The group-quark matrix

Koichiro Harada
Ohio State University/

§1 The group-quark matrix

The main purpose of this article is to propose a problem. Let us consider the following 3×3 matrix whose entries are finite groups.

$$
A = \begin{bmatrix}
U_4(2).2 & S_6(2) & O_5^+(2) \\
U_6(2).2 & Conway_2 & Conway_3 \\
^2E_6(2).2 & Fischer_4 & Monster
\end{bmatrix}
$$

The orders of relevant simple groups are:

$|U_4(2)| = 25920 = 2^63^45$
$|S_6(2)| = 1451520 = 2^93^45.7$
$|O_5^+(2)| = 174182400 = 2^{12}3^55^27$
$|U_6(2)| = 2^{15}3^65.7.11$
$|Conway_2| = 2^{18}3^65^37.11.23$
$|Conway_3| = 2^{21}3^95^47^211.13.23$
$|^2E_6(2)| = 2^{36}3^95^27^211.13.17.19$
$|Fischer_4| = 2^{41}3^{13}5^67^211.13.17.19.23.31.47$
$|Monster| = 2^{46}3^{20}5^97^611^213^317.19.23.29.31.41.47.59.71$

Note that Conway groups are numbered according to their orders. In particular, $|Conway_1| = 2^{10}3^75^37.11.23$. $U_4(2).2$ is the extension of $U_4(2)$ by an outer automorphism of order 2, and $U_6(2).2$ and $^2E_6(2).2$ are analogously defined.

The columns of the matrix A are indexed by the Dynkin diagrams of type E_6, E_7 and E_8. Appearing in the first row of A are the simple components of the Weyl groups of type E_6, E_7 and E_8. The correct indexing of the rows of the matrix A is left for the future research. We can, perhaps, index the rows of A by three generations of quarks ud, cs, tb (up-down, charm-strange, top-bottom).
Let us next give the 'transpose-inverse=tra-inv' of the matrix A.

$^tA^{-1} = \begin{bmatrix} 2^{1+4}.(S_3 \times S_3) & 2^{1+6^*}.(S_3 \times S_3) & 2^{1+8}.(S_3 \times S_3 \times S_3) \\ 2^{1+8}.U_4(2).2 & 2^{1+8}.S_6(2) & 2^{1+8}O_8^+(2) \\ 2^{1+20}.U_6(2).2 & 2^{1+22}Conway_2 & 2^{1+24}Conway_3 \end{bmatrix}$

If A_{ij} is the (i,j) entry of the matrix A, then the corresponding entry of $^tA^{-1}$ is the centralizer of an involution in the center of a Sylow 2-subgroup of the group A_{ij}. Here 2^{1+2n} denotes the extral-special group of order 2^{1+2n}. An exception is 2^{1+6^*}, which is almost extra-special but not exactly so. The main problem posed here is: Investigate the group-quark matrix A algebro-geometrically.

§2 Γ_27 and Γ_28

Let S be the cubic surface defined in the projective space $P^4(\mathbb{C})$ by the equations:

$$\begin{cases} x_0^3 + x_1^3 + x_2^3 + x_3^3 + x_4^3 = 0 \\ x_0 + x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

The (projective) line defined by

$$\begin{cases} x_0 = 0 \\ x_1 + x_2 = 0 \\ x_3 + x_4 = 0 \end{cases}$$

lies completely on the surface S. Applying the permutations on the index set $\{0,1,2,3,4\}$, 15 lines on S can be obtained.

Next, let $\alpha (= \frac{1+\sqrt{5}}{2})$ be a zero of the quadratic equation:

$$X^2 - X - 1 = 0,$$

then the line defined by:

$$\begin{cases} x_0 + \alpha x_3 + x_4 = 0 \\ x_1 + x_3 + \alpha x_4 = 0 \\ x_2 - \alpha(x_3 + x_4) = 0 \end{cases}$$

is also completely on the surface S. Applying the permutations on $\{0,1,2,3,4\}$ again, 12 lines can be obtained. Therefore there are
altogether 27 lines on S. That this is the exact number of lines on S
comes from the theory of algebraic geometry, although our special
case itself was known already in the middle of the 19th century.

