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1 Introduction

It is known that there are strong links between combinatorcs and number theory. From self-
dual binary or ternary (or other kinds of) codes we obtain unimodular lattices. From various
kinds of weight enumerators we can define theta series of various kinds. However for the present
speaker there is one unsatisfactory point, which will be precisely desribed in the former part of
the present talk.

In the latter part we propose some possible remedies.

2 Some preliminaries

2.1 Binary self-dual codes

Let F; = GF(2) be the field of 2 elements. Let V = F} be the vector space of dimension n
over Fy . A linear [n,k] code C is a vector subspace of V of dimension k. In V , the inner
product , which is denoted by (x,y) for X,y in V, is defined as usual. The dual code C* of C
is defined by

Ct={ueV|(u,v)=0 YvecC}

A code C is called self-dual if it satisfies C = C*L.

An element x in C is called a codeword of C. Let x be a codeword of a linear [n, k] code C,
then the Hamming weight wt(x) of the codeword

X = ($1a$27--'7xn)



141

is defined to be the number of i’s such that z; # 0. The Hamming distance d on C is also
defined by d(x,y) = wt(x —y).

Let C be a self-dual binary [n, %] code, then the weight wt(x) of each codeword x in C is an

even number. Further, if the weight of each codeword x in C is divisible by 4, then the code is
called a doubly even binary code. It is known that doubly even self-dual binary codes C exist
only when the length n of C is a multiple of 8.

The minimum distance d(C) for a code C is defined by

d(C) = vlggrlll d(u,v) = uerggﬂ}wt(u).

There is a well known proposition :

Proposition 1 Let C be a doubly even self dual binary code of length n, then
d(C) < 4 [ ] 44,
Definition : A doubly even self dual binary code of length n satisfying

d(C) = 4 [i

4
24] *

is called an extremal code.

Let C be a self-dual doubly even code of length n, which is embedded in F}. Let u =
(ur,ug, -+, uy,), v = (v1,v2,-+,v,) be any pair of vectors in F%, then the number of common
I’s of the corresponding coordinates for u and v is denoted by u * v. This is called the
intersection number of u and v, and u * u is nothing else wt(u).

Let C be a doubly even self-dual binary [n, 5] code. The homogeneous weight enumerator
We(z,y) of the code C is defined by

WC 1_ y an —wt(v wt(v).
veC

A basic result is the MacWilliams identity for binary self-dual code :

Theorem 1 Let We(z,y) be the weight enumerator of a self-dual binary [n, -121] code, then the

following identity holds :
THy T—y

. 1
73 —) M
When C is a doubly even binary code then W¢(z,y) has another inbariance property :
I/VC('T’ 1y) = Wc(.’t, y) (2)

Definition of Jacobi polynomials for code

Wel(z,y) = We(

The homogeneous Jacobi polynomial Jac(C v;z,y,u,v) for C with respect to v € F}
defined by

Jac(C,v;z,y,u,v)

— Z xn—wt(v)—wt(u)+u*vywt(u)—u*.vuwt(v)—u*vvu*v

ueC
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We will call the vector v the reference vector of the Jacobi polynomial in some occasions.
The weight wt(v) in the polynomial Jac(C,v;z,y,u,v) is called the index of the polynomial.

We get a MacWilliams type identity for Jac(C, v; z,y, u,v)

Theorem 2 Let W¢(z,y) be the weight enumerator of a doubly even self-dual binary [n, g]
code, then the following identity holds :

:1:+y r—y u+v u—v

ViRV vV VR )

Since C is doubly even, each codeword u of C has weight divisible by 4, and we get (C.f. [13])

Jac(C,v;z,y,u,v) = Jac(C,

Jac(C,v; z,1y,u,w) = Jac(C, v; z,y, u,v) (4)

2.2 Certain finite groups and their invarint rings

Let G, be the group generated by

o L1 1Y (10
1T A\L -1 )T e g )

This group is of order 192 and is known as No.9 in Shephard-Todd’s list in [20]. The equations
(1) and (2) show that the homogeneous weight enumerator W¢(z,y) for a doubly even self-dual
binary code belongs to the ring of invariant polynomials C[z,y]" for the finite group of linear
transformations G;. Let W(z,y] be the subring of C[z, y] generated by the homogeneous weight
enumerators of doubly even self-dual binary codes.

