# The dihedral coverings of the projective plane

東北学院大·教養 土橋 宏康 (Hiroyasu Tsuchihashi)
The Faculty of Liberal Arts,
Tohoku Gakuin University.

#### Introduction

Let r be an odd integer greater than 2 and let

$$D_{2r} = \langle \sigma, \tau \mid \sigma^2 = \tau^r = (\sigma \tau)^2 = 1 \rangle.$$

Then the following fact is well-known(see [3] or [5]). If  $g_1$  and  $g_2$  are homogeneous polynomials of three variables with  $2 \deg g_1 = r \deg g_2$ , then there exists a  $D_{2r}$ -covering of  $\mathbf{P}^2$  ramifying only along the curve C defined by  $g_1^2 - g_2^r = 0$ , where a  $D_{2r}$ -covering is a (branched) Galois covering with the Galois group isomorphic to  $D_{2r}$ . Moreover, if  $(g_1)$  crosses  $(g_2)$  normally at  $\deg g_1 \deg g_2$  points, then C has (2, r) cusps there. In this note, we show that if there exists a  $D_{2r}$ -covering of  $\mathbf{P}^2$  ramifying only along an irreducible reduced curve C = (f), then there exist homogeneous polynomials h,  $g_1$  and  $g_2$  of three variables, satisfying

$$fh^2 = g_1^2 - g_2^r.$$

Conversely, we also show that if there exist homogeneous polynomials f, h,  $g_1$  and  $g_2$  of three variables satisfying the above equation, if (f) contains no irreducible components of (h) and if  $(g_1)$  crosses  $(g_2)$  normally at at least one point, then there exists a  $D_{2r}$ -covering of  $\mathbf{P}^2$  ramifying only along (f). As an application, we give an example of a  $D_{10}$ -covering ramifying along a sextic with four (2,5) cusps.

### 1 A versal dihedral covering

We define the action of the dihedral group  $D_{2r}$  on  $\mathbf{P}^1$  by

$$\sigma: \xi \mapsto \xi^{-1} \text{ and } \tau: \xi \mapsto \rho_r \xi,$$

where  $\rho_r = \exp(2\pi\sqrt{-1}/r)$  and  $\xi$  is a non-homogeneous coordinate of  $\mathbf{P}^1$ . Then the holomorphic map

$$\varpi:\mathbf{P}^1\ni\xi\mapsto\xi^r+\xi^{-r}\in\mathbf{P}^1$$

is a  $D_{2r}$ -covering. This covering plays a key role in this note. Let  $\nu: Y \to \mathbf{P}^1$  be a dominant rational map from a projective variety Y and let  $Y_0$  be the complement of the

set of the indeterminacy of  $\nu$ . Then we have the following (see §4 in [2]).

**Proposition** 1. If the fiber product  $Y_0 \times_{\mathbf{P}^1} \mathbf{P}^1$  of the restriction  $\nu_{|Y_0}$  of  $\nu$  to  $Y_0$  and  $\varpi$ , is irreducible, then there exists a  $D_{2r}$ -covering  $\pi: X \to Y$  and a  $D_{2r}$ -equivariant rational map  $\mu: X \to \mathbf{P}^1$  with  $\varpi \circ \mu = \nu \circ \pi$ .

$$\begin{array}{cccc} X & \stackrel{\mu}{\longrightarrow} & \mathbf{P}^1 & \ni & \xi \\ \pi \downarrow & & \downarrow \varpi & \downarrow \\ Y & \stackrel{\nu}{\longrightarrow} & \mathbf{P}^1 & \ni & \xi^r + \xi^{-r} \end{array}$$

Conversely, any  $D_{2r}$ -covering of a projective variety can be constructed in this way provided that r is odd.

Theorem 2. Let r be an odd integer. For any  $D_{2r}$ -covering  $\pi: X \to Y$  of a projective variety Y, there exist a  $D_{2r}$ -equivariant rational map  $\mu: X \to \mathbf{P}^1$  and a dominant rational map  $\nu: Y \to \mathbf{P}^1$  with  $\varpi \circ \mu = \nu \circ \pi$ .