Theorem. A general (complex) cubic surface contains exactly
27 lines.

Let Γ_{27} be the graph of 27 lines with their configuration on a
general cubic surface. Then Γ_{27} satisfies the following properties:

(1). Any line A of Γ_{27} meets exactly ten other lines of Γ_{27}.
Those ten lines split into five pairs $(B_1, C_1), \ldots, (B_5, C_5)$, and if
$i = 1, 2, 3, 4, 5$, then B_i and C_i meet and the triangle AB_iC_i is
formed. There are $5 \cdot 27/3 = 45$ triangles so formed. (Note. If $i \neq j$,
then B_i and C_j do not meet. In particular, there are no three lines
that meet at a point. This applies to a general cubic surface. A
specialization of it may contain three lines that meet at a point.)

(2). Let $ABC, A'B'C'$ be any two triangles having no side in com-
on. Then they determine uniquely a third triangle $A''B''C''$ such
that each of three triples of lines $\{A, A', A''\}, \{B, B', B''\}, \{C, C', C''\}$
intersect and form three new triangles $AA'A'', BB'B'', CC'C''$.

Those two properties (1), (2) uniquely determines the configura-
tion of 45 triangles formed by the elements of Γ_{27}.

Theorem(C.Jordan). Aut(Γ_{27}) $\cong U_4(2).2 \cong \text{Aut}(U_4(2))$

This is the $(1, 1)$ entry of the matrix \mathcal{A}. The isomorphisms of
simple groups

$$U_4(2) \cong S_4(3) \cong O_5(3) \cong O_6^-(2)$$

is significant in the history of group theory.

Let us next discuss the $(1, 2)$ entry of the matrix \mathcal{A}. The graph
of the quartic curve

$$x^4 + y^4 + x^2y^2 - 8(x^2 + y^2) + 16.25 = 0$$
is drawn at the end of this article.

It is easy to see that $28 = 4 + (12 \cdot 4/2)$ double tangents to the curve can be drawn. If the constant 16.25 is replaced by a number smaller than about 15.5 then four regions merge into a single region and if it is replaced by a number larger than about 17.5, then we get four convex regions and only 24 double tangents can actually be visible.

In general, it is known:

Theorem. A nonsingular (complex) plane curve of degree 4 possesses exactly 28 double tangents.

The number of double tangents to a nonsingular plane curve of degree m is given by the formula of Plücker:

$$
\text{Number of double tangents} = \frac{1}{2}m(m - 2)(m^2 - 9).
$$

Let Γ_{28} be the set of 28 double tangents. The configuration satisfied by the 28 double tangents was investigated by Steiner, Aronhold and many others.

(1). (Steiner) Let x_1, y_1 be two distinct elements of Γ_{28}. Then there exist five pairs $(x_2, y_2), (x_3, y_3), \ldots, (x_6, y_6)$ of elements in Γ_{28} and if we put

$$
\mathfrak{S} = \{(x_i, y_i) | i = 1, 2, 3, \ldots, 6\}
$$

then, the eight tangent points of any pair of double tangents $(x_i, y_i), (x_j, y_j) \in \mathfrak{S}$ lie on a same conic (an irreducible plane curve of degree 2). \mathfrak{S} is called a *Steiner complex*. Γ_{28} possesses 63 Steiner complexes in total.

Let P_1, \ldots, P_7 be seven points given in the complex plane. The cubic curves passing through these seven points form a vector space \mathcal{T}. Every pair of curves $\{C_1, C_2\}$ of \mathcal{T} intersect two more points by Bézout’s theorem. If these two points coincide then the pair $\{C_1, C_2\}$ possesses a common tangent. The totality of common tangents so obtained forms a plane curve D' of class 4, or equivalently the dual curve of a plane curve of degree 4.
The dual of the statement above will read as follows.

