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Asymptotic expansions for the motion of a curved
vortex filament and the localized induction hierarchy

TABE 84 B35 (Yasuhide Fukumoto)
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1 Localised induction approximation

Consider the three-dimensional motion of an isolated vortex filament embedded in an
inviscid incompressible fluid of infinite expanse. According to Helmholtz’ theorem, the
filament is advected by the flow field induced by itself, which is dictated by the Biot-Savart
law. In case the cross-section of the vortex tube is very small, the volume integral of the
Biot-Savart law may be closely approximated by a line integral along the filament curve
X (s) expressed as functions of arclength s, and the velocity v(z) at @ is then reducible
to

_F_/°° (@ — X(s)) x ts) (1.1)
4t ) |2 — X(9)3

where t(s) = dX (s)/ds is the unit tangent vector to the curve at X(s). Still, we are left
with a line integral over the entire length.

The simplest approach to capture the leading-order behaviour of dynamics is the so
called ‘localised induction approzimation (LIA)’ put forward by Da Rios (1906) under
supervision of Levi-Civita (see also Batchelor (1967) and Ricca (1991)). The dominant
contribution to the induced velocity at a point on the filament is considered to come from
the neighboring segment, and thus the domain of integration is restricted to the interval,
in arclength s, between —L/2 and L/2. The parameter L is indeterminate within the
framework of this approximation. Thus, it is sufficient to deal exclusively with a curved
segment of length L and to approximate it by a circular arc:

X (5) s (s = s0)t(50) + 55 — 50)*K(s0)(s0) (1.2)
where k(s) is the curvature of the filament at X (s), and {t, n, b} is the Frenet-Serret frame
of a curve. This is substituted into the integrand of (1.1). The integrand is expanded in
powers of (s — so), and then integration is performed with respect to s, from so — L/2 to
So + L / 2.

It is the logarithmic term that has a direct link with the self-induced motion. This
term diverges logarithmically with distance r from the core centerline in the limit of r — 0.
A regularization is accomplished by setting r = 0. This procedure virtually amount to
taking into account the effect of finite thickness of a circular core with radius o.

The resulting expression is equated to the velocity of the centerline of the vortex fila-
ment. We are thus led to an evolution equation for a position vector X (s, t), represented
as functions of s and time ¢, of the centerline, now being referred to as the localized

induction equation (LIA eq.):
ox T L
S = e (5)] (13
Da Rios (1906), and independently Betchov (1965), transformed (1.3) into a coupled
system of intrinsic equations for curvature « and torsion 7:

oK
5 —C (2KsT + KT5) (1.4)

2
or =Ca<@_,r2+f_), (1.5)

v(z)~ —

ot 0s \ & 2
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r L
o=L fos(2)]. L6
el L G (1.6)
and a subscript denotes partial differentiation with respect to the indicated variable.
Hasimoto (1972) discovered that, by an introduction of a complex variable,

W(s,t) = ' e (1.7)
(1.4) and (1.5) are combined to yield the cubic nonlinear Schrédinger equation (NLS):
0y v 1, ., _
ZE-‘-C[—B?'{’EIQM ( +A(t)’¢'—0, (18)

where A(t) is an arbitrary function of ¢.

This remarkable finding implies that (1.3) is completely integrable, as a consequence
of which a vortex filament is capable of supporting a soliton, a localised helical twist wave,
now known as the Hasimoto soliton. The integrability remains intact even if the axial
velocity is included in the core as far as we adhere to the LIA (Fukumoto & Miyazaki
1991). Moreover, this carries over to the effect of finite thickness of the core (83-5), which
is the central topic of this paper.

2 Summation of localised induction hierarchy

Originally, the concept of ‘completely integrable’ makes sense within the framework of a
system of ordinary differential equations with finite degrees of freedom. Here, by complete
integrability, we mean that the evolution equation has an infinite sequence of indepen-
dent integrals in involution. Magri (1978) uncovered the bi-Hamiltonian structure that
underlies this integrability and thereby manipulated a recursion operator to generate an
infinite sequence of integrals in involution and of commuting Hamiltonian vector fields.
Langer & Perline (1991) made an effort at lifting the structure of the NLS to the LIA
by taking the advantage of the Hasimoto map (1.7). They built a recursion operator to
generate an infinite sequence of commuting vector fields associated with (1.3) (see also
Tani 1995). We call this sequence the ‘localised induction hierarchy (LIH) .

