INVOLUTIVE EQUIVALENCE BIMODULES AND INCLUSIONS OF C*-ALGEBRAS WITH WATATANI INDEX2

KAZUNORI KODAKA AND TAMOTSU TERUYA

ABSTRACT. Let A be a unital simple C^* -algebra. We shall intorduce involutive A-A equivalence bimodules and prove that the all C^* -algebras containing A with Watatani index 2 are constructed by an involutive A-A equivalence bimodule and A.

1. INTRODUCTION

V. Jones intorduced index theory for II_1 factors. As one of his motivations of his definition of index, there is Goldman's theorem, which says that if [M:N]=2, there is a crossed product decomposition $M=\times_{\alpha}\mathbb{Z}/2\mathbb{Z}$.

Y. Watatani extended index theory to C^* -algebraas. He defined indices of conditional expectations in terms of quasi-basis, which is generalization of the Pimsner-Popa basis. There is an inclusion of unital simple C^* -algebraas with Watatani index 2, which is no written by the crossed product of a $\mathbb{Z}/2\mathbb{Z}$ action.

Equivalence bimodules for C^* -algebraas A and B are introduced by M. A. Riefell, wihich is a left Hilbert A-module as well as a right Hilbert B-module with full C^* -algebra valued inner products $A \langle \rangle$ and $\langle \rangle_B$ such that $x_A \langle y, z \rangle = \langle x, y \rangle_B z$ holds.

Let A be a unital simple C^* -algebra. We shall intorduce involutive A-A equivalence bimodules and prove that the all C^* -algebras containing A with Watatani index 2 are constructed by an involutive A-A equivalence bimodule and A.

2. Preliminaries

2.1. Some results for inclusions with index 2. Let B be a unital C^* -algebra and A a C^* -subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with $1 < \text{Index} E < \infty$. Then by Watatani [10] we have the C^* -basic construction $C^*\langle B, e_A \rangle$ where e_A is a projection induced by E. Let \widetilde{E} be the dual conditional expectation of $C^*\langle B, e_A \rangle$ onto B defined by

$$\widetilde{E}(ae_Ab) = \frac{1}{t}ab$$
 for any $a, b \in B$,

where t = IndexE. Let F be a linear map of $(1 - e_A)C^*\langle B, e_A\rangle(1 - e_A)$ to $A(1 - e_A)$ defined by

$$F(a) = \frac{t}{t-1} (E \circ \widetilde{E})(a)(1 - e_A)$$

for any $a \in (1 - e_A)C^*\langle B, e_A\rangle(1 - e_A)$. By a routine computation we can see that F is a conditional expectation of $(1 - e_A)C^*\langle B, e_A\rangle(1 - e_A)$ onto $A(1 - e_A)$.

Lemma 2.1.1. With the above notations, let $\{(x_i, x_i^*)\}_{i=1}^n$ be a quasi-basis for E. Then

$$\{\sqrt{t-1}(1-e_A)x_je_Ax_i(1-e_A), \sqrt{t-1}(1-e_A)x_i^*e_Ax_j^*(1-e_A)\}_{i,j=1}^n$$

is a quasi-basis for F. Furthermore Index $F = (t-1)^2(1-e_A)$.

Proof. This is immediate by a direct computation.

Date: May 31, 2001.

Corollary 2.1.1. We suppose that Index E = 2. Then

$$(1 - e_A)C^*\langle B, e_A \rangle (1 - e_A) = A(1 - e_A) \cong A.$$

Proof. By Lemma 2.1.1 there is a conditional expectation F of $(1 - e_A)C^*\langle B, e_A\rangle(1 - e_A)$ onto $A(1 - e_A)$ and

$$Index F = (Index E - 1)^2 (1 - e_A).$$

Since Index E = 2, $Index F = 1 - e_A$. Hence by Watatani [10],

$$(1 - e_A)C^*\langle B, e_A \rangle (1 - e_A) = A(1 - e_A).$$

If $a(1-e_A)=0$, for $a\in A$, then $a=2\widetilde{E}(a(1-e_A))=0$. Therefore the map $a\to a(1-e_A)$ is injective. And hence $A(1-e_A)\cong A$. Thus we obtain the conclusion.