(2)(Aronhold). Let L_1, \ldots, L_7 be seven lines on the plane. The totality of all curves of class 3 containing these seven lines forms a vector space \mathcal{T}. Every pair of curves $\{C'_1, C'_2\}$ in \mathcal{T} contains two more lines $\{L_8, L_9\}$ in common. If $L_8 = L_9$, then the pair $\{C'_1, C'_2\}$ possesses a tangent point z and z is on a curve D of degree 4 uniquely determined by L_1, \ldots, L_7. Moreover, L_1, \ldots, L_7 are double tangents of this curve D.

Let D be the curve of degree 4 uniquely determined by the seven lines $\{L_1, \ldots, L_7\}$. Then D possesses 28 double tangents $\Gamma_{28} = \{L_1, L_2, \ldots, L_{28}\}$. Moreover, the following properties hold.

(i). L_1, \ldots, L_7 is a maximal asyzygetic set (defined below) of Γ_{28}.

(ii). The remaining 21 double tangents are rationally constructible by L_1, \ldots, L_7 (their coefficients are rational functions of the coefficients of L_1, \ldots, L_7).

(iii). Every curve of degree 4 without double points can be obtained by this construction.

(iv). Every asyzygetic set of seven double tangents of Γ_{28} defines D.

Let L_1, L_2, L_3 be three distinct lines in Γ_{28}. Those three lines determine six tangent points. If those six tangent points are on a same conic, then the triple $\{L_1, L_2, L_3\}$ is called syzygetic. In the contrary case, the triple is called asyzygetic. A subset S of Γ_{28} is called asyzygetic if every triple of S is asyzygetic.

Let us call a maximal asyzygetic seven-line set mentioned in (i) an Aronhold set. Therefore, an Aronhold set is a maximal asyzygetic subset of Γ_{28} consisting of seven elements. It is known that Γ_{28} contains exactly 288 Aronhold sets.

Theorem (Jordan). $\text{Aut}(\Gamma_{28}) \cong S_6(2)$.

Note that $|S_6(2)| = 288 \times 7!$. In fact, $S_6(2)$ transitively permutes all Aronhold sets and the fixing subgroup of an Aronhold set A acts as the symmetric group of degree 7 on A.

Γ_{28} can not be determined only by vertices and edges since $\text{Aut}(\Gamma_{28})$ acts doubly transitively on the 28 points. Therefore, Γ_{28} is not a
Let L_1, L_2 be a pair of elements in Γ_{28}, then there are 10 elements X in Γ_{28} such that $\{L_1, L_2, X\}$ is a syzygetic triple. In fact, all such X are in the Steiner complex determined by the pair $\{L_1, L_2\}$. Therefore, Γ_{28} possesses $28 \cdot 27 \cdot 10 / 6 = 1260$ syzygetic triples. If all syzygetic triples are given in Γ_{28}, then the configuration of Γ_{28} is completely determined. The author is not aware if any combinatorial characterization of Γ_{28} is known. (Note. A combinatorial characterization of Γ_{27} is known as mentioned in this article before.)

Let L be an element of Γ_{28}. Consider $\Gamma_{28}' = \Gamma_{28} \setminus \{L\}$. For a pair of elements X, Y in Γ_{28}', if L, X, Y is syzygetic, connect X and Y by an edge. Then a graph of 27 vertices and 135 edges is obtained. The Γ_{27}' is isomorphic with Γ_{27} discussed before (Geiger, 1869).

We have thus obtained the $(1, 2)$ entry of the matrix A.

Problem. Define the $(1, 3)$ entry of the group-quark matrix A algebro-geometrically.

Since
\[
[O^+_8(2) : S_6(2)] = 120,
\]
the algebro-geometric model on which $O^+_8(2)$ acts should contain 120 elements in it. Let us denote the object by Γ_{120}. The fixing subgroup of a point α of Γ_{120} should be $S_6(2)$.