Let X = X(s,t) be a point on the filament and V™ = V() (s, 1) be the n-th term of
the LIH. The first few terms are listed as follows:

v = kb, (2.1)

Ve = %nzt + Ksn + KTb, (2.2)
1

VO = k2t 4 (26,7 + k) + (k72 — Kys — Ena)b , (2.3)

Ve = X, xVvE-D x| (2.4)
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Equation (2.4) is the recursion operator, in which 7 is a function to be determined
by the condition of the arclength parameterization: Vg") - Xy = 0. Equating v with
X, gives (1.3) with an appropriately rescaled time. Next, if we take X; = VO £ ev®,
€ some parameter, we recover the localised induction equation of a vortex filament with
axial flow in the core (Moore & Saffman 1972; Fukumoto & Miyazaki 1991).

With this observation, it is tempting to pursue the summation procedure of vector
fields of the LIH. The objective of the present section is to establish an evolution equation
of a curve by summing up all of the infinite vector fields of the LIH and to disclose its
properties. See Fukumoto & Miyajima (1996) for the detail. Note that this is genuinely
a mathematical argument, and a question arises whether the LIH has a bearing with
practical flows. The answer is positive; we shall show in §3-5 that a superposition of (2.1)
and (2.3) is indeed extracted from the Euler equations.

In §2.1, the summation procedure is implemented. We demonstrate that, if we restrict
ourselves to traveling-wave solutions, the resulting equation is equivalent to the Lund-
Regge equation. The latter was derived as a model for the motion of a relativistic string
in a constant external field (Lund & Regge 1976). In §2.2, we rewrite our equation into
an intrinsic form.

2.1 Summation of localised-induction hierarchy and the Lund-
Regge equation

Consider the evolution equation of a curve obtained by summing up all of the terms of
the LIH, namely, ’

X, =V 4 ev@ 4 2v0 ... =S v, (2.5)
n=1

Here the coefficient of each term is taken to be an integral power of some constant €. This
infinite summation is rather formal.
By virtue of the recursion relation (2.4), the resulting equation is expressed in a

compact form:
X=X, x X, —eX; x X +TX,, (2.6)

where 1
T = §6Xt 'Xt+C(t), (27)

with c(t) being an arbitrary real function of ¢, and the condition X, - X, = 1 is to be kept
in view. The derivation of (2.7) is straightforward; we first differentiate the both sides of
(2.6) with respect to s, and thereafter take the inner product with X ;. Using (2.6) again,
we have T, = eX - X, from which (2.7) follows. '

At first sight, the second term on the RHS of (2.6) appears to be a small perturbation
to the LIA. However, it predominates in the time evolution in the sense that the first
term is absorbed into the second one simply by the change of a variable s — s — t/e. It
deserves mention that this structure is accommodated in the equation derived by Moore
& Saffman (1972) for the motion of a vortex filament with axial flow in the core.
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It is illuminating to rewrite (2.6) into an alternative form. By taking the exterior
product with X, (2.6) is converted into

XX Xe=—Xgp+€Xo. (2.8)

Introduction of the new variables

¢(=s, n=2tfe+s, (2.9)
rewrites (2.8) into
2
X((—XW=—;X(XX,,. (210)
This equation is supplemented with two auxiliary conditions:
2
X2+X2 = X2—eX, X,+ %Xf =1-ec(t), (2.11)
€ € €
S A (Xs - §xt) = Soft). (2.12)

When c(t) = 0, (2.10)~(2.12) are no other than the Lund-Regge equation (Lund &
Regge 1976). It was born as a byproduct of a unified theory of the Nambu string, a
relativistic string, and the classical vortex filament. Fukumoto & Miyajima (1996) con-
structed a whole class of the traveling wave solution of (2.6), which will be touched on in
§2.3. Konno & Kakuhata (1999) clarified that the equivalence between (2.6) and (2.10)
is rather restrictive in that this is limited to this traveling wave solution.

