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Abstract

Eigenfunctions of the Lévy Laplacian with an arbitrary complex number as an eigenvalue
are constructed by means of a coordinate change of white noise distributions. The Lévy
Laplacian is diagonalized on the direct integral Hilbert space of such eigenfunctions and
the corresponding equi-continuous semigroup is obtained. Moreover, an infinite dimensional
stochastic process related to the Lévy Laplacian is constructed from some one-dimensional
stochastic process.

1. Introduction

The Lévy Laplacian Ay, an infinite dimensional Laplacian introduced by P. Lévy [21],
has recently attracted much attention for its peculiar and unexpected characters found in
essentially infinite dimensional analysis. For example, harmonic functions with respect to the
Lévy Laplacian are related to solutions of the Yang-Mills equations [2]; solutions of the heat
equation associated with the Lévy Laplacian is obtained from normal-ordered white noise
differential equations with quadratic white noises [26]. In this paper we focus on infinite
dimensional stochastic processes associated with the Lévy Laplacian formulated so as to act
on a new Hilbert space of functions on a Gaussian space.

There are several natural formulations of the Lévy Laplacian. Originally P. Lévy [21]
defined A; as an operator acting on functions on the Hilbert space L%(0,1), see also [5, 27].
However, for several reasons it seems more natural to consider functions on a Gaussian space
or on a nuclear space. Throughout this paper we fix a Gelfand triple:

E=SR)c L*R) c S'(R) = E*
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and consider a Gaussian space (E*, u), where y is the Gaussian measure on E*. It is well
known that a certain class of functions on the nuclear space E is characterized as the image
of the S-transform of “generalized” functions on the Gaussian space, which are constructed
from a Gelfand triple (E) C L*(E*, ) C (E)*. Then, taking a complete orthonormal basis
{¢a}nlo C E for L*(T) with a fixed finite interval T C R, we define the Lévy Laplacian by

n=0

SIAL2)©) = tim 3 S EGuG) e (B,

whenever the limit exists, for a precise definition see Section 3. As the Lévy Laplacian
vanishes on L?(E*, 1), its natural domain is to be found in generalized white noise functions
(white noise distributions). Along this idea the Lévy Laplacian was first introduced in white
noise analysis by T. Hida [6] and has been discussed by many authors, see e.g., [9, 16, 18]
for general properties, [4] for Cauchy problems, (7] for related functional equations, [11] for
a relation to an infinite dimensional Fourier transform, [29, 30] for a connection with the
Itd formula, [31, 32] for stochastic processes generated by powers of the Lévy Laplacian.
While, it is also possible to formulate the Lévy Laplacian independent of the Gaussian space
[1, 19, 23].

In this paper, extending the ideas in the previous works (20, 22, 34, 35, 36], we introduce
a new class of Hilbert spaces based on eigenfunctions of the Lévy Laplacian. In fact, for
some continuous function h and any A € R we construct a subspace D% C (E)_, C (E)*,
p > 5/12, consisting of eigenfunctions of the Lévy Laplacian with eigenvalue h(}). Those
eigenfunctions are constructed by means of an “exponential coordinate change” for white
noise functions. Then, for some continuous function h and for any p > 5/12) N € N the
direct integral Hilbert space:

(8>}
Er N = /R Dh _, al (M) d),
where D!

% _, is the completion of D} in (E)_, and o} (}) is a certain weight function, becomes
a natural domain of the Lévy Laplacian. Thus the Lévy Laplacian is diagonalized:

Ay = / 7ROt (\) d

and, thereby, an associated equi-continuous semigroup {G?} of class (Cy) is obtained (Theo-
rem 3.4). This idea traces back to [31]. Finally, we obtain a stochastic expression of {G?} in
terms of an E-valued stochastic process derived from a one-dimensional stochastic process
with the function h (Theorem 4.1). It is noteworthy that the stochastic process generated
by the Lévy Laplacian depends on the choice of eigenfunctions of the Laplacian.

2. Preliminaries

In this section we assemble some basic notations of white noise analysis following [9, 15,
18, 24].

We take the space E* = S'(R) of tempered distributions with the standard Gaussian
measure p which satisfies

[ exwlite. ) duto) = exp (~l6) . e B =5
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where (-, -) is the canonical bilinear form on E* x E and |- |y is the L?(R)-norm.