*Proof.* Let  $f_0$  be a rational function on X and let

$$f_1 = \sum_{i=0}^{r-1} \frac{(\tau^i)^* f_0}{\rho_r^{is}}, \qquad f = \frac{f_1}{\sigma^* f_1}$$

where  $\rho_r = \exp(2\pi\sqrt{-1}/r)$  and s = (r+1)/2. Then  $\tau^* f_1 = \rho_r^s f_1$  and  $\sigma^* f = f^{-1}$ . Hence  $\tau^* f = \rho_r f$ , because  $\tau^* \sigma^* f_1 = \sigma^* (\tau^{-1})^* f_1 = \rho_r^{-s} \sigma^* f_1$  and  $\rho_r^{2s} = \rho_r$ . Therefore, the rational function f defines a  $D_{2r}$ -equivariant rational map  $\mu : X \to \mathbf{P}^1$ . Moreover, f is not constant for a suitable  $f_0$ . Hence the rational map  $\nu : Y \to \mathbf{P}^1$  defined by  $f^r + f^{-r}$ , is dominant and  $\varpi \circ \mu = \nu \circ \pi$ .

**Remark**. It is well-known that there exist G-coverings  $\mathbf{P}^1 \to \mathbf{P}^1$  also for the groups G isomorphic to  $D_{2r}$  with even r,  $A_4$ ,  $S_4$  and  $A_5$ . However, the above theorem does not hold for these coverings(see [1]).

## 2 Dihedral coverings ramifying along irreducible curves

We keep the notations in the previous section.

**Proposition** 3. Let C=(f) be an irreducible reduced curve on  $\mathbf{P}^2$  defined by a homogeneous polynomial f. If there exists a  $D_{2r}$ -covering  $\pi:Y\to\mathbf{P}^2$  of  $\mathbf{P}^2$  ramifying only along C, then there exist homogeneous polynomials h,  $g_1$  and  $g_2$  satisfying  $fh^2=g_1^2-g_2^r$ , and  $\pi$  is induced from  $\varpi$  and the rational map  $\mathbf{P}^2\to\mathbf{P}^1$  defined by  $\pm(4g_1^2/g_2^r-2)$ .

*Proof.* The ramification index of  $\pi$  along C is equal to 2, because the double covering  $Y/\langle \tau \rangle \to \mathbf{P}^2$  ramifies along C and any element in  $D_{2r}$  not contained in  $\langle \tau \rangle$ , has order 2. On the other hand,  $\varpi$  ramifies at 2, -2 and  $\infty$  with the ramification index 2, 2 and

r, respectively. Hence there exists a dominant rational map  $\nu: \mathbf{P}^2 \to \mathbf{P}^1$  such that  $\nu(C) = 2$  or -2, by Theorem 2. Let  $\psi: \mathbf{P}^1 \to \mathbf{P}^1$  be the biholomorphic map defined by  $(\xi + 2)/4$  or  $(-\xi + 2)/4$ , accordingly as  $\nu(C) = 2$  or -2. Then  $(\psi \circ \nu)(C) = 1$ . There exist homogeneous polynomials  $\tilde{g}_1$  and  $\tilde{g}_2$  such that  $\deg \tilde{g}_1 = \deg \tilde{g}_2$  and that  $\psi \circ \nu$  is defined by  $\tilde{g}_1/\tilde{g}_2$ . Since  $\varpi$  ramifies along  $\psi^{-1}(\infty) = \infty$  and  $\psi^{-1}(0) = \mp 2$  with the ramification index r and 2, respectively, and  $\pi$  does not ramify along  $(\psi \circ \nu)^{-1}(\infty) = (\tilde{g}_2)$  and  $(\psi \circ \nu)^{-1}(0) = (\tilde{g}_1)$ , there exist homogeneous polynomials  $g_1$  and  $g_2$  with  $\tilde{g}_1 = g_1^2$  and  $\tilde{g}_2 = g_2^r$ . Since  $(\psi \circ \nu)^{-1}(1) = (g_1^2 - g_2^r) \supset C = (f)$  and  $\pi$  ramifies only along (f), there exists a homogeneous polynomial f with  $f(f) = g_1^2 - g_2^r$ .