Therefore, Γ_{120} is, as an $O^+_8(2)$-set, equivalent to the quotient space $O^+_8(2)/S_6(2)$. The action of $O^+_8(2)$ on $O^+_8(2)/S_6(2)$ is well known and it induces a rank 3-permutation representation. Equivalently one point stabilizer $S_6(2)$ has exactly two orbits on the remaining 119 points $\Gamma_{120}\setminus\{\alpha\}$. The suborbit lengths are 56 and 63, and the stabilizer of a point in $S_6(2)$ is $U_4(2)$ or $E_{32}.S_5$ respectively.

Let us write
\[
\Gamma_{120} = \{\alpha\} + \Delta + \Omega
\]
where, $|\Delta| = 56$, $|\Omega| = 63$.

We are assuming that the configuration graph of Γ_{120} contains Γ_{28} as a subgraph. Therefore, we should be able to identify Δ and Ω in terms of Γ_{28}. Ω is of length 63 and so it is natural to assume that Ω is the totality of all Steiner complexes.
There are 28 double tangents and so obviously there are 56 tangent points. Therefore, it is natural again to choose Δ to be the set of all (double) tangent points of the plane curve of degree 4 that we initially began with.

In Heinrich Weber's Lehrbuch der Algebra, Vol II (1899), there is a 50 page chapter entirely devoted to the structure of Γ_{28}. In it, it is proved also that $S_6(2)$ is the automorphism group of the configuration.

There are other 120 mathematical objects.

1. A nonsingular plane curve of degree 5 possess 120 double tangents (easy by Plücker's formula).

2. There is a curve (called del Pizzo surface) of degree 6 and of genus 4 possessing 120 tritangents planes.

3. The root system of type E_8 possesses 240 roots. If the sign of each root is ignored then a set Γ of 120 objects and its graph are obtained.

It must be an interesting problem to investigate the configuration Γ_{120} purely group theoretically also.

§3 The second and third rows of A.

The second and third rows of the group-quark matrix are up in the air at this moment. McKay [Finite Groups, Proceedings of Symposia in Pure Mathematics, Vol. 37, Amer. Math. Soc. 1980] observed that if s and t are involutions of the Monster both of which are conjugate to the involutions of $2A$ type, then its product st belongs to the conjugacy classes of the Monster of type $1A, 2A, 3A, 4A, 5A, 6A, 3C, 4B, 2B$.

Recall that if $-\alpha_0$ is the highest root of the Lie algebra of type E_8, then

$$1\alpha_0 + 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 5\alpha_4 + 6\alpha_5 + 3\alpha_6 + 4\alpha_7 + 2\alpha_8 = 0.$$

The numbers $\{1, 2, 3, 4, 5, 6, 3, 4, 2\}$ are called the weights of E_8. McKay lists $Fischer_3$ and $Fischer_4$ as groups having similar property with respect to E_6 and E_7, respectively. $Fischer_3$ is replaced by $^2E_6(2)$ in this article, since it fits better if we consider the $(2,1)$ entry of the tra-inv $^tA^{-1}$ of the group-quark matrix.
Similar coincidences between weights of Dynkin diagrams and orders of groups elements have been observed by Glauberman and Norton [to appear in the Proceedings of Monster Workshop at Montreal, 1999]. At Kyoto symposium, the (2,1) and (3,1) entries of the matrix A were the sporadic simple groups $Suzuki$ and $Fischer_3$, respectively. The new entries $U_6(2)$ and $^2E_6(2)$, however, appear to fit its tra-inv matrix $^tA^{-1}$ better, although leaving the main realm of the 3-transposition groups may be a problem.

I thank M.Kitazume, J.Matsuzawa, T.Asai, and J.McKay for valuable discussions.

\[x^4 + y^4 + x^2y^2 - 8(x^2 + y^2) + 16.25 < 0 \]