Let A= —(d/du)? + u® + 1. This is a densely defined self-adjoint operator on L2(R) and
there exists an orthonormal basis {e,;v > 0} for L*(R) such that Ae, = 2(v + 1)e,. We
define the norm |- |, by |f|, = |A?f|o for f € E and p € R, and let E, be the completion of
E with respect to the norm |-[,. Then E,, is a real separable Hilbert space with the norm |- |,
and the dual space E}, of Ej, is the same as E_,, (see [13]). The space E is the projective limit
space of {E,;p > 0} and E* is the inductive limit space of {E_,;p > 0}. Then E becomes
a nuclear space with the Gel'fand triple £ C L?(R) C E*. We denote the complexifications
of L*(R), E and E, by L(R), Ec and E,c, respectively.

The space (L?) = L*(E*, u) of complex-valued square-integrable functionals defined on
E* admits the well-known Wiener-It6 decomposition:

(o <]

(Lz) = @ H,,

n=0

where H,, is the space of multiple Wiener integrals of order n € N and Hy = C. Let L%(R)@’"
denote the n-fold symmetric tensor product of LZ(R). If ¢ € (L?) has the representation
=302 0In(fa), fn € LE(R)®", then the (L*)-norm ||pl|o is given by

o 1/2
llello = (anlfnlﬁ) ,

n=0

where | - | is the LZ(R)®"-norm.

For p € R, let ||¢|l, = |IT'(A)P¢|lo, where I'(A) is the second quantization operator of A.
If p> 0, let (E), be the domain of I'(A)?. If p < 0, let (E), be the completion of (L?) with
respect to the norm || - ||,. Then (E),, p € R, is a Hilbert space with the norm || - [|,. It is
easy to see that for p > 0, the dual space (E); of (E), is given by (E)_,. Moreover, for any
p € R, we have the decomposition

oo

(B), =D HY?,

n=0

where HP is the completion of {I(f);f € Eg’"} with respect to || - ||,. HereAEf:?" is the
n-fold symmetric tensor product of F¢c. We also have HP = {L.(f); f € Ez%} for any
p € R, where Ef?g is also the n-fold symmetric tensor product of E,c. The norm [|¢||, of

0 =32 Lo(fa) € (E), is given by

- 1/2
lell, = (anlfnlﬁ) ,  fa€ B,

n=0

where the norm on ESE is denoted also by | - |,.

The projective limit space (E) of spaces (E),, p € R is a nuclear space. The inductive
limit space (F)* of spaces (E),,p € R, is nothing but the strong dual space of (E). The
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space (E)" is called the space of generalized white noise functionals. We denote by ((-,-) the
canonical bilinear form on (E)* x (F). Then we have

=Y nl(Fn, fn)

n=0

for any & = 3> ([ I,(F,) € (E)* and ¢ = Y°2° I,(f,) € (E), where the canonical bilinear
form on (EE")* x (EE™) is denoted also by (-, -).

Since ¢¢(-) = exp ((-,€) — 1(&,€)) € (E), we can define the S-transform on (E)* b
S[®](€) = (@, ¢e), €€ Ec.

A complex-valued function F' on E¢ is called a U-functional if for every §,n € E¢, the
function 2 — F(£ + 2n), 2 € C, is an entire function of z and there exist non-negative
constants K, a and p such that

[F(E)] < Kexp{alél,}, €€ Ec.

Theorem 2.1(seee.g. [9, 18,24, 28]) A complez-valued function F on Eg is the S-transform
of an element in (E)* if and only if F is a U-functional.

3. A semigroup generated by the Lévy Laplacian

Let F' € S[(E)*]. Then, by Theorem 2.1, we see that for any &, € E¢ the function
F(&+ zn) is an entire function of z € C. Hence we have the series expansion:

®©  _n

V4
n:

n=0

where F(M(£): Ec x --- x Ec — C is a continuous n-linear functional.

We fix a finite interval T of R. Take an orthonormal basis {(,}2, C E for L?(T) satisfying
the equal density and uniform boundedness property ( see e.g., [9 18, 19, 23, 30]). Let Dy
denote the set of all ® € (E)* such that the limit

ALS[@](€) = lim % Z_j S[2]"(€)(Cn, Gn)
n=0

exists for any £ € E¢ and is in S[(F)*]. The Lévy Laplacian Ay, is defined by
Apd=S"1ALSP

for ® € Dy. We denote by DT the set of all functionals ® € Dy, such that S[®](n) = 0 for
all n € E with supp(n) C T*.