2.2 Intrinsic Equations

We deduce the intrinsic form of (2.6) or (2.8) along the line of Hasimoto’s procedure. Let
us introduce a complex vector N defined by

N = (n+ib)e'/ ™ (2.13)

The Frenet-Serret formulae then read |
t, = ~% (W*N +9yN*), N,=—yt. (2.14)
Here the asterisk indicates complex conjugate and 1 is the Hasimoto map (1.7). Using
the identities N - N* =2, N-N = N -t = N* .t = 0, the time derivatives of ¢ and

N can be generally expressed, by making use of some real function R and some complex
function v, as

Differentiating (2.6) with respect to s, we get, after some algebra,

7= =it +ict - (X0 Xi— eR) 9. (2.16)
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The integrability condition Ny = Ny, (or s = ty,) requires

Yo = —s +iRY, (2.17)
Re = (W' =7'9). (218)
Plugging (2.16) into (2.18), we have
R, = sllt - Il (219)
On the other hand, using the identity v = —t; - N, (2.18) leads to
R,=t - -kb=X,  X,, (2.20)

the last equality coming from from (2.6) and its spatial derivative. Equation (2.20) helps
to simplify (2.16). It turns out that we may ignore the integration constant in R, being an
arbitrary real function of ¢, because it can be absorbed into the phase factor of 1) without
affecting the curve dynamics. Substitution of (2.16) and (2.19) into (2.17) yields, with
the help of (2.20),

v = (Yo + P — e (v + 30 [ 10l ds) (221)

In keeping with the procedure of infinite summation (2.5), the same equation is reached
via use of the recursion operator associated with the NLS hierarchy.
Splitting (2.21) into the real and imaginary parts, we are left with

ke = —(2KsT +KTs) +€ (K,tT + KTt + Kg /s Tt ds) , (2.22)
s 2 s s
/Ttds = K—""——T2+m——-e(@—'r/ Ttd8+/K:K,tdS). (2.23)
K 2 K

In a special case, (2.22) and (2.23) are collapsed into the sine-Gordon equation. In
terms of the variables { =t and § = s + t/¢, they read

1 §
Ki + cKs = € (Klt*’l" + KT; + K3 / T3 d§) , (2.24)
§ 1 Ky E X $ A
/ 1; d§ + p Al S 7’/ T; d§ +/ kk;d8 ) . (2.25)

The integral of torsion in the definition of (1.7) is an indefinite integral, and therefore a
constant is at our disposal. If we set 7 = 1/¢, the first equation is identically satisfied with
a choice of the integration constant in such a way that [ $7; ds = 1/€%. For definiteness, we
restrict our attention to balanced asymptotically linear curves, that is, curves approaching
straight lines at infinity symmetrically in both directions. Their curvature vanishes at
infinity. Under this restriction, (2.25) becomes

ki L[ [° 3 * ;) = 1
—;{—+-2—(/;00I€I€£d3_/§ Iﬂlﬁ{ds)——e—g- (2.26)
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Following Nakayama et al. (1992), we define

s
9= / K d3, (2.27)
—00
and prescribe the temporal evolution of k as
1 .
Ky = = sin 6. : (2.28)

Substituting from (2.27) and (2.28) and noting from (2.28) that sin@ — 0 as § — oo,
we find that (2.26) holds true. The consistency of (2.27) with (2.28) gives rise to the
sine-Gordon equation:

1 .
0;; = —a sin@. (2.29)

2.3 Remarks on an exact solution

In this section, we have highlighted some aspects of the localised induction hierarchy that
show up when the summation is extended to the infinite order. The recursion operator of
the LIH renders it feasible. In the restricted case of the invariant forms mentioned below,
the resulting equation is shown to be reducible to the Lund-Regge equation.

Our model possesses exact solutions of the same type as derived by Kida (1981),
namely, the invariant forms of a filament steadily rotating and translating in the three-
dimensional space (Fukumoto & Miyajima 1996). The shape remains unaltered from
Kida’s solution, but a profound difference makes its appearance in the movement. Given
the shape, the traveling and rotating speeds are not uniquely determined. Instead, there
are two kinds, one of which is inherited from the solution of the LIA. The other is novel,
because the speeds diverge in the limit that the model equation tends to the LIA. The
symmetry of the Lund-Regge equation with respect to the interchange of the parameters
accounts for the existence of the new mode.

When we make a mathematical model to mimic natural phenomena, a common tactic is
to invoke a perturbation-expansions technique. Usually, on account of difficulty, we cannot
help truncating the expansions at a finite order in powers of a small parameter. However,
it is probable that there are modes that cannot be captured without completing the
expansions to the infinite order. The analysis of the traveling wave solution reveals that
our model provides us with an example to illustrate the insufficiency of finite truncation.