Lemma 2.1.2. With the same asymptons as in Lemma 2.1.1, we suppose that Index E = 2. Then for any $b \in B$,

$$(1 - e_A)b(1 - e_A) = E(b)(1 - e_A).$$

Proof. By Corollary2.1.1 there exists $a \in A$ such that $(1 - e_A)b(1 - e_A) = a(1 - e_A)$. Therefore

$$\begin{split} a &= 2\widetilde{E}(a(1 - e_A)) \\ &= 2\widetilde{E}((1 - e_A)b(1 - e_A)) \\ &= 2\widetilde{E}(b - e_Ab - be_A + E(b)e_A) \\ &= 2(b - \frac{1}{2}b - \frac{1}{2}b + \frac{1}{2}E(b)) = E(b). \end{split}$$

Thus we obtain the conclusion.

Proposition 2.1.1. With the same assumptions as in Lemma 2.1.1, we suppose that Index E 2. Then there is a unitary element $U \in C^*(B, e_A)$ satisfying the followings:

- (1) $U^2 = 1$,
- (2) $UbU^* = 2E(b) b \text{ for } b \in B.$

Hence if $\beta = Ad(U)|_B$, β is an automorphism of B with $\beta^2 = id$ and $B^{\beta} = A$.

Proof. By Lemma 2.1.2, for any $b \in B$

$$(1 - e_A)b(1 - e_A) = b - e_Ab - be_A + E(b)e_A$$

= $E(b)(1 - e_A) = E(b) - E(b)e_A$.

Therefore

$$E(b) = b - e_A b - b e_A + 2E(b)e_A.$$

Let U be a unitary element defined by $U=2e_A-1$. Then by the above equation for any $b\in B$

$$UbU^* = (2e_A - 1)b(2e_A - 1)$$

$$= 4E(b)e_A - 2e_Ab - b2e_A + b$$

$$= 2(b - e_Ab - be_A + 2E(b)e_A) - b$$

$$= 2E(b) - b.$$

Thus we obtain the conclusion.

Remark 2.1.1. By the above proposition, $E(b) = \frac{1}{2}(b + \beta(b))$.

Lemma 2.1.3. Let B be a unital C^* -algebra and A a C^* -subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with Index E=2. Then we have

$$C^*\langle B, e_A \rangle \cong B \times_{\beta} \mathbb{Z}_2.$$

Proof. We may assume that $B \times_{\beta} \mathbb{Z}_2$ acts on the Hilbert space $l^2(\mathbb{Z}_2, H)$ faithfully, where H is some Hilbert space on which B acts faithfully. Let W be a unitary element in $B \times_{\beta} \mathbb{Z}_2$ with $\beta = Ad(W)$, $W^2 = 1$. Let $e = \frac{1}{2}(W+1)$. Then e is a projection in $B \times_{\beta} \mathbb{Z}_2$ and ebe = E(b)e for any $b \in B$. In fact,

$$ebe = \frac{1}{4}(W+1)b(W+1) = \frac{1}{4}(Wb+b)(W+1)$$
$$= (WbW + bW + Wb + b).$$

On the other hand by Remark 2.1.1,

$$E(b)e = \frac{1}{2}(b+\beta(b))\frac{1}{2}(W+1) = \frac{1}{4}(bW+b+\beta(b)W+\beta(b))$$

= $\frac{1}{4}(WbW+bW+Wb+b)$.

Hence ebe = E(b)e for $b \in B$. Also $A \ni a \mapsto ae \in B \times_{\beta} \mathbb{Z}_2$ is injective. In fact, if ae = 0, aW + a = 0. Let $\widehat{\beta}$ be the dual action of β . Then $0 = \widehat{\beta}(aW + a) = -a + a$. Thus 2a = 0, i.e., a = 0. Thus by Watatani[10, Proposition 2.2.11], $C^*\langle B, e_A \rangle \cong B \times_{\beta} \mathbb{Z}_2$.

- (1) By the proofs of Watatani [10, Propositions 2.2.7 and 2.2.11], we see $Remark\ 2.1.2.$ that $\kappa(b) = b$ for any $b \in B$ where κ is the isomorphism of $C^*(B, e_A)$ onto $B \times_{\beta} \mathbb{Z}_2$ in Lemma 2.1.3.
 - (2) The above lemma is obtained in Kajiwara and Watatani [5, Theorem 5.13]

By Lemma 2.1.3 and Remark 2.1.2, we regard $\widehat{\beta}$ as an automorphism of $C^*\langle B, e_A \rangle$ with $\widehat{\beta}(b) = b$ for any $b \in B$, $\widehat{\beta}^2 = id$ and $\widehat{\beta}(e_A) = 1 - e_A$.

