<table>
<thead>
<tr>
<th>Title</th>
<th>INVOLUTIVE EQUIVALENCE BIMODULES AND INCLUSIONS OF C^*-ALGEBRAS WITH WATATANI INDEX2 (Multiformity of Operator Algebras)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kodaka, Kazunori; Teruya, Tamotsu</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2001), 1230: 33-37</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41453</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
INVOLUTIVE EQUIVALENCE BIMODULES AND INCLUSIONS OF C^*-ALGEBRAS WITH WATATANI INDEX2

KAZUNORI KODAKA AND TAMOTSU TERUYA

ABSTRACT. Let A be a unital simple C^*-algebra. We shall introduce involutive A-A equivalence bimodules and prove that the all C^*-algebras containing A with Watatani index 2 are constructed by an involutive A-A equivalence bimodule and A.

1. INTRODUCTION

V. Jones introduced index theory for II_1 factors. As one of his motivations of his definition of index, there is Goldman’s theorem, which says that if $[M : N] = 2$, there is a crossed product decomposition $M = \times_\alpha \mathbb{Z}/2\mathbb{Z}$.

Y. Watatani extended index theory to C^*-algebras. He defined indices of conditional expectations in terms of quasi-basis, which is generalization of the Pimsner-Popa basis. There is an inclusion of unital simple C^*-algebras with Watatani index 2, which is no written by the crossed product of a $\mathbb{Z}/2\mathbb{Z}$ action.

Equivalence bimodules for C^*-algebras A and B are introduced by M. A. Rieffel, which is a left Hilbert A-module as well as a right Hilbert B-module with full C^*-algebra valued inner products $A(\cdot, \cdot)$ and $B(\cdot, \cdot)$ such that $x_A(y, z) = (x, y)_{B}z$ holds.

Let A be a unital simple C^*-algebra. We shall introduce involutive A-A equivalence bimodules and prove that the all C^*-algebras containing A with Watatani index 2 are constructed by an involutive A-A equivalence bimodule and A.

2. PRELIMINARIES

2.1. Some results for inclusions with index 2. Let B be a unital C^*-algebra and A a C^*-subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with $1 < \text{Index} E < \infty$. Then by Watatani [10] we have the C^*-basic construction $C^*(B, e_A)$ where e_A is a projection induced by E. Let \tilde{E} be the dual conditional expectation of $C^*(B, e_A)$ onto B defined by

$$\tilde{E}(ae_A b) = \frac{1}{t}ab \quad \text{for any} \quad a, b \in B,$$

where $t = \text{Index} E$. Let F be a linear map of $(1 - e_A)C^*(B, e_A)(1 - e_A)$ to $A(1 - e_A)$ defined by

$$F(a) = \frac{t}{t-1}(E \circ \tilde{E})(a)(1 - e_A)$$

for any $a \in (1 - e_A)C^*(B, e_A)(1 - e_A)$. By a routine computation we can see that F is a conditional expectation of $(1 - e_A)C^*(B, e_A)(1 - e_A)$ onto $A(1 - e_A)$.

Lemma 2.1.1. With the above notations, let $\{(x_i, x'_i)\}_{i=1}^n$ be a quasi-basis for E. Then

$$\{\sqrt{t-1}(1-e_A)x_je_Ax_i(1-e_A), \sqrt{t-1}(1-e_A)x'_ie_Ax'_j(1-e_A)\}_{i,j=1}^n$$

is a quasi-basis for F. Furthermore $\text{Index} F = (t-1)^2(1-e_A)$.

Proof. This is immediate by a direct computation.

Date: May 31, 2001.
Corollary 2.1.1. We suppose that \(\text{Index} E = 2 \). Then
\[
(1 - e_A)C^*\langle B, e_A\rangle(1 - e_A) = A(1 - e_A) \cong A.
\]

Proof. By Lemma 2.1.1 there is a conditional expectation \(F \) of \((1 - e_A)C^*\langle B, e_A\rangle(1 - e_A)\) onto \(A(1 - e_A) \) and
\[
\text{Index} F = (\text{Index} E - 1)^2(1 - e_A).
\]
Since \(\text{Index} E = 2 \), \(\text{Index} F = 1 - e_A \). Hence by Watatani [10],
\[
(1 - e_A)C^*\langle B, e_A\rangle(1 - e_A) = A(1 - e_A).
\]
If \(a(1 - e_A) = 0 \), for \(a \in A \), then \(a = 2\tilde{E}(a(1 - e_A)) = 0 \). Therefore the map \(a \rightarrow a(1 - e_A) \) is injective. And hence \(A(1 - e_A) \cong A \). Thus we obtain the conclusion.

