Title: Rational unicuspidal plane curves with $\bar{\kappa}=1$

Author(s): Tono, Keita

Citation: 数理解析研究所講究録 (2001), 1233: 82-89

URL: http://hdl.handle.net/2433/41496

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Rational unicuspidal plane curves with $\overline{\kappa} = 1$

Keita Tono
Department of Mathematics, Faculty of Science, Saitama University

1 Introduction

Let C be a curve on $\mathbb{P}^2 = \mathbb{P}^2(\mathbb{C})$. A singular point of C is said to be a cusp if it is a locally irreducible singular point. We say that C is cuspidal if C has only cusps as its singular points. For a cusp P of C, we denote the multiplicity sequence of (C, P) by $\overline{m}_P(C)$, or simply \overline{m}_P. We use the abbreviation m_k for a subsequence of \overline{m}_P consisting of k consecutive m's. For example, (2_k) means an A_{2k} singularity. We denote by $\overline{\kappa}(\mathbb{P}^2 \setminus C)$ the logarithmic Kodaira dimension of the complement $\mathbb{P}^2 \setminus C$. Let C' be the strict transform of a rational unicuspidal plane curve C via the minimal embedded resolution of the cusp of C. We define $n(C) := -(C')^2$. By [Y], $\overline{\kappa}(\mathbb{P}^2 \setminus C) = -\infty$ if and only if $n(C) < 2$. By [Ts1, Proposition 2], there exist no rational cuspidal plane curves with $\overline{\kappa} = 0$. Thus $\overline{\kappa}(\mathbb{P}^2 \setminus C) \geq 1$ if and only if $n(C) \geq 2$.

Theorem 1. If C is a rational unicuspidal plane curve with $\overline{\kappa}(\mathbb{P}^2 \setminus C) = 1$, then there exists a unique pencil Λ on \mathbb{P}^2 satisfying the following four conditions.

(i) The cusp P of C is a unique base point of Λ.

(ii) The pencil Λ has a unique reducible member $C + n(C)B$. Here B is a line or an irreducible conic such that $(CB)_P = (\deg B)(\deg C) - 1$.

(iii) The pencil Λ has exactly two multiple members $\mu_A A, \mu_G G$, where μ_A, μ_G are integers with $\mu_A, \mu_G \geq 2$, $A \setminus \{P\} \cong \mathbb{C}^*$, $G \setminus \{P\} \cong \mathbb{C}$.

(iv) The complement of $\{P\}$ to every member other than $\mu_A A, \mu_G G$ and $C + n(C)B$ is isomorphic to \mathbb{C}^*.

Let C be a rational unicuspidal plane curve with $\overline{\kappa}(\mathbb{P}^2 \setminus C) = 1$. We say that C is of type I (resp. type II) if the curve B in Theorem 1 (ii) is a line (resp. an irreducible conic).
Theorem 2. Let C be a rational unicuspidal plane curve with $\bar{\kappa}(\mathbb{P}^2 \setminus C) = 1$. Put $n := n(C)$. Let P be the cusp of C.

(i) Type I. There exists an integer s with $s \geq 2$ such that $\deg C = (n+1)^2(s-1)+1$, $\bar{\kappa}_P = (n(n+1)(s-1), ((n+1)(s-1))_{2n+1}, (n+1)_{2(s-1)})$, $\mu_A = n+1$, and $\mu_G = (n+1)(s-1)+1$. There exist $a_2, \ldots, a_s \in \mathbb{C}$ with $a_s \neq 0$ such that C is projectively equivalent to the curve:

$$
((f^{s-1}y + \sum_{i=2}^{s}a_i f^{s-i}x^{(n+1)i-n})^{\mu_A} - f^{\mu_G})/x^n = 0,
$$

where $f = x^n z + y^{n+1}$. Conversely, for arbitrary integers n, s with $n \geq 2$, $s \geq 2$ and $a_2, \ldots, a_s \in \mathbb{C}$ with $a_s \neq 0$, the above equation defines a rational unicuspidal plane curve with $\bar{\kappa}(\mathbb{P}^2 \setminus C) = 1$. The multiplicity sequence of the cusp is equal to $\bar{\kappa}_P$.

