On positivity and universality of templates induced from diffeomorphisms of the disk

Mikami Hirasawa ・Gakushuin Univ. (平澤 美可三・学習院大学) Eiko Kin ¹ ・Kyoto Univ. (金 英子 ・京都大学)

1. Introduction

In this note, we consider links induced from periodic orbits of orientation preserving automorphisms φ of D^2 . We first present some basic terminologies. We denote the *i*-th iteration of φ by φ^i . We say that $x \in D^2$ is a period $k \in \mathbb{N}$ periodic point if $\varphi^k(x) = x$ and $\varphi^i(x) \neq x$ for $1 \leq i < k$. In particular, we say that x is a fixed point if x is a period 1 periodic point. For $x \in D^2$, $\{\varphi^i(x) \mid i \in \mathbb{N}\}$ is called the orbit of x and denoted by $O_{\varphi}(x)$. If x is a periodic point, then $O_{\varphi}(x)$ is called the periodic orbit of x.

Let $\Phi = \{\varphi_t\}_{0 \leq t \leq 1}$ be an isotopy of D^2 such that $\varphi_0 = id_{D^2}$, $\varphi_1 = \varphi$. For a finite union of periodic orbits P of φ , we define a subset of $\widetilde{V} = D^2 \times S^1 (\cong D^2 \times I/(x,0) \sim (x,1))$, denoted by $\mathcal{S}_{\Phi}P$, as follows.

$$\mathcal{S}_{\Phi}P = igcup_{0 \leq t \leq 1} (arphi_t(P) imes \{t\})/(x,0) \sim (x,1).$$

 $\mathcal{S}_{\Phi}P$ is called a suspension of P by Φ . Let V be a standardly embedded solid torus in the 3-sphere S^3 . Then $h: \widetilde{V} \to V$ denotes a homeomorphism such that for a longitude $\widetilde{\ell}$ on \widetilde{V} , $h(\widetilde{\ell})$ is a knot with the linking number of $h(\widetilde{\ell})$ and the core circle of V being 1 (see Figure 1). For each $i \in \mathbf{Z}$, $h^i(\mathcal{S}_{\Phi}P)$ is a link in S^3 , where the orientation of $\mathcal{S}_{\Phi}P$ is induced from parametrization by t.

Figure 1

¹Partially supported by JSPS Research Fellowships for Young Scientists

On positivity and universality of templates induced from diffeomorphisms of the disk

Definition 1.1. Let $\varphi: D^2 \to D^2$ be an orientation preserving automorphism, and $\Phi = \{\varphi_t\}_{0 \le t \le 1}$ an isotopy of D^2 such that $\varphi_0 = id_{D^2}$, $\varphi_1 = \varphi$. We say that φ induces all link types if there exists an integer $i \in \mathbb{Z}$ satisfying the following conditions.

(*) For each link L in S^3 , there exists a finite union of periodic orbits P_L of φ such that $L = h^i(\mathcal{S}_{\Phi}P_L)$.

We note that the definition does not depend on Φ . Moreover the number of integers i such that h^i satisfies (*) does not depend on Φ (see [8]). Hence we denote the number by $\overline{N}(\varphi)$, that is,

$$\overline{N}(\varphi) = \sharp \{i \in \mathbf{Z} \mid i \text{ satisfies } (*) \text{ for } \Phi\}.$$

The topological entropy $h_{top}(\varphi)$ for φ is a measure of its dynamical complexity (see [14] for a definition of the entropy). A result of Gambaudo-van Strien-Tresser ([3, Theorem A]) tells us that if $h_{top}(\varphi) = 0$, then φ does not induce all link types, i.e., $\overline{N}(\varphi) = 0$. It is natural to ask the following problem:

Problem 1.2. Which automorphism induces all link types?

In [11], the second author researched the Smale horseshoe map [13] on Problem 1.2. The Smale horseshoe map is a fundamental example to study complicated dynamics since the invariant set is hyperbolic and is conjugate to the 2-shift, and such invariant sets are often observed in many dynamical systems [9] (see [12] for basic definitions of dynamical systems).

Theorem 1.3. [11] Let H be the Smale horseshoe map. Then $\overline{N}(H) = \overline{N}(H^2) = 0$ and $\overline{N}(H^3) = 1$.