Lemma 2.1.2. With the same assumptions as in Lemma 2.1.1, we suppose that \(\text{Index} E = 2 \). Then for any \(b \in B \),
\[
(1 - e_A)b(1 - e_A) = E(b)(1 - e_A).
\]

Proof. By Corollary 2.1.1 there exists \(a \in A \) such that \((1 - e_A)b(1 - e_A) = a(1 - e_A)\). Therefore
\[
\begin{align*}
a &= 2\tilde{E}(a(1 - e_A)) \\
&= 2\tilde{E}((1 - e_A)b(1 - e_A)) \\
&= 2\tilde{E}(b - e_A b - b e_A + E(b)e_A) \\
&= 2(b - \frac{1}{2}b - \frac{1}{2}b + \frac{1}{2}E(b)) = E(b).
\end{align*}
\]
Thus we obtain the conclusion.

Proposition 2.1.1. With the same assumptions as in Lemma 2.1.1, we suppose that \(\text{Index} E = 2 \). Then there is a unitary element \(U \in C^*\langle B, e_A\rangle \) satisfying the followings:

(1) \(U^2 = 1 \),

(2) \(UbU^* = 2E(b) - b \) for \(b \in B \).

Hence if \(\beta = \text{Ad}(U)|_B \), \(\beta \) is an automorphism of \(B \) with \(\beta^2 = \text{id} \) and \(B^\beta = A \).

Proof. By Lemma 2.1.2, for any \(b \in B \)
\[
(1 - e_A)b(1 - e_A) = b - e_A b - b e_A + E(b)e_A
\]
\[
= E(b)(1 - e_A) = E(b) - E(b)e_A.
\]
Therefore
\[
E(b) = b - e_A b - b e_A + 2E(b)e_A.
\]
Let \(U \) be a unitary element defined by \(U = 2e_A - 1 \). Then by the above equation for any \(b \in B \)
\[
UbU^* = (2e_A - 1)b(2e_A - 1)
\]
\[
= 4E(b)e_A - 2e_A b - 2b e_A + b
\]
\[
= 2(b - e_A b - b e_A + 2E(b)e_A) - b
\]
\[
= 2E(b) - b.
\]
Thus we obtain the conclusion.

Remark 2.1.1. By the above proposition, \(E(b) = \frac{1}{2}(b + \beta(b)) \).

Lemma 2.1.3. Let \(B \) be a unital \(C^* \)-algebra and \(A \) a \(C^* \)-subalgebra of \(B \) with a common unit. Let \(E \) be a conditional expectation of \(B \) onto \(A \) with \(\text{Index} E = 2 \). Then we have
\[
C^*\langle B, e_A\rangle \cong B \times_\beta \mathbb{Z}_2.
\]
Proof. We may assume that $B \times_\beta \mathbb{Z}_2$ acts on the Hilbert space $l^2(\mathbb{Z}_2, H)$ faithfully, where H is some Hilbert space on which B acts faithfully. Let W be a unitary element in $B \times_\beta \mathbb{Z}_2$ with $\beta = Ad(W)$, $W^2 = 1$. Let $e = \frac{1}{2}(W + 1)$. Then e is a projection in $B \times_\beta \mathbb{Z}_2$ and $ebe = E(b)e$ for any $b \in B$. In fact,

$$ebe = \frac{1}{4}(W + 1)b(W + 1) = \frac{1}{4}(Wb + b)(W + 1) = (WbW + Wb + Wb + b).$$

On the other hand by Remark 2.1.1,

$$E(b)e = \frac{1}{2}(b + \beta(b))\frac{1}{2}(W + 1) = \frac{1}{4}(bW + b + \beta(b)W + \beta(b)) = \frac{1}{4}(WbW + bW + Wb + b).$$

Hence $ebe = E(b)e$ for $b \in B$. Also $A \ni a \mapsto ae \in B \times_\beta \mathbb{Z}_2$ is injective. In fact, if $ae = 0$, $aW + a = 0$. Let $\hat{\beta}$ be the dual action of β. Then $0 = \hat{\beta}(aW + a) = -a + a$. Thus $2a = 0$, i.e., $a = 0$. Thus by Watatani[10, Proposition 2.2.11], $C^*(B, e_A) \cong B \times_\beta \mathbb{Z}_2$.