Lemma 3.1. Forn > 1,ay,...,a, € C and f € L$(T™), let

F(f) = / f(ula e 7un)ea1€(ul)+...+an§(u") du,§ € EC (31)
TTI.
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where du = du, - - - du,. Then there exists ® € (E)* such that S[®] = F and ® is in (E)_,
for allp > %

Proof. We can estimate |F'(£)| as follows:

IF() < |f (urs - up) [el@alEC Hanllewn)l gy
< |f]pmax i@l Honllewn)l, gy y, € T)
< |f|prellesl+HanDilo

where |f|.1 is the Lg(T™)-norm of f and €| = max {|¢(u)|;u € R} . Since for any p > 2
there exists a constant M, > 0 such that || < Mp|E], for all £ € E¢ (see the next Remark)

we get
IF(£)| < |f|L1C([a1|+"'+|an,)Mplf|p.

Hence we have
|F(€)] < |f|pe? [osl+-+lanD?+ M)

Similarly we use the same argument as above to show that

5o TT9ED” [ st un IT (it 6]

Vi,.. ,lln—0_7 1 j=1

< Z H Ia’JHz||77|oo (ellzlinlee) o) ottast++anblels

V1,yeen=0 j=1

< |f|L1e(|al|+"'+|an’)(|€|oo+|2||'l|oo) < 00.

Therefore we obtain

F+zn) = Z f uy,. H( a;z) ;)Vie% (u;)) du

Vi,.. ,‘/n,_o ]=].

=0

where
n
Fo(§n) = flury - s un)(am(uy) + - + an"](un))e H e ¢4 du.
T= ,
j=1
This implies that F(£ + z7n) is an entire function of z € C for each &, € Ec. Thus the
assertion follows from Theorem 2.1. O
Remark. (see e.g. [25]) We have |6,2, = }°72e;(t)*(25 + 2)7?". Since maxt|e]( )| =
O(j~Y/12) (see e.g. [12]), we can check that the above series converges if p > -5. Therefore,
for any p >  there exists a constant M, > 0 such that |d;|_, < M, for all ¢ 6 ]R
Using the Wick ordering : - :, we can write a generalized white noise functional ® whose
S-transform is given as in (3.1) by

n

O(x) = flut, ... up) :He“"”(”"): du. (3.2)
Tn

v=1
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The functional ® belongs to D7 and is important as an eigenfunction of the operator Ay,
In fact, we have the following result.

Theorem 3.2. [34] A generalized white noise functional ® as in (3.2) satisfies the equation

n

1 ) '
AL® = o (Z a,,) 3. (3.3)

v=1

Let F be the set of all complex-valued continuous functions h satisfying the following
conditions:

1) h(0) =0,
2) there exists a stochastic process {X;;¢ > 0} such that e*(*) = E[e%*X¢] for all t > 0 and
z € R,
3) Al = {(al,ag, ) €CHY 0, = /TN S a2 = [Tlh(/\)} £ ¢ for all A € R
and n € N,
For example, a function h(z) = —|2|7,1 < < 2, is an element of F.

For each A ¢ R, n € N, and h € F, let

n

D}, = LS{ fla) [T ex=™): du;
T

v=1

f € Egn, (al,G,Q,. ..,an) € Ag,n}’

where LS means the linear span.
From now on, h € F will be an arbitrarily fixed function. Set D} ; = C and let

D} = LS {D},; n e N}.

Then DY is a linear subspace of (E)_, for all p > 2 by Lemma 3.1, and Ay is a linear
operator from D% into itself such that A,® = h(\)® for any ® € D%. For convenience, we
will use the following notation

n

L) = | 1w e =™): du.

v=1

Let p > 1—52 be a number arbitrarily fixed. Define a space Df\‘,_p by the completion of D?
in (E)_, with respect to || - ||,. Then for each n € NU {0}, D} _ becomes a Hilbert space
with the inner product of (F)_, and the Lévy Laplacian Aj becomes a continuous linear
operator from ’Df\"_p into itself satisfying

Ap® = h(X\)® for any ® € D} _.
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The Lévy Laplacian Ay is a self-adjoint operator on D} _ for each A € R and p > 3

Proposition 3.3. (cf. [34]) Let ® = [ ®rd) and ¥ = [, Wad) be generalized white noise
functionals such that ®, and U, are in D" p for each A € R and strongly mesurable in . If
® =V in (E)*, then &) = ¥, in (E)* for almost all A € R.