Then Gleason’s theorem can be regarded that the ring W(z, y] coincides with the ring C[z, y]°".
We denote by diag(G,G1) the group of linear transformations generated by

071:((8 2)and 0'~2=(00.2 2)
Then the equations (3) and (4) show that the polynomial Jac(C, v;z,y,u,v) for doubly even

self-dual binary code C is a polynomial in the ring C[z,y, u, v]#29(61:61) of simultaneous poly-
nomial invariants for the group G, in the sense of I. Schur [19] pages 9-14.

2.3 Construction of lattices from binary codes
Construction A.

Let C be a doubly even self-dual binary code of length n. (n = 0 (mod 8)) Let x =
(21,22, -+ ,Z,) be an element of Z", where Z is the ring of rational integers. A map p is defined

by
p:Z" — (Z/2Z)" =F}
U] U

X +— X mod2



143

The set L(C) defined by
1
L(C) = —=p~}(C
(C) 7’ (C)
is proved to be an even unimodular lattice of dimension n. This lattice construction is called
the Construction A.

Construction B.

Let C be a doubly even self-dual binary code of length n. The set defined by

L(C) = {%x |x €2, xmod2€ C, ) z;=0 (mod 4) }
=1

is an even lattice. This lattice construction is called the Construction B.

2.4 Modular forms, Jacobi forms
2.4.1 Definition of modular forms

Let H be the complex upper half plane. Let 7 be a variable on §). A holomorphic function
f(7) on H is called a modular form of weight k (k is even) with respect SL,(Z) if it satisfies
following conditions (5) and (6) :

ar +b. k a b

f(cr—{-d) = (et +d)°f(7) holds for V ( . d) € SLy(Z). (5)
A special case of (5) implies that f(r) satisfies f(7 + 1) = f(7) , and f(7) has a Fourier

expansion : .

f(T) — Z ame27rzm7.
meZ
f(T) — Z am627rim‘r. (6)
m>0,meZ

The set of modular forms of weight k with respect to SLy(Z) is denoted by M (k).

2.4.2 Definition of Jacobi forms

Let H and 7 be as above. Let C be the complex plane and z be a variable on C. A complex
valued holomorphic function ¢(7,z) defined on H x C is called a Jacobi form of weight k& and
index h with respect to the pair (SLy(Z),Z) if it satisfies the conditions (7), (8) and (9) :

—cz

2

v(4h)esn@ ¢(T,z):(cr+d)"°ez”ih("*")¢(

(7)

¢(T,Z) — e27rih()\2-r+2)\z)¢(7_,z + AT+ 'u) (8)

@(7,z) has a Fourier expansion of the form

$(r,2)= 3. cn,r)g"(" : (9)

n>r2/4h

ar + b z
d

ct+d er+d
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The set of Jacobi forms of weight k& and index h with respect to the pair (SLy(Z,Z) is denote
by J(k,h).

2.5 Theta series, Jacobi theta series

Let L be an even unimodular lattice of rank n. (n is divisible by 8) Theta series attached t
the lattice is defined by
I r, L) = Z emiX)T
x€eL

It is known that 9¥(7, L) is a modular form of weight n/2.
Let y € L satisfying (y,y) = 2h, then a Jacobi theta series with respect to y is defined by

19,,(7‘, z, L) — Z evri(x,x)1+21ri(x,y)z'
x€eL

This series is proved to be a Jacobi form of weight n/2 and index A.

2.6 Jacobi’s theta functions

Let €, ¢’ be numbers 0 or 1. Then Jacobi’s theta functions are defined by

0 [ :' ] (r,2) = > emH{T(hte/2)? +2(h+e/2)(z+€'/2)}
heZ

A more popular notations are the right-hand sides of the followings

0 8 (r,2) = 65(r,2)
0]

0 1 (r,2) = 6o(r,2)
] :

0 0 (r,2) = Oy(r,2)
r 1 :

0 ) (r,2) = 6u(r,2)

These functions satisfy the following transformations :(Conf. [17],[23].)