Since $h_{top}(H)$ and $h_{top}(H^2)$ are positive, Theorem 1.3 shows the existence of diffeomorphisms not inducing all link types.

We will consider Problem 1.2 for generalized horseshoe maps G using twist signature t(G) (see Definitions 2.1, 2.2). In Theorem 3.1, we completely determine the number $\overline{N}(G)$ by t(G).

2. Generalized horseshoe map and twist signature

For definitions of generalized horseshoe map and twist signature, we first introduce some terminologies. Let $R = [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}] \subset D^2$, and let S_0 , S_1 be half disks as in Figure 2(a). For $c, c' \in [-\frac{1}{2}, \frac{1}{2}]$, we call $\ell_v = \{c\} \times [-\frac{1}{2}, \frac{1}{2}]$ (resp. $\ell_h = [-\frac{1}{2}, \frac{1}{2}] \times \{c'\}$) a vertical (resp. a horizontal) line. For [c, d], $[c', d'] \subset [-\frac{1}{2}, \frac{1}{2}]$, we call $B = [c, d] \times [-\frac{1}{2}, \frac{1}{2}]$ (resp. $B' = [-\frac{1}{2}, \frac{1}{2}] \times [c', d']$) a vertical (resp. a horizontal) rectangle.

Let B_1 , B_2 (resp. B'_1 , B'_2) be disjoint vertical (resp. disjoint horizontal) rectangles. The notation $B_1 <_1 B_2$ (resp. $B'_1 <_2 B'_2$) means the first (resp. second) coordinate of a point in B_2 (resp. B'_2) is greater than that of B_1 (resp. B'_1). We denote the open rectangle which lies between B_1 and B_2 by (B_1, B_2) .

Definition 2.1. Let $n \geq 2$ be an integer. A generalized horseshoe map G of length n is an orientation preserving diffeomorphism of D^2 satisfying the following: There exist vertical rectangles $B_1 <_1 B_2 <_1 \cdots <_1 B_n$ and horizontal rectangles $B'_1 <_2 B'_2 <_2 \cdots <_2 B'_n$ such that

M. Hirasawa & E. Kin

- (1) for each $1 \leq i \leq n$, $G(B_i) = B'_j$ for some $1 \leq j \leq n$,
- (2) for each $1 \le i \le n-1$, $G((B_i, B_{i+1})) \subset S_k$ for some $k \in \{0, 1\}$,
- (3) G expands the part of horizontal lines which intersects each B_i uniformly, and contract the vertical lines in each B_i uniformly,
- (4) $G|_{S_0}: S_0 \to S_0$ is contractive,
- (5) if n is even (resp. odd), then $G(S_1) \subset Int S_0$ (resp. $G|_{S_1}: S_1 \to S_1$ is contractive) and
- (6) G has no periodic points in $D^2 \setminus R$.

Definition 2.2. Let G be a generalized horseshoe map of length n. Twist signature t(G) of G is the array of n integers (a_1, \dots, a_n) satisfying the following:

- (1) $a_1=0$.
- (2) For $2 \le i \le n$, $a_i = a_{i-1} + 1$ if $G(B_{i-1}) <_2 G(B_i)$ and $G((B_{i-1}, B_i)) \subset S_1$, or if $G(B_{i-1}) >_2 G(B_i)$ and $G((B_{i-1}, B_i)) \subset S_0$. Otherwise $a_i = a_{i-1} 1$.

By the condition of generalized horseshoe maps G, $\Lambda = \bigcap_{m \in \mathbb{Z}} G^m(B_1 \cup \cdots \cup B_n)$ is hyperbolic which is conjugate to the *n*-shift.

Notice that the Smale horseshoe map is a generalized horseshoe map of length 2 with twist signature (0,1).

Figure 2

Example 2.3. (1) Let K_1 be a generalized horseshoe map of length 3 as in Figure 2(b). Then $t(K_1) = (0, 1, 2)$.

(2) Let K_2 be a generalized horseshoe map of length 4 as in Figure 2(c). Then $t(K_2)$

On positivity and universality of templates induced from diffeomorphisms of the disk

(0,1,0,-1).

(3) Let K_3 be a generalized horseshoe map of length 4 as in Figure 2(d). Then $t(K_3) = (0, -1, -2, -3)$.