Proof. Let A% =, A%,,. Then, for almost all A € R, @, and ¥ can be expressed in the
forms:

‘PA:[\}i_I)nOO Z Jami[fam], L5 =1\}§nw Z Jam[gam],

alMeA} ' alVle 4%

where Y ivie % means a sum of finitely many terms on al™ € A%. Suppose ® = ¥ in (E)*.
Then, taking the S-transform, we have

[R lim Z S(Ja[zv][fauv] — ga[N]])(f) dr=0

N-oo
a[NleA';

for all £ € E¢. Take é7 € E¢ such that & = |T'|7/2 on T and put £ = aér +n with a € C
and n € Ec. Then we get

/Re’\a 1}1_1;1100 Z S(Ja[N][fa[N] ga[N]])( YdA =0

a[N]EAﬁ

for all a € C and n € E¢. Therefore,

o T

00
alNlgah

for almost all A € R and all € E¢. This implies that ®, = ¥, in (E)* for almost all A € R.
O

For any N € N,p > 3, we can define a space E", v by the direct integral space
®
Jg Dh _ o (V)dA:

EMoN = {(@A)A; /]R |@x]12 0k (A) dA < 00, @ € DY _, VA € R} :

where ol ()) is given by

=Y RV (3.4)
£=0

Define a norm ||| - |||-p,~ on ", v by

1/2
19| = ( / u%n%,,a';vu)ctx) o= (@€l n

Then the space " y is a Hilbert space with the norm |- ||l-p,n for each N € Nand p >



177

Proposition 3.3 implies that fR d, d)\ with &) € Df\"_p is uniquely determined as an
element of (E)*. We note that £*) y is isomorphic to a Hilbert space

E' v = {/RCI),\ dX € (E)*; /R||<I>A|I2_pa’](,()\) dA < o0, By €D} _ VA€ R} ,
with the norm induced from £* y by a bijection

((I),\))‘—)/(I))\d/\
R

We denote the norm on E"p ~ by the same notation ||| - |||-p,n

Put E* ) = n>1 B, v with the projective limit topology Then, for any N > 1, we
have the followmg 1nclus1on relations:

E' o CE!' v, CE! yCE!  C(E),.

—p,00

The Laplacian A, can be defined on E? »,2 and is a continuous linear operator from E"p 5 into
E! ) | satisfying |[|AL®|||—pn < |||<I>|]|_p v+ forall® € E* ., and N € N. Any restriction
of Ay is also denoted by the same notation Aj,.

Let h € F. For each t > 0 we consider an operator Gt on E*  _ defined by
Gh'o = / PN, d)
R

for ® = [, ®ydX € E* . Then we have the following:

Theorem 3.4. For each h € F the family {GP;t > 0} is an equi-continuous semigroup of
class (Cy) generated by AL as a continuous linear operator defined on E_poo

Proof. Since e ia a characteristic function, we have Reh(z) < 0. Forany t >0, p > >
and N € N, the norm |||G}®|||_pn for @ = [ ®rdA € E* &€ D} _,n=0,1,2,...can
be estimated as follows:

11GE|I2, v = / €@y ]|” ot () dr

S /”(I) ” 2tReh()\)a ()\) d\

= llllZ,~-

Hence the family {G?; > 0} is equi-continuous in ¢. It is easily checked that G = I,G}G? =
G, for each t,s > 0. We can also estimate that

2
11650 = GLalI o = [ e = 0,0 () an

< / 12112 0 (A)

= 4|||®]|]Z,n < o0
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for each £, > 0,N € Nand ¢ = fR ®,d) € E’lp’oo. Therefore, by the Lebesgue dominated
convergence theorem, we get

lim Gt® =Gj® in E!

t—to —P,00

for each ty > 0 and ® € E’ip,oo. Thus the family {G"*;¢ > 0} is an equi-continuous semigroup
of class (Cy). We next prove that the infinitesimal generator of the semigroup is given by

Ap. For any N € N and p > 3, we see that

2

hp —
H Gre - A,®
t —p.N
eth) _ 1 2
== / T-QA e h(/\)‘I’,\ Ot',t,(/\) d\. (3.5)
R -p
Since ® = [ ®rdA € E* | we have
[ 1200 A < oo (3.6)

By the mean value theorem, for any ¢ > 0 there exists a constant € (0,1) such that

eth.()\) -1

t

’ = [R(X)] 7™ < |h(N)].

Therefore we can estimate each term in (3.5) as follows:

ethV) 2

| -1
(V) || — h(A)®x

-p
2

Cth('\) -1
— 125112,

t
< ol (IRalZ,.

