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On positivity and universality of templates
induced from diffeomorphisms of the disk
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1. INTRODUCTION

In this note, we consider links induced from periodic orbits of orientation preserving
automorphisms ¢ of D?. We first present some basic terminologies. We denote the i-th
iteration of ¢ by ¢!. We say that € D? is a period k € N periodic point if o*(z) = z
and ¢*(z) # z for 1 < i < k. In particular, we say that z is a fized point if z is a period
1 periodic point. For z € D?, {¢(z) | i € N} is called the orbit of z and denoted by
O,(z). If z is a periodic point, then O,(z) is called the periodic orbit of x.

Let ® = {¢:}o<t<1 be an isotopy of D? such that o = idp2, ¢ = ¢. For a finite
union of periodic orbits P of ¢, we define a subset of V = D? x $*(2 D? x I/(z,0) ~
(z,1)), denoted by SeP, as follows.

SoP = |J (we(P) x {t})/(2,0) ~ (z,1).

0<t<1

SpP is called a suspension of P by ®. Let V' be a standardly embedded solid torus in
the 3-sphere S3. Then h : V — V denotes a homeomorphism such that for a longitude
£ on V, h({) is a knot with the linking number of h(#) and the core circle of V being 1
(see Figure 1). For each i € Z, h*(SpP) is a link in S3, where the orientation of Sy P
is induced from parametrization by t.

h
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Figure 1
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Definition 1.1. Let ¢ : D?> — D? be an orientation preserving automorphism, and
® = {p:}o<t<1 an isotopy of D? such that gy = idp2, p1 = p. We say that ¢ induces
all link types if there exists an integer ¢ € Z satisfying the following conditions.

(x) For each link L in S3, there exists a finite union of periodic orbits Py, of

¢ such that L = h*(SpPyL).

We note that the definition does not depend on ®. Moreover the number of integers
i such that h' satisfies () does not depend on @ (see [8]). Hence we denote the number
by N(p), that is,

N(p) = #{i € Z | i satisfies (x) for ®}.

The topological entropy heop(p) for ¢ is a measure of its dynamical complexity (see
(14] for a definition of the entropy). A result of Gambaudo-van Strien-Tresser ([3,
Theorem Al) tells us that if hyp(p) = 0, then ¢ does not induce all link types, i.e.,
N(p) = 0. It is natural to ask the following problem:

Problem 1.2. Which automorphism induces all link types ?

In [11], the second author researched the Smale horseshoe map [13] on Problem 1.2.
The Smale horseshoe map is a fundamental example to study complicated dynamics
since the invariant set is hyperbolic and is conjugate to the 2-shift, and such invariant
sets are often observed in many dynamical systems [9] (see [12] for basic definitions of
dynamical systems).

Theorem 1.3. [11] Let H be the Smale horseshoe map. Then N(H) = N(H?) =0
and N(H®) = 1.

Since hyop(H) and hyop(H?) are positive, Theorem 1.3 shows the existence of diffeo-
morphisms not inducing all link types.

We will consider Problem 1.2 for generalized horseshoe maps G using twist signature
t(G) (see Definitions 2.1, 2.2). In Theorem 3.1, we completely determine the number
N(G) by t(G).

2. GENERALIZED HORSESHOE MAP AND TWIST SIGNATURE

For definitions of generalized horseshoe map and twist signature, we first introduce
some terminologies. Let R = [—3, 3] x [1,1] C D?, and let Sy, S; be half disks as in
Figure 2(a). For ¢, € [-3,3], we call £, = {c} x [-1,1] (resp. €= [-1,3] x {¢}) a
vertical (resp. a horizontal) line. For [c,d], [¢,d'] C [-3, 1], we call B = [c,d] x [-3,3]
(resp. B' = [~3,3] x [¢/,d]) a vertical (resp. a horizontal) rectangle.

Let Bi, B, (resp. B}, Bj) be disjoint vertical (resp. disjoint horizontal) rectangles.
The notation By <; B, (resp. Bj <3 Bj) means the first (resp. second) coordinate of
a point in B; (resp. Bj) is greater than that of B; (resp. B;). We denote the open
rectangle which lies between B, and B; by (B, B).

Definition 2.1. Let n > 2 be an integer. A generalized horseshoe map G of length n
is an orientation preserving diffeomorphism of D? satisfying the following: There exist
vertical rectangles B; <; By <; --- <; B, and horizontal rectangles B <3 B) <,
+-+ <2 B such that



148

M. Hirasawa & E. Kin

(1) for each 1 < i < n, G(B;) = B; for some 1 <j <n,

(2) for each 1 < i < n—1, G((Bi, Bi+1)) C S for some k € {0,1},

(3) G expands the part of horizontal lines which intersects each B; uniformly,
and contract the vertical lines in each B; uniformly,

(4) G|s, : So — So is contractive,

(5) if n is even (resp. odd), then G(S;) C Int Sy (resp. Glg, : S1 = S is
contractive) and

(6) G has no periodic points in D? \ R.

Definition 2.2. Let G be a generalized horseshoe map of length n. Twist signature
t(G) of G is the array of n integers (ai,- - - ,a,) satisfying the following:

(1) a = 0.

(2) For 2 < ] < n, a; = a;— +1 if G(B_.l) <2 G(B,) and G((B,'_l, B,)) C

Sl, or if G(B_l) >9 G(B,) and G((B,'_l, B,)) C Sp. Otherwise

a; =a;— — 1.

By the condition of generalized horseshoe maps G, A = ﬂ G™(BLU---UBy) is

mezZ
hyperbolic which is conjugate to the n-shift.

Notice that the Smale horseshoe map is a generalized horseshoe map of length 2

with twist signature (0,1).
=
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Figure 2

Example 2.3. (1) Let K; be a generalized horseshoe map of length 3 as in Figure
2(b). Then t(K;) = (0,1,2).
(2) Let K, be a generalized horseshoe map of length 4 as in Figure 2(c). Then t(K3) =
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(0,1,0,—-1). o
(3) Let K3 be a generalized horseshoe map of length 4 as in Figure 2(d). Then t(K3) =
(0,~1,-2,—3).

3. STATEMENT OF RESULTS

Let G be a generalized horseshoe map with twist signature (ay,--- ,a,). We say
that G is positive (resp. negative) if for any i € {1,--- ,n}, a; > 0 (resp. a; < 0). We
say that G is mized if G is neither positive nor negative. For example, K, K5, K3 in
Example 2.3 are positive, mixed, negative respectively.

The following is Main theorem of this note:

Theorem 3.1. Forz € R, let [z] be the greatest integer which does not exceed x. Let G
be a generalized horseshoe map with twist signature (ay,- - ,a,). Let M, = max{a;|1 <
i <n} and M_ = min{a;|1 < i < n}. If G is positive, then N(G) = [—A%:-l-] IfG is
negative, then N(G) = [Z5=2]. If G is mized, then N(G) = [M3=1] + [M==L] +1.

The next corollary is a direct consequence of the above theorem:

Corollary 3.2. Let G be a generalized horseshoe map, and M, and M_ be as in
Theorem 3.1. Then G induces all link types, i.e., N(G) > 1 if and only if G is one of
the following types.

e G is positive and M, > 3.
e G is negative and M_ < —3.
o G is mized.

Recall that K, Kj, K3 are generalized horseshoe maps in Example 2.3. By Theorem
3.1, -N(Kl) = O, N(Kz) =1 and N(K3) = 1.
The proof of Theorem 3.1 is done by using the template theory ([2], [4], [5]).
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