,\beta}\}$. As a result, the integrand in (6) behaves like $e^{(2\sigma_0 - \sigma_k)s}$.

Now let $n \leq 3N - 5$. This is just equivalent to $|\sigma_n| < 2|\sigma_0|$ (and to $|\sigma_{n+1}| \leq 2|\sigma_0|$). It then follows that for $3|\alpha| + |\beta| = k$, $0 \leq k \leq n$,

$$y_{\alpha,\beta}(t) \sim const.e^{\sigma_k t} + O(e^{2\sigma_0 t}),$$

where const. depends on $y_{\alpha,\beta}(0)$ and $H_{\alpha,\beta}$. We can also obtain

$$||z(t)||_{X_r^{m+l,m}} \le Ce^{(\sigma_{n+1}+\varepsilon)t}.$$

Therefore,

$$\tilde{f}(\tilde{t}) \sim \sum_{k=0}^{n} e^{\sigma_k \tilde{t}} \sum_{3|\alpha|+|\beta|=k} B_{\alpha,\beta} g_{\alpha,\beta} + O(e^{(\sigma_{n+1}+\epsilon)\tilde{t}}).$$

Here we write the solution of (2) and the time variable with tildes. Since the similarity variables \tilde{f} and \tilde{t} are connected with the original variables f and t by $\tilde{t} = \log t$ and $\tilde{f} = t^{\gamma} f$, we obtain the asymptotics given in Theorem 1 for $n \leq 3N - 5$.

We next consider higher order asymptotics. In higher order cases, the estimates (4), (5) and equations for $y_{\alpha,\beta}$'s, of course, take the same forms. Let $n \geq 3N-4$. Then $|\sigma_n| \geq 2|\sigma_0|$ and $|\sigma_{n+1}| > 2|\sigma_0|$. Therefore, the integrand in (6) does not decay as $s \to \infty$ for some α and β , and the effect of the inhomogeneous term is no longer weak. Also, one must take the effect of $\Phi(\bar{y}_n(t))$ into account, and, thus, the form of the asymptotics becomes complicated.

For example, if n = 3N - 4, then we have $\sigma_n = 2\sigma_0$ and, therefore, the integrand in (6) with $3|\alpha| + |\beta| = n$ is of O(1). It then follows that for $3|\alpha| + |\beta| = n$,

$$y_{\alpha,\beta}(t) \sim c_1 e^{\sigma_n t} + c_2 t e^{\sigma_n t} + O(e^{\sigma_{n+1} t}),$$

where c_1 and c_2 are some constants. One can also see that $\Phi_{\alpha,\beta}(\bar{y}_n(t)) = O(e^{\sigma_n t})$. Combining these with (4) and (5), we see that, in the original variables,

$$t^{2N}f \sim \sum_{k=0}^{n-1} t^{-\frac{k}{2}} \sum_{\substack{3|\alpha|+|\beta|=k}} B_{\alpha,\beta} g_{\alpha,\beta} + t^{-\frac{n}{2}} \sum_{\substack{3|\alpha|+|\beta|=n}} (B_{\alpha,\beta} + \widetilde{B}_{\alpha,\beta} \log t) g_{\alpha,\beta} + h(\bar{y}_n(t)) + O(t^{-\frac{n+1}{2}+\epsilon}),$$

where $B_{\alpha,\beta}$ and $\widetilde{B}_{\alpha,\beta}$ are some constants and $h(\bar{y}_n(t)) = O(t^{-\frac{n}{2}})$. This gives the asymptotics presented in Remark 2 for n = 3N - 4. For $n \ge 3N - 3$, it is possible to obtain the asymptotics in a similar manner as above, but the form of the asymptotics becomes more complicated.

References

- [1] Y. Kagei, Long-time asymptotics of small solutions to the Vlasov-Poisson-Fokker-Planck equation: an approach by invariant manifold theory, preprint (2000).
- [2] A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation, Math. Methods Appl. Sci., 21 (1998), pp. 985-1014.
- [3] J.A. Carrillo and J. Soler, On the Vlasov-Poisson-Fokker-Planck equations with measures in Morrey spaces as initial data, J. Math. Anal. Appl., 207 (1997), pp. 475-495.
- [4] J.A. Carrillo, J. Soler and J.L. Vázquez, Asymptotic behaviour and self-similarity for the three dimensional Vlasov-Poisson-Fokker-Planck system, J. Functional Anal., 141 (1996), pp. 99-132.

- [5] J-P. Eckmann and C.E. Wayne, Non-linear stability analysis of higher order dissipative partial differential equations, Math. Phys. Electron. J., 4 (1998), Paper 3, 20 pp. (electronic).
- [6] J-P. Eckmann, C.E. Wayne and P. Wittwer, Geometric stability analysis for periodic solutions of the Swift-Hohenberg equation, Commun. Math. Phys., 190 (1997), pp. 173-211.
- [7] K. Kobayashi, An L^p theory of invariant manifolds for parabolic partial differential equations on R^d , preprint, 2000.
- [8] K. Ono and W.A Strauss, Regular solutions of the Vlasov-Poisson-Fokker-Planck system, to appear in the Discrete and Continuous Dynamical Systems.
- [9] C.E. Wayne, Invariant manifolds for parabolic partial differential equations on unbounded domains, Arch. Rational Mech. Anal., 138 (1997), pp. 279-306.
- [10] C.E. Wayne, Invariant manifolds and the asymptotics of parabolic equations in cylindrical domains, pp.314-325, in Proceedings of the US-Chinese Conference: Differential Equations and Applications, held in Hagzhou, June 24-29, 1996, P.W. Bates, S-N. Chow, K. Lu and X. Pan, eds., International Press, Cambridge, MA, 1997.