The LIH is an endproduct of a genuinely mathematical extension of the LIA, but
the second term V® happens to have some relevance to the effect of axial flow. The
realizability of the third V® is the question to be addressed in the rest of paper.

3 Asymptotic development of the Biot-Savart law

A potential flow is an exact solution of the Euler equations (and the Navier-Stokes equa-
tions as well). This is the case for the Biot-Savart law outside the vortex tube, if the
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vorticity field in the core is compatible with the Euler equations. In this section, we
develop a systematic method to calculate an asymptotic expansion of the Biot-Savart law
for a slender vortex tube, accommodating the effect of finite thickness successively.

We shall demonstrate that a dominant correction to the traditional formula stems from
a line of dipoles arranged on the core centerline X (§,t), with their axes in the binormal
direction b(¢,t) and their strength proportional to the local curvature x(&,t). Here § is a
parameter along the centerline to be defined by (3.2).

An expression valid near the core is then deduced in §3.4. This is the inner limit of
the outer solution and serves as the matching condition on the inner solution worked out
in §4 and 5.

3.1 Vorticity field in terms of local cylindrical coordinates

Once that the vorticity w(z) is specified at every point of the space, the velocity v(z) of
the fluid at a position @ is uniquely determined by the Biot-Savart law. The leading-order
part was provided by (1.1). However this is not sufficient for our purpose of going into
higher orders, and hence we must come back to the full form:

v=VxA; Alx) 47T///|“’("’ av’. (3.1)

T — |

The assumption that vorticity is localised in a slender tube-like region ensures the exis-
tence of the volume integral (3.1).

In order to evaluate (3.1) at positions near the core, it is expedient to introduce local
coordinates (Z,,€), or local cylindrical coordinates (r,¢,£), moving with the filament.
Here ¢ is a parameter along the central curve X of the vortex tube, defined so as to satisfy

0X
S EH - HED =0, (32)

for the sake of simplicity. Given a point x sufficiently close to the core, there corresponds
uniquely the nearest point X (£,¢) on the centerline of filament. Then x is expressed, in
terms of the spatial parameters and time ¢, as

Tz = X(§1)+In((t) +§bE,1) (3.3)
X + rcospn + rsinpb, | (3.4)

where (r,¢) are cylindrical coordinates in the plane perpendicular to ¢(£,t), with the
angle ¢ measured from the n-axis. Inconveniently, (r, ,{) do not constitute orthogonal
coordinates. They are converted into orthogonal coordinates (r,8,£) by adjusting the
origin of angle, depending on torsion, as

S(E’t) , ’
0(p, &, t) = w—/s 7(s',t)ds’, (3.5)

where s = s(§,t) is the arclength along the centerline.
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We define the relative velocity V' = (u(r,,&,t),v(r,6,£,t),w(r,0,€,t)) by
= X (£,t) + ue, + veg + wt, (3.6)

where a dot stands for a derivative in ¢ with fixing £, and e, and ey are the unit vectors
in the radial and azimuthal directions respectively. The vorticity w = V x v is calculated
through

w = wre, +wgeg+ (t (3.7)
_ Jlow _1dv g . 10X
o r 06 h3 8{ h3 g OSRY h3 6& o i
ow 10u 1 18X 10u
-5 e et i g e f oo+ {am - 155k, s
where
0X
n = ‘% (3.9)
hs = n(1—krcosy). (3.10)

We are concerned with a ‘quasi-steady’ motion of a vortex filament. In our setting,
the leading-order flow field consists only of circulatory motion with circular symmetry,
and accordingly we pose the following form for the perturbation solution in a power series
in € = 09/ Ry, the ratio of a typical core radius gy to a typical curvature radius Ry:

u = eu +Eu® 4 Su® ... (3.11)
v = vO®r) + e + 0@ + 0@ 4 .. (3.12)
w ewV) 4+ Euw? 4. (3.13)
X = X94+ex® 4 X(z) (3.14)

As will be stated in the beginning of §4, X ©) is looked upon as the first order. Further,
an analysis of the inner expansion will tell us that w(!) = w(})(£, ¢), being independent of
r and 6, is compatible with the Euler equations. By inspection from (3.8) and the form
(3.11)-(3.14), we readily find that

w = Ew® ..., (3.15)
we = w® +- (3.16)
¢ = C(‘”(r) +6€(1)+e2c(2)+63<(3)+..., (3.17)
with 1d
©_ 2= (r),©0
¢ S (rv ) . (3.18)

In accord with our intention, the vorticity is dominated by the tangential component.