1 2 T mifl \
02(-—;, ;) = 76’ 00(7',2) ' (10
o(~=, 2) = \ [ y(r, ) | 1
o= = ie 27'72," (11

1 z T s o
03(—;,-7:) = -2,-6 03(7’,2) (12

here we take the bram':h of the root sothat it takes the value 1 at 7 =1 .
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It we put
wo(T,2) = 00(27,22), po(T,2) = 02(27,22), w3(r, z) = 05(271,22)
©o(T) = 60(27,0),p2(7) = 02(27,0), p3(7) = 03(27,0)

then we can show that
1 = T .2
902(“;, ;) = \/Ze’” " {ws(1,2) — @a(7, 2)}

1 z T ﬂ'ii .
Pa(==0) =€ 7 {wa(m2) + pa(7, 2)}
holds.

3 Statement of the Problem
Problem 1.

In what way the extremal theta series (i.e. theta series for extremal lattices ) of various
kinds (ordinary, Jacobi, Siegel) can be determined ? Is there a clear way that leads to direct
construction of extremal theta series ? At present before us there is a vague and ugly indirect
way that leads to such construction.

Here we give a precise explanation of the problem. Throughout this section we let C be a
doubly even self-dual binary code of length n.

3.1 Ordinary theta series case

Let We(z,y) be the weight enumerator of the code C, then the Broué-Enguehard map is a
correspondence

(Clz,y]%)y — My,

1] W
We(z,y) +— Wel(ps(T), pa(r))

Here (C[x,y]%!), is the vector space of the h-th homogeneous part of C[z,y]5.

They proved this by showing that Wc(¢s(7),¢2(7)) is a theta series ¥(7, L(C)) of the even
unimodular lattice L(C).

The problem is that even if C is an extremal code of length n the resulting theta series 9(r, L(C))
is not the extremal theta series. For instance when G,4 is the binary Golay code of length 24,
then (7, L(G24)) is not the extremal theta series, but it is the theta series associated with the
even unimodular lattice of type A?* (coming from the root lattice of A2*). How the theta series
of the Leech lattice can be derived ?

Numerical evidence 1.

W, (z,y) = 2 4 7592%® + 257622y + 75923y + y**
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is the weight enumerator of the binary Golay (24,12, 8] code.

We,u(3(7),02(7)) =
I(7, L(G24)) =
1 + 48q + 195408¢* + 167852164 + 397963344¢* + 46296129604° + 344173656964° + - - -,

here ¢ = €*"". On the other hands theta series for Leech lattice is

(7, Leech) =
1 + 19656092 + 167731204¢> + 3980340004* + 46293811204¢° + 34417656000¢° + - - -

This fact compels us to pose the following question :
Can we modify the Broué-Enguehard map to the effect that the following diagram is commu-
tative

Clz,y)' — M, 3> I(r, L(C))

} S
Clz,y]®* > M,/; D extremal theta

3.2 Jacobi theta series case

Let Jac(C,v,z,y,u,v) be a Jacobi polynomial for the code C with a reference vector v of
weight 1, the (so called and the simplest) Bannai-Ozeki map is a correspondence

(Clz, y,u, 0] (S, — Jy(n/2)
U 1]
Jac(C,v,a:,y,u,v) — JaC(C,V;QO;;(T),502(7’),@3(7',2),(‘02(T,Z))

Numerical evidence 2.