Lemma 2.1.4. With the same assumptions as in Lemma 2.1.3,

$$C^*\langle B, e_A \rangle^{\widehat{\beta}} = B.$$

Proof. By Lemma 2.1.3 for any $x \in C^*(B, e_A)$, we can write $x = b_1 + b_2 U$, where $b_1, b_2 \in B$, We suppose that $\widehat{\beta}(x) = x$. Then $b_1 - b_2 U = b_1 + b_2 U$. Thus $b_2 = 0$. Hence $x = b_1 \in B$. Since it is clear that $B \subset C^*(B, e_A)^{\widehat{\beta}}$, we obtain the conclusion.

- 2.2. Involutive equivalence bimodules. Let A be a unital C^* -algebra and $X (= {}_A X_A)$ a complete A-A equivalence bimodule. X is involutive if there exists a conjugate linear map $x \to x^{\sharp}$ on X, such that

 - $\begin{array}{ll} (1) \ (x^{\sharp})^{\sharp} = x, & x \in X, \\ (2) \ (a \cdot x \cdot b)^{\sharp} = b^{*}x^{\sharp}a^{*}, & x \in X, \, a, b \in A, \end{array}$
 - (3) $_{A}\langle x, y^{\sharp}\rangle = \langle x^{\sharp}, y\rangle_{A}, \quad x, y \in X,$

where $_A\langle,\rangle$ and \langle,\rangle_A are the left and right A-valued inner products of X.

Lemma 2.2.1. Let V be a map of X onto its dual bimodule \widetilde{X} defined by $V(x) = \widetilde{x^{\sharp}}$. Then V is a bimodule isomorphism preserving the left and right A-valued inner products.

Proof. By $a \cdot \widetilde{x} \cdot b = b^* \cdot x \cdot a^*$, for $a, b \in A$ and $x \in X$,

$$V(a \cdot x \cdot b) = (\widehat{a \cdot x \cdot b})^{\sharp}$$

$$= \widehat{b^* \cdot x^{\sharp} \cdot a^*}$$

$$= a \cdot \widehat{x^{\sharp}} \cdot b = a \cdot V(x) \cdot b.$$

By
$$_A\langle x,y^\sharp\rangle=\langle x^\sharp,y\rangle_A$$
 and $(x^\sharp)^\sharp=x,$ for $x,y\in X,$
$$_A\langle V(x),V(y)\rangle^\sim={}_A\langle \widetilde{x}^\sharp,\widetilde{y}^\sharp\rangle^\sim$$

$$=\langle x^\sharp,y^\sharp\rangle_A$$

$$={}_A\langle x,(y^\sharp)^\sharp\rangle={}_A\langle x,y\rangle.$$

Similarly, $\langle V(x), V(y) \rangle_A^{\sim} = \langle x, y \rangle_A$. Thus we obtain the conclusion.

3. Correspondence between involutive equivalence bimodules and inclusions of C^* -algebras with Watatani index2

Let A be a unital C^* -algebra and we denote by (B, E) a pair of a unital C^* -algebra B including A with a common unit and a conditional expectation E of B onto A with Index E=2. Let \mathcal{L} be the set of all such pairs (B, E). We define an equivalence relation \sim in \mathcal{L} as follows: For $(B, E), (B_1, E_1) \in \mathcal{L}$, $(B, E) \sim (B_1, E_1)$ if and only if there is an isomorphism π of B onto B_1 such that $\pi(a)=a$ for any $a\in A$ and $E_1\circ\pi=E$. We denote by [B, E] the equivalence class of (B, E).

Let \mathcal{M} be the set of all complete involutive A-A equivalence bimodules. We define an equivalence relation \sim in \mathcal{M} as follows: For $X,Y\in\mathcal{M},\,X\sim Y$ if and only if there is a bimodule isomorphism ρ of X onto Y preserving the left and right A-valued inner products with $\rho(x^{\sharp}) = \rho(x)^{\sharp}$. We denote by [X] the equivalence class of X. Then we have the next theorem.

Theorem 3.0.1. There is a 1-1 correspondence between \mathcal{L}/\sim and \mathcal{M}/\sim .

4. Involutive equivalence bimodules for simple C^* -algebras

4.1. Construction of involutive equivalence bimodules by $2\mathbb{Z}$ -inner C^* -dynamical systems. Let A be a simple unital C^* -algebra and α an automorphism of A and we suppose that $\alpha^2 = Ad(z)$ where z is a unitary element in A with $\alpha(z) = z$. Let X_{α} be the vector space A with the obvious left action of A on X_{α} and the obvious left A-valued inner product, but we define the right action of A on X_{α} by $x \cdot a = x\alpha^{-1}(a)$ for any $x \in X_{\alpha}$ and $a \in A$, and the right A-valued inner product by $\langle x, y \rangle_A = \alpha(x^*y)$ for any $x, y \in X_{\alpha}$.