Remark 2.1.2. (1) By the proofs of Watatani[10, Propositions 2.2.7 and 2.2.11], we see that $\kappa(b) = b$ for any $b \in B$ where κ is the isomorphism of $C^*(B, e_A)$ onto $B \times_\beta \mathbb{Z}_2$ in Lemma 2.1.3.

(2) The above lemma is obtained in Kajiwara and Watatani [5, Theorem 5.13].

By Lemma 2.1.3 and Remark 2.1.2, we regard $\hat{\beta}$ as an automorphism of $C^*(B, e_A)$ with $\hat{\beta}(b) = b$ for any $b \in B, \hat{\beta}^2 = id$ and $\hat{\beta}(e_A) = 1 - e_A$.

Lemma 2.1.4. With the same assumptions as in Lemma 2.1.3,

$$C^*(B, e_A)\hat{\beta} = B.$$

Proof. By Lemma 2.1.3 for any $x \in C^*(B, e_A)$, we can write $x = b_1 + b_2U$, where $b_1, b_2 \in B$, We suppose that $\hat{\beta}(x) = x$. Then $b_1 - b_2U = b_1 + b_2U$. Thus $b_2 = 0$. Hence $x = b_1 \in B$. Since it is clear that $B \subset C^*(B, e_A)\hat{\beta}$, we obtain the conclusion.

2.2. Involutive equivalence bimodules

Let A be a unital C^*-algebra and $X(=A^*_A)$ a complete A-A equivalence bimodule. X is **involutive** if there exists a conjugate linear map $x \rightarrow x^\sharp$ on X, such that

1. $(x^\sharp)^\sharp = x$, \hspace{1cm} $x \in X$,
2. $(a \cdot x \cdot b)^\sharp = b^*x^\sharp a^*$, \hspace{1cm} $x \in X, a, b \in A$,
3. $A(x, y^\sharp) = \langle x^\sharp, y \rangle_A$, \hspace{1cm} $x, y \in X$,

where $A(,)$ and \langle, \rangle_A are the left and right A-valued inner products of X.

Lemma 2.2.1. Let V be a map of X onto its dual bimodule \tilde{X} defined by $V(x) = \tilde{x}^\sharp$. Then V is a bimodule isomorphism preserving the left and right A-valued inner products.

Proof. By $a \cdot \tilde{x} \cdot b = b^* \cdot \tilde{x} \cdot a^*$, for $a, b \in A$ and $x \in X$,

$$V(a \cdot x \cdot b) = (a \cdot x \cdot b)^\sharp$$

$$= b^* \cdot x^\sharp \cdot a^*$$

$$= a \cdot x^\sharp \cdot b = a \cdot V(x) \cdot b.$$
By $\langle x, y \rangle^\lambda = \langle x^\lambda, y \rangle_A$ and $(x^\lambda)^\lambda = x$, for $x, y \in X$,

$$A\langle V(x), V(y) \rangle^\sim = A\langle \tilde{x}^\lambda, \tilde{y}^\lambda \rangle^\sim = \langle x^\lambda, y \rangle_A = A\langle x, (y^\lambda)^\lambda \rangle = A\langle x, y \rangle.$$

Similarly, $A\langle V(x), V(y) \rangle^\sim = \langle x, y \rangle_A$. Thus we obtain the conclusion.

3. Correspondence between involutive equivalence bimodules and inclusions of C^*-algebras with Watatani index 2

Let A be a unital C^*-algebra and we denote by (B, E) a pair of a unital C^*-algebra B including A with a common unit and a conditional expectation E of B onto A with Index $E = 2$. Let \mathcal{L} be the set of all such pairs (B, E). We define an equivalence relation \sim in \mathcal{L} as follows: For $(B, E), (B_1, E_1) \in \mathcal{L}$, $(B, E) \sim (B_1, E_1)$ if and only if there is an isomorphism π of B onto B_1 such that $\pi(a) = a$ for any $a \in A$ and $E_1 \circ \pi = E$. We denote by $[B, E]$ the equivalence class of (B, E).