3. STATEMENT OF RESULTS

Let G be a generalized horseshoe map with twist signature (a_1, \dots, a_n) . We say that G is positive (resp. negative) if for any $i \in \{1, \dots, n\}$, $a_i \geq 0$ (resp. $a_i \leq 0$). We say that G is mixed if G is neither positive nor negative. For example, K_1, K_2, K_3 in Example 2.3 are positive, mixed, negative respectively.

The following is Main theorem of this note:

Theorem 3.1. For $x \in \mathbf{R}$, let [x] be the greatest integer which does not exceed x. Let G be a generalized horseshoe map with twist signature (a_1, \dots, a_n) . Let $M_+ = \max\{a_i | 1 \le i \le n\}$ and $M_- = \min\{a_i | 1 \le i \le n\}$. If G is positive, then $\overline{N}(G) = \left[\frac{M_+ - 1}{2}\right]$. If G is negative, then $\overline{N}(G) = \left[\frac{M_+ - 1}{2}\right] + \left[\frac{-M_- - 1}{2}\right] + 1$.

The next corollary is a direct consequence of the above theorem:

Corollary 3.2. Let G be a generalized horseshoe map, and M_+ and M_- be as in Theorem 3.1. Then G induces all link types, i.e., $\overline{N}(G) \geq 1$ if and only if G is one of the following types.

- G is positive and $M_+ \geq 3$.
- G is negative and $M_{-} \leq -3$.
- G is mixed.

Recall that K_1, K_2, K_3 are generalized horseshoe maps in Example 2.3. By Theorem 3.1, $\overline{N}(K_1) = 0$, $\overline{N}(K_2) = 1$ and $\overline{N}(K_3) = 1$.

The proof of Theorem 3.1 is done by using the template theory ([2], [4], [5]).

REFERENCES

- J. Birman, Braids, Links, and Mapping Class Groups, Ann. Math. Studies 82, Princeton Univ. Press, Princeton (1974).
- [2] J. Birman and R. Williams, Knotted periodic orbits in dynamical systems-II: Knot holders for fibered knots, Cont. Math. 20 (1) (1983) 1-60.
- [3] J. Gambaudo, S. van Strien and C. Tresser, The periodic orbits structure of orientation preserving diffeomorphisms on D² with topological entropy zero, Ann. Inst. H. Poincar é Phys. Theor. 50 (1989) 335-356.
- [4] R. Ghrist, Branched two-manifolds supporting all links, Topology 36 (2) (1997) 423-448.
- [5] R. Ghrist, P. Holmes, and M. Sullivan, Knots and Links in Three-Dimensional Flows, Lect. Notes in Math. 1654, Springer-Verlag.
- [6] R. Ghrist and T. Young, From Morse-Smale to all knots and links, Nonlinearity 11 (1998) 1111-1125.
- [7] V. Hansen, Braids and coverings: selected topics, London Math. Soc. Stud. Texts 18, Cambridge University Press (1989).
- [8] M. Hirasawa and E. Kin, On positivity and universality of templates associated with generalized horseshoe maps of the disk, in preparation.
- [9] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHES 51 (1980) 137-174.

M. Hirasawa & E. Kin

- [10] E. Kin, A suspension of an orientation preserving diffeomorphism of D^2 with a hyper point and universal template, J. Knot Thy. and Ram. 9 (6) (2000) 771-795.
- [11] E. Kin, The third power of the Smale horseshoe induces all link types, J. Knot Thy. at (7) (2000) 939-953.
- [12] C. Robinson, Dynamical Systems, Stability, Symbolic Dynamics, and Chaos (second CRC Press, Ann Arbor, MI (1995).
- [13] S. Smale, Differentiable dynamical systems, Bull, Am. Math. Soc., 73 (1967) 747-817.
- [14] P. Walters, An introduction to ergodic theory, Springer (1982).

Department of Mathematics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro Toshima-ku, Tokyo 171-8588 Japan *E-mail address* hirasawa@math.gakushuin.ac.jp

Department of Mathematics, Kyoto University, Oiwake-cho Kitashirakawa Sakyo-ku Kyoto-shi, Kyoto 606-8502 Japan E-mail address kin@kusm.kyoto-u.ac.jp