First, in the following subsection (§3.2), we evaluate contribution to the Biot-Savart
law from tangential vorticity (¢ and after that in §3.3, an evaluation of contribution from
transversal vorticity w,e, + wgpey follows.
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3.2 Contribution of tangential vorticity

We denote the vector potential induced by the tangential vorticity component
w) = ¢(Z,§,& 1)EE, 1), (3.19)

by Aj. We stipulate that |¢| decays sufficiently rapidly to zero with distance r from the
vortex centerline.

In the kinematical treatment, we may make dependence on ¢ implicit, and, as to the
parameter s or £ along the filament, we shall use whichever seems more convenient. Noting
that the Jacobian for the coordinate transformation to (Z,#,s) is 1 — xZ, we have

Ay(z) = % / / / (@)= Xt_(S;m (L~ 8) dadids. (3.20)

This expression is legitimate only when
1-kz>0. (3.21)

This condition is met when ¢ is negligibly small outside a slender tube-like region with
thickness much shorter than the curvature radius 1/xo.

Use of a shift-operator, being adapted from Dyson’s technique (Dyson 1893), facilitates
to rewrites (3.20) in a form amenable to a multi-pole expansion:

A(@) = o [ ds{ [[ 4305¢(&,5)(1 - 2) exp[~E(n - V) = 7(b- v} - X(s _t(.?(s)l '

(3.22)
The exponential function is formally expanded in powers of Z and ¥ as

Ay(z) = 4—17; / ds{ / dzdj¢(,§) (1 - k& — E(n - V) = §(b- V)
+% [2%(n - V)2 + 23§(n - V)(b- V) + §(b- V)| + k& (n - V)

- t(s)

+kzg(b-V +}—————-— 3.23

O+ = X0 (3.23)

We shall know from the inner expansion in §4 and 5 that, in accordance with the

solution of a vortex ring, the axial component ¢ of vorticity has the following dependence
on the local azimuthal coordinate ¢:

C(i" g) = CO(T) + Cll(ra £) t) Cos ¢ + Cl?(ra 6’ t) sin 2 + C21 (T’ 67 t) Ccos 2lp + - ) (324)
where ,

G = O +rEG e+, (3.25)

Cll = I‘&CAS)(T) + Kséﬁ) (Ta fvt) RER (326)

Gz = KR+, (3.27)

(a1 = 'ﬁzAg)(T,f,t)+“‘- (3.28)
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In C}f’ , the superscript k stands for order of perturbation, and i labels the Fourier mode
with j = 1 and 2 being corresponding to cosif and sin 6 respectively. It will be shown
that our assumptions of a slender tube and quasi-steady motion permit 9, ¢ *1) and ((1)
to be uniform along the filament.

Substituting (3.24)—(3.28) into (3.23), we get the first two terms, A,, and Ay, of a
multi-pole expansion of Ay, as

A" (a:) = A,,.(a:) + A”d(:c) +---, (3.29)
where r (s)
s
m(@) = — [ ——F—ds, 3.
Ap(x) ) m X(s)|ds (3.30)
with .
=2 / r¢O(r)dr, (3.31)
0 .
and
Ap(z) = /ds/ dr{—rac(") [l(t V)2 —k(n- V)] 2Qn-v) + n]} ts) :
2 |z — X (s)|
(3.32)
In deriving (3.32), we have invoked
Vi=(t-V)’+(n-V)2+(b-V)?, (3.33)
and )
Vi——— = —dnd(x - X(s 3.34
X0 (- X(s)), (339)
where 0 is Dirac’s delta function and vanishes outside the core. Using
1 0 1
Veorornmormeoo—— = — — — 3.
Ve —X) ~ e X)) (3:35)
(3.32) is further simplified, by a repetition of partial integration, to
_ _L 30(0) Ksn + KTb
A"d(m) = [27!’/ C dr ]/ |:B X(S)ld
d(l)
dslk(n - V+h‘.2_—, 3.36
5 [ dslstn - 9) + Rl (3.36)
where 1 1
a_ 1 ® 2x) 4y 1 3.0 } .
d =~ {[21r/0 r2¢Wdr] 2[27r/0 r3¢Odr) | (3.37)

is the strength of dipole. This is constant in £ in accord with ¢(® and fﬁ)