Proposition 4.1.1. With the above notations, Let $B_{X_{\alpha}}$ be a C^* -algebra defined by X_{α} and L the linking algebra for X_{α} as defined in Section 3. Then the following conditions are equivalent:

- (1) $B_{X_{\alpha}}$ is simple,
- (2) $A' \cap B_{X_{\alpha}} = \mathbb{C} \cdot 1$,
- (3) $B'_{X_{\alpha}} \cap L = \mathbb{C} \cdot 1$,
- (4) α is an outer automorphism of A.

Let B be a unital C^* -algebra and A a C^* -subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with Index E=2. For any $n \in \mathbb{N}$ let M_n be the $n \times n$ -matrix algebra over \mathbb{C} and $M_n(A)$ the $n \times n$ -matrix algebra over A. Let $\{x_i, x_i^*\}_{i=1}^n$ be a quasi-basis for E. We define $q=[q_{ij}]\in M_n(A)$ by $q_{ij}=E(x_i^*x_j)$. Then by Watatani [10], q is a projection and $C^*\langle B, e_A\rangle \simeq qM_n(A)q$. Let π be an isomorphism of $C^*\langle B, e_A\rangle$ onto $qM_n(A)q$ defined by

$$\pi(ae_Ab) = [E(x_i^*a)E(bx_j)] \in M_n(A)$$

for any $a, b \in B$. Especially for any $b \in B$,

$$\pi(b) = [E(x_i^*bx_j)]$$

since $\sum_{i=1}^{n} x_i e_A x_i^* = 1.$

Proposition 4.1.2. With the above notations, the following conditions are equivalent:

- (1) e_A and $1 e_A$ are equivalent in $C^*\langle B, e_A \rangle$,
- (2) there exists a unitary element $u \in B$ such that $\{(1,1),(u,u^*)\}$ is a quasi basis for E,
- (3) there exists a $2\mathbb{Z}$ -inner C^* -dynamical system (A, \mathbb{Z}, α) such that $X_{\alpha} \sim X_B$.

Let θ be an irrational number in (0,1) and A_{θ} the corresponding irrational rotation C^* -algebra. Let B be a unital C^* -algebra including A_{θ} as a C^* -subalgebra of B with a common unit. We suppose that there is a conditional expectation E of B onto A_{θ} with Index E=2 and that $A'_{\theta} \cap B = \mathbb{C} \cdot 1$

Proposition 4.1.3. With the above notation there is a $2\mathbb{Z}$ -inner C^* -dynamical system $(A_{\theta}, \mathbb{Z}, \alpha)$ such that $(B, E) \sim (A \times_{\alpha/2\mathbb{Z}} \mathbb{Z}, F)$, where F is the canonical conditional expectation of $A \times_{\alpha/2\mathbb{Z}} \mathbb{Z}$ onto A.

REFERENCES

- [1] O. Bratteli, G. A, Elliott, D. E. Evans, A. Kishimoto, Non-commutative spheres. I, Int. J. Math., 2 (1991), p. 139–166.
- [2] L. G. Brown, P. Green and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of C*-algebra, Pacific J. Math. 71 (1977), p. 349–368.
- [3] G. A. Elliot and M. Rørdam, The automorphism group of the irrational rotation algebra, Comm. Math. Phys. 155(1993), p. 3-26.
- [4] P. Green, The local structure of twisted covariance algebras, Acta Math., 140(1978), p. 191-250.
- [5] T. Kajiwara and Y. Watatani Jones index theory by Hilbert C*-bimodules and K-theory, Trans. Amer. Math. Soc. 352, (2000), p. 3429-3472.
- [6] A. Kumjian, On the K-theory of the symmetrized non-commutative torus, C. R. Math. Rep. Acad. Sci. Canada, 12(1990), p. 87-89.
- [7] D. Olesen and G. K. Pedersen, *Partially inner C*-dynamical systems*, J. Funct. Anal. **66**(1986), p. 262–281.
- [8] G. K. Pedersen, C^* -algebras and their automorphism groups, Academic Press, 1979.
- [9] M. A. Rieffel, C*-algebras associated with irratioal rotations, Pacific J. Math. 93(1981), p. 415-429.
- [10] Y. Watatani, Index for C*-subalgebras, Mem. Amer. Math. Soc. 424, Amer. Math. Soc., Providence, R. I., (1990).