On positivity and universality of templates induced from diffeomorphisms of the disk

Mikami Hirasawa · Gakushuin Univ.
(平澤 美可三・学習院大学)
Eiko Kin · Kyoto Univ.
(金 英子・京都大学)

1. INTRODUCTION

In this note, we consider links induced from periodic orbits of orientation preserving automorphisms \(\varphi \) of \(D^2 \). We first present some basic terminologies. We denote the \(i \)-th iteration of \(\varphi \) by \(\varphi^i \). We say that \(x \in D^2 \) is a period \(k \in \mathbb{N} \) periodic point if \(\varphi^k(x) = x \) and \(\varphi^i(x) \neq x \) for \(1 \leq i < k \). In particular, we say that \(x \) is a fixed point if \(x \) is a period 1 periodic point. For \(x \in D^2 \), \(\{ \varphi^i(x) | i \in \mathbb{N} \} \) is called the orbit of \(x \) and denoted by \(O_\varphi(x) \).

Let \(\Phi = \{ \varphi_t \}_{0 \leq t \leq 1} \) be an isotopy of \(D^2 \) such that \(\varphi_0 = id_{D^2} \), \(\varphi_1 = \varphi \). For a finite union of periodic orbits \(P \) of \(\varphi \), we define a subset of \(\tilde{V} = D^2 \times S^1(\cong D^2 \times I/(x, 0) \sim (x, 1)) \), denoted by \(S_\Phi P \), as follows.

\[
S_\Phi P = \bigcup_{0 \leq t \leq 1} (\varphi_t(P) \times \{t\})/(x, 0) \sim (x, 1).
\]

\(S_\Phi P \) is called a suspension of \(P \) by \(\Phi \). Let \(V \) be a standardly embedded solid torus in the 3-sphere \(S^3 \). Then \(h : \tilde{V} \to V \) denotes a homeomorphism such that for a longitude \(\tilde{\ell} \) on \(\tilde{V} \), \(h(\tilde{\ell}) \) is a knot with the linking number of \(h(\tilde{\ell}) \) and the core circle of \(V \) being 1 (see Figure 1). For each \(i \in \mathbb{Z} \), \(h^i(S_\Phi P) \) is a link in \(S^3 \), where the orientation of \(S_\Phi P \) is induced from parametrization by \(t \).

Figure 1

\(^1\)Partially supported by JSPS Research Fellowships for Young Scientists
On positivity and universality of templates induced from diffeomorphisms of the disk

Definition 1.1. Let \(\varphi : D^2 \to D^2 \) be an orientation preserving automorphism, and \(\Phi = \{ \varphi_t \}_{0 \leq t \leq 1} \) an isotopy of \(D^2 \) such that \(\varphi_0 = id_{D^2}, \varphi_1 = \varphi \). We say that \(\varphi \) induces all link types if there exists an integer \(i \in \mathbb{Z} \) satisfying the following conditions.

\((*)\) For each link \(L \) in \(S^3 \), there exists a finite union of periodic orbits \(P_L \) of \(\varphi \) such that \(L = h^i(S_0 P_L) \).

We note that the definition does not depend on \(\Phi \). Moreover the number of integers \(i \) such that \(h^i \) satisfies \((*)\) does not depend on \(\Phi \) (see [8]). Hence we denote the number by \(\overline{N}(\varphi) \), that is,

\[\overline{N}(\varphi) = \# \{ i \in \mathbb{Z} \mid i \text{ satisfies } (*) \text{ for } \Phi \}. \]

The topological entropy \(h_{\text{top}}(\varphi) \) for \(\varphi \) is a measure of its dynamical complexity (see [14] for a definition of the entropy). A result of Gambaud-van Strien-Tresser ([3, Theorem A]) tells us that if \(h_{\text{top}}(\varphi) = 0 \), then \(\varphi \) does not induce all link types, i.e., \(\overline{N}(\varphi) = 0 \). It is natural to ask the following problem:

Problem 1.2. Which automorphism induces all link types ?

In [11], the second author researched the Smale horseshoe map [13] on Problem 1.2. The Smale horseshoe map is a fundamental example to study complicated dynamics since the invariant set is hyperbolic and is conjugate to the 2-shift, and such invariant sets are often observed in many dynamical systems [9] (see [12] for basic definitions of dynamical systems).

Theorem 1.3. [11] Let \(H \) be the Smale horseshoe map. Then \(\overline{N}(H) = \overline{N}(H^2) = 0 \) and \(\overline{N}(H^3) = 1 \).

Since \(h_{\text{top}}(H) \) and \(h_{\text{top}}(H^2) \) are positive, Theorem 1.3 shows the existence of diffeomorphisms not inducing all link types.

We will consider Problem 1.2 for generalized horseshoe maps \(G \) using twist signature \(t(G) \) (see Definitions 2.1, 2.2). In Theorem 3.1, we completely determine the number \(\overline{N}(G) \) by \(t(G) \).

2. GENERALIZED HORSESHOE MAP AND TWIST SIGNATURE

For definitions of generalized horseshoe map and twist signature, we first introduce some terminologies. Let \(R = [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}] \subset D^2 \), and let \(S_0, S_1 \) be half disks as in Figure 2(a). For \(c, c' \in [-\frac{1}{2}, \frac{1}{2}] \), we call \(\ell_v = \{ c \} \times [-\frac{1}{2}, \frac{1}{2}] \) (resp. \(\ell_h = [-\frac{1}{2}, \frac{1}{2}] \times \{ c' \} \)) a vertical (resp. a horizontal) line. For \([c, d], [c', d'] \in [-\frac{1}{2}, \frac{1}{2}] \), we call \(B = [c, d] \times [-\frac{1}{2}, \frac{1}{2}] \) (resp. \(B' = [-\frac{1}{2}, \frac{1}{2}] \times [c', d'] \)) a vertical (resp. a horizontal) rectangle.