The first term A,, in (3.29) pertains to a flow field induced by a curved vortex line
of infinitesimal thickness, and is called the ‘monopole field’. The correction term Ayq
corresponds to a part of the flow field induced by a line of dipoles, based at the vortex
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centerline, with their axes oriented in the binormal direction. The origin of dipole field
is attributable to the curvature effect; by bending the vortex tube, the vortex lines on
the convex side are stretched, while those on the concave side are contracted, producing
effectively a vortex pair (Fukumoto & Moffatt 2000). The flow field associated with
this pair is equivalent to the above dipole field augmented by the contribution from the
vorticity lying in the cross-section. The latter is elaborated in the following subsection.

3.3 Contribution of transversal vorticity

The components of vorticity perpendicular to ¢

W) = wye, + wpey, (3.38)
makes its appearance at O(e?) . In view of (3.8), the second-order terms w? and w§2) are
expressible, in terms of the streamfunction at O(e), as

w® = OP(r)(k,cosp+ KT sing) + &@(r), (3.39)
w§2) = ( )(KT cos ¢ — Kssin @) + w( )( ), (3.40)
where
o _ O
w1(‘2) = (0) ﬁ) ’ (341)
(0 0
@ _ 72 ¢ ) 7(1) 61/)11 0)
o = Do [( 2oy )+ I =@ (3.42)
and ¢! will be defined as a solution of (4.5) in §4. The axisymmetric parts &2 and &F
do not affect the flow field at O(e?), and thus their detail is left untouched.
Since w, = O(€?), the vector potential A associated with it is, to O(e 2,
Al(z) = — / __ds [ / wL(i:,g,s)di:d'g] . (3.43)
‘ an J |z — X(s)|
Substituting from (3.39)-(3.40),
(o o]
/ w(%,79,s)dzdj = [’n/ T (6152) + (2)52)) dr] (ksm + £k7b) . (3.44)
0
Equation (4.5) helps to simplify the coefficient to
r (0@ + o) = —r2 (ad{) +r¢@) + = ( 5 60w (3.45)
" o 67’ rv(0) ’ '

and, upon integration, we are left only with

[ee] o0 N
/0 r (0@ + o) dr = /0 r2¢Ddr | (3.46)
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where we have taken advantage of the expression (4.15) for vorticity ¢V at O(e). Even-
tually, (3.43) is reduced to

A(e) =3[ [T rear] [ ﬂs<8>"f;>j ;;(ss))fl@"(s) ds, (3.47)

a counterpart of the dipole field originating from the transversal vorticity.
Collecting (3.30), (3.36) and (3.47) gives rise to the first two components of a multi-
pole expansion of the Biot-Savart law:

Alz) ~ Aj(z)+AL(x) (3.48)
T t(s) dV 1 k(s)b(s) x (& — X(s))
- E/ X e xEp 4 (349)

It is informative to provide the form of expansion for velocity field v(x) by taking curl of
(3.49):

~ _ L [(x—X(s) xt(s)
v(z) = _E/ iz — X ()] ds
(1) K s s e
+d2 { . Es;l;((s)) 5= 3r( )Il;(s_) )[{a;s)lsX (s)] [« — X(s)]}ds. (3.50)

The structure of dipole field manifests itself in the second integral.

3.4 Inner limit of the Biot-Savart law

We shall manipulate the limiting form of (3.49) as the vortical core is approached. We
deal exclusively with vortex tubes whose centerlines X = X (&,t) are closed curves of
finite length L. A similar treatment can be available for filaments extending to infinity.
We rely on an asymptotic method contrived by Margerit (1998). We describe its out-
line in Appendix A, and are contented with the resulting expressions for the asymptotic
expansions.

For the sake of clarity, we choose the arcwise parameter at the point under consider-
ation to be s = £ = 0 and attach suffix 0 to the quantities at this point. We write

o = X + rcospngy + rsin by, (3.51)
with Xy = X (0) and similarly for ny and b,.

Putting together (A.8) and (A.14), we obtain the inner limit of the monopole compo-
nent A,(x) defined by (3.30):
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