Jac(Gaa, Vv, 2, y,u,v) =
By + 2532'% v + 5062 °yPu + 12882 %y v + 12882y %u + 50623y °v +
253z y'%u 4+ y*3v

is the Jacobi polynomial of index 1 for the Golay code. The image of Bannai-Ozeki map for
this polynomial is computed to be

Jac(Q24, V; (,03(7'), 902(7:)’ 993(Ta Z)a ‘P2(7-7 Z)) =
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14 (¢ + 46 + ¢%)q + {46(C% + ¢~2) + 32384(C + (1) + 130548} ¢
+{130548(¢? + (%) + 9175896 + 3674112(¢ + ¢ 1)}

+{¢t 4 ¢+ 32384(C3 + () + 9175896(C% + (%)

+95659392(C + (1) + 188227998} ¢

+ (46(C* + ¢7*) +3674112(C° + ¢®) + 188227998(¢2 + ¢ 2)
+1143025664(¢ + ¢™') + 1959757320)¢°

+ {130548(44 + (%) + 95659392(¢° + () + 1959757320(¢2 + ¢7%)
+8506630272(C + (") + 13293010632} ¢° + - - -,

where ( = €™z,

This is verified to be the Jacobi theta series of index 1 associated with the even unimodular
lattice of type A2

Jacobi theta series of index 1 associated with Leech lattice is 0 by its meaning.

Numerical evidence 3.

There is a unique Jacobi polynomial Jac(Ga4, v, z,y,u,v) of index 2 for the Golay code
Jac(Gay, v, 2, y,u,v) =

2®u’ 4 y*o? 4 3522y ww + 13442y uv + 35227y Puv + 772050
+3302"y%u? + 6162 2y v? + 6162y ?u? + 33028y v? + 7728y Cu?

From it we obtain
Jac(Gas, Vi 03(7), 02(7), @3(7, 2), pa(T, 2))) =
14 (2¢72 4+ 2¢% + 44)q + ((4 + ¢+ 5016(¢% + ¢72) +45056(¢ + ¢ + 95262) ¢
+- {44((4 + ¢7*) +45056(¢° + () + 959288(¢2 + (%) + 4149248(¢ + ¢ 1) + 6477944} ¢
+ {95262(§4 + () 4 4149248(¢% + () + 95432704(¢ + (1) + 32752192(C% + ¢72) + 13310453
+ {2(46 + ¢7°) + 45056(¢° + (%) + 6477944(¢* + () + 95432704(¢ + ¢73)
+458048186(¢* 4+ ¢7?) + 1062150144(¢ + ¢ 1) + 1385304888} ¢
+ {5016((6 + (%) 4 4149248(¢° + (7°) + 133104532(¢C* + (%) + 1062150144(¢3 + ¢3)
+3772360200(¢* + (%) + 7534989312(¢ + ¢71) + 9403848792} ¢+

This series is verified to be Jacobi theta series of index 2 associated with the even unimodular
lattice of type A
Jacobi theta series of index 2 associated with the Leech lattice is computed to be

Uy (T, 2z, Leech) =
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L+ {¢* + ¢+ 4600(C* + (7%) + 47104(C + (") + 93150} ¢

+{47104(C* + ¢°) + 953856(C + (7) + 4147200(C + (7' + 6476800} ¢°

+ {93150((4 + (%) + 4147200(¢% + ¢ 7°) + 32788800(¢* + (%)

+95385600(¢ + ¢71) + 133204500} q*

+{47104(C° + ¢™®) + 6476800(C* + ¢7*) + 95385600(¢° + )

+458086400(¢% 4+ ¢~%) 4 1062195200(¢ + ¢™1) + 1384998912} ¢

+ {4600(46 + ¢78) + 4147200(¢% + ¢7%) 4 133204500(¢* + ¢™*) 4 1062195200(¢% + ¢~2)
+3771829800(¢? + (~?) + 7535462400(z + (') + 9403968600} ¢+

3.3 Siegel theta series case

We do not give a numerical example, but it is evident that W. Duke’s correspondence from
the multiple weight enumerator of a class of doubly even self-dual binary codes C of length n
to Sielgel modular forms via Siegel theta series for L(C) uses Construction A. And this should
cause the obtained Siegel theta series are associated with lattices of type A7} (in general case)
even if we use extremal codes.

4 First Approach

4.1 Ordinary theta series case

Our first approach for a solution to our problem is to find a polynomial which leads to theta
series of the Leech lattice via Broué-Enguehard map. It is easy to find such a polynomial, but
it may be difficult to give a deeper meaning to the polynomial. The polynomial in question is
given by

We,.(2,)
= 224 4+ 7592'%y® + 25762'%y!? + 75928y6 + y**
__3( 20 4 43316 8 + 6(1712 12 4.’138y16 + T y20)
= szoy“ + T71z%y® + 255821292 4 77128y — 32%y?° 4 42

We verify that _
W, (93(7), w2(7)) = (7, Leech)
holds.