Let \mathcal{M} be the set of all complete involutive A-A equivalence bimodules. We define an equivalence relation \sim in \mathcal{M} as follows: For $X, Y \in \mathcal{M}$, $X \sim Y$ if and only if there is a bimodule isomorphism ρ of X onto Y preserving the left and right A-valued inner products with $\rho(x^\lambda) = \rho(x)^\lambda$. We denote by $[X]$ the equivalence class of X. Then we have the next theorem.

Theorem 3.0.1. There is a 1-1 correspondence between \mathcal{L}/\sim and \mathcal{M}/\sim.

4. Involutional equivalence bimodules for simple C^*-algebras

4.1. Construction of involutional equivalence bimodules by $2\mathbb{Z}$-inner C^*-dynamical systems. Let A be a simple unital C^*-algebra and α an automorphism of A and we suppose that $\alpha^2 = Ad(z)$ where z is a unitary element in A with $\alpha(z) = z$. Let X_α be the vector space A with the obvious left action of A on X_α and the obvious left A-valued inner product, but we define the right action of A on X_α by $x \cdot a = x\alpha^{-1}(a)$ for any $x \in X_\alpha$ and $a \in A$, and the right A-valued inner product by $\langle x, y \rangle_A = \alpha(x^*y)$ for any $x, y \in X_\alpha$.

Proposition 4.1.1. With the above notations, Let B_{X_α} be a C^*-algebra defined by X_α and L the linking algebra for X_α as defined in Section 3. Then the following conditions are equivalent:

1. B_{X_α} is simple,
2. $A' \cap B_{X_\alpha} = \mathbb{C} \cdot 1$,
3. $B_{X_\alpha} \cap L = \mathbb{C} \cdot 1$,
4. α is an outer automorphism of A.

Let B be a unital C^*-algebra and A a C^*-subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with Index $E = 2$. For any $n \in \mathbb{N}$ let M_n be the $n \times n$-matrix algebra over \mathbb{C} and $M_n(A)$ the $n \times n$-matrix algebra over A. Let $\{x_i, x_i^*\}_{i=1}^n$ be a quasi-basis for E. We define $q = [q_{ij}] \in M_n(A)$ by $q_{ij} = E(x_i^*x_j)$. Then by Watatani [10], q is a projection and $C^*(B, e_A) \simeq qM_n(A)q$. Let π be an isomorphism of $C^*(B, e_A)$ onto $qM_n(A)q$ defined by

$$\pi(ae_Ab) = [E(x_i^*a)E(bx_j)] \in M_n(A)$$

for any $a, b \in B$. Especially for any $b \in B$,

$$\pi(b) = [E(x_i^*bx_j)]$$

since $\sum_{i=1}^n x_i e_A x_i^* = 1$.

Proposition 4.1.2. With the above notations, the following conditions are equivalent:

(1) e_A and $1 - e_A$ are equivalent in $C^*\langle B, e_A \rangle$,

(2) there exists a unitary element $u \in B$ such that $\{(1, 1), (u, u^*)\}$ is a quasi basis for E,

(3) there exists a $2\mathbb{Z}$-inner C^*-dynamical system (A, Z, α) such that $X_{\alpha} \sim X_B$.

Let θ be an irrational number in $(0, 1)$ and A_θ the corresponding irrational rotation C^*-algebra. Let B be a unital C^*-algebra including A_θ as a C^*-subalgebra of B with a common unit. We suppose that there is a conditional expectation E of B onto A_θ with $\text{Index} E = 2$ and that $A_\theta' \cap B = \mathbb{C} \cdot 1$

Proposition 4.1.3. With the above notation there is a $2\mathbb{Z}$-inner C^*-dynamical system (A_θ, Z, α) such that $(B, E) \sim (A \times_{\alpha/2\mathbb{Z}} \mathbb{Z}, F)$, where F is the canonical conditional expectation of $A \times_{\alpha/2\mathbb{Z}} \mathbb{Z}$ onto A.

REFERENCES