(ii) Type II and $\deg C = ((4n+1)^2+1)/2$. We have $\bar{\kappa}_P = ((n(4n+1)_4, (4n+1)_{2n}, 3n+1, n_3), \mu_A = 4n+1$ and $\mu_G = 2n+1$. The curve C is projectively equivalent to the curve:

$$
((g^n y + x^{2n+1})^{\mu_A} - (g^{2n} z + 2x^{2n} yg^n + x^{4n+1})^{\mu_G})/g^n = 0,
$$

where $g = xz - y^2$. Conversely, for an arbitrary integer n with $n \geq 2$, the above equation defines a rational unicuspidal plane curve with $\bar{\kappa}(\mathbb{P}^2 \setminus C) = 1$. The multiplicity sequence of the cusp is equal to $\bar{\kappa}_P$.

(iii) Type II and $\deg C \neq ((4n+1)^2+1)/2$. There exists a positive integer s such that, by setting $m := 4n+1$ and $t := 4s-1$, we have $\deg C = (m^2t+1)/2$,

$$
\bar{\kappa}_P = \begin{cases} ((3mn)_4, (3m)_{2n}, (m)_3, 3n+1, n_3) & \text{if } s = 1, \\
((tmn)_4, (tm)_{2n}, (sm)_3, (s-1)m, m_{2(s-1)}, 3n+1, n_3) & \text{if } s > 1,
\end{cases}
$$

$\mu_A = m$ and $\mu_G = 2(ms - n)$. There exist $a_1, \ldots, a_s \in \mathbb{C}$ with $a_s \neq 0$ such that C is projectively equivalent to the curve:

$$
((h^{2s-1} g^n y + x^{2n+1}) + \sum_{i=1}^{s}a_i h^{2(s-i)} g^{mi-n})^{\mu_A} - h^{\mu_G})/g^n = 0,
$$

where $h = g^{2n} z + 2x^{2n} yg^n + x^m$. Conversely, for an arbitrary integer n with $n \geq 2$, a positive integer s and $a_1, \ldots, a_s \in \mathbb{C}$ with $a_s \neq 0$, the above equation defines a rational unicuspidal plane curve with $\bar{\kappa}(\mathbb{P}^2 \setminus C) = 1$. The multiplicity sequence of the cusp is equal to $\bar{\kappa}_P$.

A plane curve C is said to be of type (d, ν) if the degree of C is d and the maximal multiplicity of C is ν. If C is a rational cuspidal curve of type (d, ν), then the inequality $d < 3\nu$ holds true ([MS]). See also [O].

Corollary 1. Let C be a rational unic cuspidal plane curve of type (d, ν) with $\overline{\kappa}(\mathbb{P}^2 \setminus C) = 1$.

(i) **Type I.** We have $1 < d/\nu \leq 5/3$. The equality holds if and only if C is projectively equivalent to a curve in Theorem 2 (i) with $n = s = 2$.

(ii) **Type II.** We have $2 < d/\nu \leq 41/18$. The equality holds if and only if C is projectively equivalent to the curve in Theorem 2 (ii) with $n = 2$.

Corollary 2. Let C be a rational unic cuspidal plane curve. Then $\overline{\kappa}(\mathbb{P}^2 \setminus C) = 1$ if and only if the multiplicity sequence of the cusp is one of those in Theorem 2.

Corollary 3. Let C be a rational unic cuspidal plane curve. Then $\overline{\kappa}(\mathbb{P}^2 \setminus C) = 2$ if and only if $\nu(C) \geq 2$ and the multiplicity sequence of the cusp is none of those in Theorem 2.

Remark 4. In [Ts1], Tsunoda claimed to have obtained the defining equations of rational unic cuspidal plane curves with $\overline{\kappa} = 1$. Comparing the degrees of his with ours, it seems that the equations he obtained are those of type I, $s = 2$ in Theorem 2 (i).