Let \(B_1, B_2 \) (resp. \(B'_1, B'_2 \)) be disjoint vertical (resp. disjoint horizontal) rectangles. The notation \(B_1 <_1 B_2 \) (resp. \(B'_1 <_2 B'_2 \)) means the first (resp. second) coordinate of a point in \(B_2 \) (resp. \(B'_2 \)) is greater than that of \(B_1 \) (resp. \(B'_1 \)). We denote the open rectangle which lies between \(B_1 \) and \(B_2 \) by \((B_1, B_2) \).

Definition 2.1. Let \(n \geq 2 \) be an integer. A generalized horseshoe map \(G \) of length \(n \) is an orientation preserving diffeomorphism of \(D^2 \) satisfying the following: There exist vertical rectangles \(B_1 <_1 B_2 <_1 \cdots <_1 B_n \) and horizontal rectangles \(B'_1 <_2 B'_2 <_2 \cdots <_2 B'_n \) such that...
(1) for each $1 \leq i \leq n$, $G(B_i) = B'_j$ for some $1 \leq j \leq n$,
(2) for each $1 \leq i \leq n - 1$, $G((B_i, B_{i+1})) \subset S_k$ for some $k \in \{0, 1\}$,
(3) G expands the part of horizontal lines which intersects each B_i uniformly, and contract the vertical lines in each B_i uniformly,
(4) $G|_{S_0} : S_0 \to S_0$ is contractive,
(5) if n is even (resp. odd), then $G(S_1) \subset \text{Int } S_0$ (resp. $G|_{S_1} : S_1 \to S_1$ is contractive) and
(6) G has no periodic points in $D^2 \setminus R$.

Definition 2.2. Let G be a generalized horseshoe map of length n. **Twist signature** $t(G)$ of G is the array of n integers (a_1, \cdots, a_n) satisfying the following:

1. $a_1 = 0$.
2. For $2 \leq i \leq n$, $a_i = a_{i-1} + 1$ if $G(B_{i-1}) <_2 G(B_i)$ and $G((B_{i-1}, B_i)) \subset S_1$, or if $G(B_{i-1}) >_2 G(B_i)$ and $G((B_{i-1}, B_i)) \subset S_0$. Otherwise $a_i = a_{i-1} - 1$.

By the condition of generalized horseshoe maps G, $\Lambda = \bigcap_{m \in \mathbb{Z}} G^m(B_1 \cup \cdots \cup B_n)$ is hyperbolic which is conjugate to the n-shift.

Notice that the Smale horseshoe map is a generalized horseshoe map of length 2 with twist signature $(0, 1)$.

![Figure 2](image-url)

Example 2.3. (1) Let K_1 be a generalized horseshoe map of length 3 as in Figure 2(b). Then $t(K_1) = (0, 1, 2)$.
(2) Let K_2 be a generalized horseshoe map of length 4 as in Figure 2(c). Then $t(K_2) =$
On positivity and universality of templates induced from diffeomorphisms of the disk

$(0, 1, 0, -1)$.

Let K_3 be a generalized horseshoe map of length 4 as in Figure 2(d). Then $t(K_3) = (0, -1, -2, -3)$.

3. STATEMENT OF RESULTS

Let G be a generalized horseshoe map with twist signature (a_1, \cdots, a_n). We say that G is positive (resp. negative) if for any $i \in \{1, \cdots, n\}$, $a_i > 0$ (resp. $a_i < 0$). We say that G is mixed if G is neither positive nor negative. For example, K_1, K_2, K_3 in Example 2.3 are positive, mixed, negative respectively.

The following is Main theorem of this note:

Theorem 3.1. For $x \in \mathbb{R}$, let $\lfloor x \rfloor$ be the greatest integer which does not exceed x. Let G be a generalized horseshoe map with twist signature (a_1, \cdots, a_n). Let $M_+ = \max\{a_i | 1 \leq i \leq n\}$ and $M_- = \min\{a_i | 1 \leq i \leq n\}$. If G is positive, then $\overline{N}(G) = \lceil \frac{M_+ - 1}{2} \rceil$. If G is negative, then $\overline{N}(G) = \lceil \frac{M_- - 1}{2} \rceil$. If G is mixed, then $\overline{N}(G) = \lceil \frac{M_+ - 1}{2} \rceil + \lceil \frac{M_- - 1}{2} \rceil + 1$.

The next corollary is a direct consequence of the above theorem:

Corollary 3.2. Let G be a generalized horseshoe map, and M_+ and M_- be as in Theorem 3.1. Then G induces all link types, i.e., $\overline{N}(G) \geq 1$ if and only if G is one of the following types.

- G is positive and $M_+ \geq 3$.
- G is negative and $M_- \leq -3$.
- G is mixed.

Recall that K_1, K_2, K_3 are generalized horseshoe maps in Example 2.3. By Theorem 3.1, $\overline{N}(K_1) = 0$, $\overline{N}(K_2) = 1$ and $\overline{N}(K_3) = 1$.

The proof of Theorem 3.1 is done by using the template theory ([2], [4], [5]).

REFERENCES

Department of Mathematics, Faculty of Science, Gakushuin University,
1-5-1 Mejiro Toshima-ku, Tokyo 171-8588 Japan
E-mail address hirasawa@math.gakushuin.ac.jp

Department of Mathematics, Kyoto University,
Oiwake-cho Kitashirakawa SakyO-ku Kyoto-shi, Kyoto 606-8502 Japan
E-mail address kin@kusm.kyoto-u.ac.jp