There are similar facts in dimensions 32 and 40.
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4.2 Jacobi theta series case

In this case we look for a polynomial in which satisfies

Jac(Ga, v ©3(7), p2(T), 03(T, 2), 02(7, 2) = Iy(7, 2, Leech) with (y,y) =4

Jac(Gaa, v, 2, y,u, v)
= 22?4+ y*? + 3682y uv + 1312z y L uw + 368z y P uv — 1/22%y%y?
—5/22"u?y* 4 7326450 + 3302142 u? + 62322y 0v? + 62320y %42
+3302%y 402 4 732591002 — 5/20%y 80? — 1/2yPu2s?

5 Second Approach

In this section we discuss an arithmetical deformation of theta series of even unimodular lattice.
At present the research is not fully explored, but we expect this approach will be fruitful.

We explain our idea by examining a special case.
Let £, be an even unimodular lattice of dimension 24 with its root sublattice of type A?*. Here

we give a presentation of the lattice £,. Let f;,f,, -, f,4 be mutually orthogonal vectors in R?*
satisfying (f;,f;) =2, 1 =1,2,---,24 (the coupling denotes the inner product) L, is generated
by the vectors fi,f;, - - f24 and the vecorts of the form

1 24

—sz 2y

here (p1,p2,-+,p24) (mod 2) belongs to the Golay code G,,.
We use L, to denote the Leech lattice, and give a presentation of it. £, is generated by the
vectors £f; +f;, 1 <7 <35 <24 and the vectors of the form

124

-sz

24
where (¥)  (p1.p2,---,p24) (mod 2) belongs to the Golay code Goy and > pi=0 (mod 4),
and ' 1

(f1 +fo 4+ 1y — 3f24).

We observe that the lettice L'O =L ﬂ L, is generated by the vectors : =+f; :i:f], 1<1 <5 <24,

and
1 24

_sz )

with the condition (x). '
It holds that (Lo + Zf1) U Lo = £, and (L, + Zxo) U Lo = L;. From these we get

I(7, L1) = (7, Lo) + (7, Lo + Zf1),
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W1, Ly = 9(7,Lo) + (7, Lo + Zxo).
We look at d(r, Lo), (7, Lo + Zf;),¥(7, Lo + ZxXo) more precisely.

’19(7',£0+Zf1) — Z e'rri(u+f1,u+f1)‘r
u€ely
— Z ewi{(u,u)+2(f1 )42}
uelo
_ e21r£'r Z em'{(u,u)+2(f1,u)}‘r
uely
= e21n‘r'l9f1 (Ta 2, ‘CO) |z=‘r

In the same way we see that

19(7‘, Lo+ Zfl) = 62"”19,(0 (T, z, £0)|z=-,-

The lattice L, is seen to be obtained from the Golay code Gy4 by Construction B.

In conclusion if theta series and Jacobi theta series for the lattice £, can be computed in a
systematic way, then we may compute theta series of the Leech lattice. We can expect that
0(r,Lo), 0(r, Lo+Zf,),0(7, Lo+Zxe) will be controled by the information from the code (doubly
even subcode of Go4 of index 2). Numerical computation shows that

9(r, Lo) =1 + 98256¢” + 5275648¢" + - - -,

9(1, Lo + Zfy) = 48q + 97152¢ + 11509568¢° + - - -,
I(1, Lo + Zxo) = 98340¢> + 11497472¢% + - - - .

Jacobi theta series of index > 2 for the Leech lattice or extremal lattices in higher dimensions
should be analyzed along this direction. At present the theory of Jacobi theta series for non-
unimodular lattices is not at hand.

6 Third Approach

Since there is a map from codes over Zy = Z/4Z to the even unimodular lattices only use the
construction A, there may arise a natural map from a class of codes over Z; to the class of
extremal theta series. We have not yet explored this direction.
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