2 Proof of Theorem 1

Let C be a rational unic cuspidal curve on \mathbb{P}^2 with $\overline{\kappa}(\mathbb{P}^2 \setminus C) = 1$. Let $\sigma : V \to \mathbb{P}^2$ be the composite of the shortest sequence of blowing-ups over P such that the reduced total transform D of C is a normal crossing divisor. Let C' be the strict transform of C. Put $D' := D - C'$. We remark that every irreducible components of D' is a smooth rational curve, whose self-intersection number is less than -1. Let D_0 denote the exceptional curve of the last blowing-up of σ. The dual graph of D has the following shape.

![Dual Graph of D](image)
As a convention, A_1 contains the exceptional curve of the first blowing-up. Let A_{11} denote the leftmost component of A_1 in the above figure. In the course of the contraction of D' by σ, $A_g + D_0 + B_g$ is contracted a (-1)-curve E and $A_g - 1 + E + B_{g-1}$ to a (-1)-curve, and so on. Write $\sigma = \sigma_1 \circ \cdots \circ \sigma_g$, where σ_g contracts $A_g + D_0 + B_g$ to a (-1)-curve E, σ_{g-1} contracts $A_{g-1} + E + B_{g-1}$ to a (-1)-curve, and so on. A blowing-up of σ_i is called sprouting if it is done at a smooth point of the exceptional curve of the preceding blowing-ups. As a convention, the first blowing-up of σ_1 is not sprouting. Let s_i denote the number of sprouting blowing-ups in σ_i.

Following [FZ], we consider a strictly minimal model (\tilde{V}, \tilde{D}) of (V, D). We successively contract (-1)-curves E such that $E \subset D$ and $(D - E)E \leq 2$, or $E \not\subset D$ and $DE \leq 1$. After a finite number of contractions, we have no (-1)-curves to contract. Let $\pi : V \rightarrow \tilde{V}$ denote the composite of the contractions. For a divisor $\Delta \subset V$, write $\tilde{\Delta} = \pi_* (\Delta)$. It is clear that \tilde{D} is a divisor with only simple normal crossings and $\overline{\kappa} (\tilde{V} \setminus \tilde{D}) = 1$. By [Ka, Theorem 2.3] and the fact that $\tilde{V} \setminus \tilde{D}$ is affine, we have the following:

Lemma 5. There exists a fibration $\tilde{\rho} : \tilde{V} \rightarrow \mathbb{P}^1$ whose general fiber F is \mathbb{P}^1 and $DF = 2$.

It is known that a \mathbb{P}^1-fibration over \mathbb{P}^1 is obtained from a \mathbb{P}^1-bundle $\tilde{\rho} : \Sigma \rightarrow \mathbb{P}^1$ by successive blowing-ups $\tilde{\pi} : \tilde{V} \rightarrow \Sigma$. Put $p = \tilde{\rho} \circ \pi$. We have the following commutative diagram.

\[V \xrightarrow{\pi} \tilde{V} \xrightarrow{\tilde{\pi}} \Sigma \]

\[\downarrow p \quad \downarrow \tilde{\rho} \quad \downarrow \]

\[\mathbb{P}^1 \]

Following [FZ], we use the following terminology. The triple $(\tilde{V}, \tilde{D}, \tilde{\rho})$ is called a C^*-triple. A component of \tilde{D} is called horizontal if the image of it under $\tilde{\rho}$ is 1-dimensional. Let \tilde{H} be the sum of the horizontal components of $(\tilde{V}, \tilde{D}, \tilde{\rho})$. The C^*-triple $(\tilde{V}, \tilde{D}, \tilde{\rho})$ is called of twisted type if \tilde{H} is irreducible; otherwise it is called of untwisted type. By [Kiz, Theorem 3], our C^*-triple is of untwisted type. (See also [M2, Theorem 4.7.1, Lemma 4.10.3].) Thus \tilde{H} consists of two irreducible components H_1, H_2. Suppose $\tilde{\rho}$ has a singular fiber. The dual graph of the sum of the singular fiber and the horizontal components has the following shape (cf. [FZ, Lemma 5.5]).

\[H_1 \xrightarrow{F_1} E \xrightarrow{F_2} H_2 \]
Here E is a (-1)-curve, which is not contained in \tilde{D}. The curves F_1, F_2 are connected components of $\tilde{D} - (H_1 + H_2)$. The fiber is contracted by $\tilde{\pi}$ to a fiber of \hat{p}. By using [FZ, Theorem 5.8 and 5.11], we have the following lemma. (The case (B2) in [FZ, Theorem 5.8] does not occur.)