—h(})

o (A)

Note that
eth(Y)

lim | — 1 _ R(\)| = 0.
t—0 t

Thus by (3.6) we can apply the Lebesgue dominated convergence theorem to obtain

Gro - '

_p7N

lim - ALQ
t—0

Hence the proof is completed. O

Remark: For each N € N, we can write Ay and G acting on £%, v as

AL = /R ® hN)ak () dA
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@it

(2]
Gh = / et Mok (1) d),
R

where of(\) is given in Equation (3.4). These formulations can be regarded as the diago-
nalizations of the operators Ay, and G}.

4. A stochastic process generated by the Lévy Laplacian

In this section, we will give a stochastic process generated by the Lévy Laplacian by
considering the stochastic expression of the operator G%.

Let {X!;t >0} be a stochastic process with the characteristic function of X} given by

E[e*Xt) =) he F.

Take a smooth function nr € E with np = ﬁ on T. Define an operator EJZ‘ acting on
S[E". ] by

L proo N
Gh = SGhs.

Here the space S[E" ] is endowed | with the topology induced from E” by the S-

transform. Then by Theorem 3.4, {GF; t > 0} is an equi-continuous semigroup of class

(Co) generated by the operator Ap. : '

Let {X";¢ > 0} be an E-valued stochastic process defined by
XP = ¢+ iXmr, ¢E€E.

Then we have the following theorem.

Theorem 4.1. Let h € F. Then for all F € S[E’ip,oo], the following equality holds

GIF(€) = E[F(X})|X} =¢).

Proof. First consider the case when F' € S[E" ool 18 given by

n

F© = S(307)©) = [ funoo ) [J e o,

v=1

with >0 a, = /|T|A, Y_v_; a2 = |T|h()). Then we have

E[F(X})X§ =¢ = B[F(§+iXnr)]

= f(ul, ey un) H eaug(uu)E[eiAXth] du
"

n=1

= " MVF(g)
= GIF(¢).
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Next, let F' € S[E", ] be represented by F = [ F\dX with F) being expressed in the
following form:

F)\(§) = lim > S(Jaw][fauvl])(f)-

a[Nle_Ah

Hence we have

/R E[IF (€ + iXPnr)]] dA

[
= /]RE lim Z S(Ja[N][fa[N]])(§+iXt’l77T)

N-=oo
alVle Al

E
|«

-

/IRE I&grcl» Z S(Ja[”l[fauvll) He“’" Mxk

alVv ]EAQ

> S (J [Nl[fa[N]])

= /hm
a[N]G_Ah
= / IF(€)] dA.
R

Since F € S[E" ], there exists some &) € E*  such that F)(£) = S[®,](£) = (P, o))
for any £ € F and ) € R. By the Schwarz inequality, we see that

A

[im@ian < [ 1ol
1/2 1/2
< {[atoral{ [1ozamal s,
< 00,
for all £ € E and some M > 1, where o ()) is given in Equation (3.4). Therefore by the
continuity of 5{1 we get

E[F(E +iXm)] = /R E[F,(€ + iXPnr)] dA

- / GHF (€) d)
R
= GIF(6).

Thus we obtain the assertion. d

Theorem 4.1 implies that the infinite dimensional stochastic process {X!;¢ > 0} is gen-
erated by Ay defined on E*  _ for each h € F.

The translation z — z+n, € E*, can be lifted to the space of generalized functions (E)*
whenever n € E, i.e., 7,®(z) = ®(z+n) is defined for & € (E)*. More precisely, a continuous
linear operator 7, from (E)* into itself is uniquely specified by S[r,®](&) = S[®](£ + n),
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§ € Ec. Then, as is easily verified, 7,¢(z) = ¢(z + 1) for ¢ € (E), which gives a ground for
the above formal notation. It is also known that 7,® = ¢_, ¢ (¢,®), where o is the Wick
product, see e.g., [17]. Then, Theorem 4.1 is translated into the language of generalized
white noise functionals.

Corollary 4.2. Let h € F. Then for all ® € E? the following equality holds

—p,00?

G?@ - E[Tixth"lT(D]'

By Corollary 4.2 we can see that {7;xs,,; t > 0} is an operator-valued stochastic process
and {E[7;xn,,}; t > 0} is an equi-continuous semigroup of class (Cy) generated by Ay, defined
on E* _ for each h € F.
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