Lemma 6. The C^*-triple $(\tilde{V}, \tilde{D}, \tilde{p})$ has the following properties.

(i) The fibration \tilde{p} has exactly one smooth fiber \tilde{G} contained in \tilde{D} and two singular fibers $\tilde{F}_A = \tilde{A}_1 + \tilde{E}_A + \tilde{B}_g$, $\tilde{F}_B = \tilde{B}_1 + \tilde{E}_B + \tilde{C}'$, where \tilde{E}_A (resp. \tilde{E}_B) is the (-1)-curve in \tilde{F}_A (resp. \tilde{F}_B).

(ii) The curves \tilde{D}_0, \tilde{A}_2 are the horizontal components.

We can verify that π has the following properties.

Lemma 7. The following assertions hold true.

(i) π first contracts a (-1)-curve $E_G \not\subset \tilde{D}$ and every subsequent blowing-down of π is the contraction of a component of \tilde{D}.

(ii) The curve E_G is a component of $\pi^{-1}(\tilde{G})$. Every blowing-up of π is performed at a point on the total transform of \tilde{G}.

Let E_A, E_B denote the strict transforms of \tilde{E}_A, \tilde{E}_B in V, respectively. Write $A = \sigma(E_A)$, $B = \sigma(E_B)$ and $G = \sigma(E_G)$. Let μ_A, μ_B and μ_G denote the coefficients of E_A, E_B and E_G in $p^*(p(E_A))$, $p^*(p(E_B))$ and $p^*(p(E_G))$, respectively. We have $\mu_B = n(C)$ by [F, Proposition 4.8]. Since π does not change \tilde{F}_B, it follows that B is smooth and rational with self-intersection number s_1. Thus B is a line ($s_1 = 1$) or an irreducible conic ($s_1 = 4$). Now it is clear that the pencil spanned by $\mu_A A$ and $\mu_G G$ satisfies the whole condition in Theorem 1. The uniqueness of the pencil follows from [I, Theorem 3].

3 Proof of Theorem 2

In order to prove Theorem 2, we determine the weighted dual graph of $D + E_A + E_B + E_G$. By using the properties of σ, π and \tilde{p}, we obtain the diagram in Figure 1, where $n = n(C)$ and $*$ (resp. \bullet) means a (-1)-curve (resp. (-2)-curve). In Theorem 2, we set $s = s_3$. The curves in Theorem 2 (ii) correspond to those of type II with $g = 2$ and the curves in (iii) to those of type II with
Figure 1: The weighted dual graph of $D + E_A + E_B + E_G$.
Remark 8. Our fibration p belongs to the class (D) in the sense of [Kiz]. The last two graphs in [Kiz, Figure 54] coincide with those of type I and type II with $g = 3$, $s_3 > 1$.

The multiplicity sequence of the cusp can be calculated from the weighted dual graph of D' (cf. [BK, p.516, Theorem 12]). The degree of C is calculated from \overline{m}_P. We calculate μ_A, μ_G by using [F, Proposition 4.8]. The proof of the assertion for the defining equation of C is based on the following fact. Let f_A, f_B and f_G be the defining polynomials of A, B and G, respectively. Then, since $C + \mu_B B$ is a member of the pencil A in Theorem 1, there exists $t \in \mathbb{C}^*$ such that C is defined by the equation $(f_A^{\mu_A} + tf_G^{\mu_G})/f_B^{\mu_B} = 0$.

Acknowledgment. The author would like to express his thanks to Professor Fumio Sakai for his valuable advice, guidance and encouragement.

References