**Remark**. For any homogeneous polynomial f of even degree there exist homogeneous polynomials h,  $g_1$  and  $g_2$  satisfying  $fh^2 = g_1^2 - g_2^r$ . For example,  $h = \binom{r}{1}l^{r-1} + \binom{r}{3}l^{r-3}f + \cdots + f^{(r-1)/2}$ ,  $g_1 = l^r + \binom{r}{2}l^{r-2}f + \cdots + \binom{r}{r-1}lf^{(r-1)/2}$  and  $g_2 = l^2 - f$  satisfy the equality  $g_2^r = g_1^2 - fh^2$  for any homogeneous polynomial l with  $\deg l = \deg f/2$ , because  $(l \pm \sqrt{f})^r = g_1 \pm \sqrt{f}h$ . However, then

$$4\frac{g_1^2}{g_2^r} - 2 = \left(2\frac{l^2 + f}{g_2}\right)^r + c_2\left(2\frac{l^2 + f}{g_2}\right)^{r-2} + \dots + c_{r-1}\left(2\frac{l^2 + f}{g_2}\right),$$

where  $c_i$  are the integers determined by the equation

$$\xi^r + \xi^{-r} = (\xi + \xi^{-1})^r + c_2(\xi + \xi^{-1})^{r-2} + \dots + c_{r-1}(\xi + \xi^{-1}).$$

Hence the rational map  $\nu: \mathbf{P}^2 \to \mathbf{P}^1$  defined by  $4g_1^2/g_2^r - 2$ , is equal to the composite  $\varpi' \circ \nu'$  of the rational map  $\nu': \mathbf{P}^2 \to \mathbf{P}^1/\langle \sigma \rangle \simeq \mathbf{P}^1$  defined by  $2(l^2 + f)/g_2$  and the holomorphic map  $\varpi': \mathbf{P}^1/\langle \sigma \rangle \to \mathbf{P}^1$  induced from  $\varpi$ . Therefore, the fiber product  $Z_0 \times_{\mathbf{P}^1} \mathbf{P}^1$  of the restriction of  $\nu$  to  $Z_0$  and  $\varpi$ , is reducible, where  $Z_0$  is the complement of the set of points of indeterminacy of  $\nu$ .

**Proposition** 4. Let C = (f) be a reduced curve on  $\mathbf{P}^2$  defined by a homogeneous polynomial f. Assume that there exist homogeneous polynomials  $g_1$ ,  $g_2$  and h satisfying  $fh^2 = g_1^2 - g_2^r$ . If C contains no irreducible components of the zero divisor (h) of h and  $(g_1)$  crosses  $(g_2)$  normally at at least one point, then there exists a  $D_{2r}$ -covering of  $\mathbf{P}^2$  ramifying only along C.

*Proof.* Let  $\nu: \mathbf{P}^2 \to \mathbf{P}^1$  be the rational map defined by  $4g_1^2/g_2^r-2$ . Since  $\nu$  is dominant, there exists a  $D_{2r}$ -covering of  $\mathbf{P}^2$  ramifying only along C, if and only if the fiber product  $Z_0 \times_{\mathbf{P}^1} \mathbf{P}^1$  of the restriction of  $\nu$  to  $Z_0$  and  $\varpi$ , is irreducible, where  $Z_0$  is the complement of the set of points of indeterminacy of  $\nu$ .

Let  $(g_1)$  cross  $(g_2)$  normally at p, let W be a small neighborhood of p and let l be a linear equation with  $(l) \cap W = \emptyset$ . Then  $((g_1/l^{\deg(g_1)})_{|W}, (g_2/l^{\deg(g_2)})_{|W})$  is a local coordinate system of W and there exists a  $D_{2r}$ -covering  $\pi: U \to W$  which is expressed as  $(u,v) \mapsto ((u^r+v^r)/2,uv)$  by a local coordinate system (u,v) of U, where U is an open neighborhood of the origin in  $\mathbb{C}^2$ . Let  $\mu: U \to \mathbb{P}^1$  be the meromorphic map defined by

u/v. Then  $\mu$  is  $D_{2r}$ -equivariant and  $\varpi \circ \mu = \nu_{|W} \circ \pi$ .

$$U \ni (u,v) \xrightarrow{\mu} \frac{u}{v} = \xi \in \mathbf{P}^{1}$$

$$\pi \downarrow \qquad \qquad \downarrow \varpi$$

$$W \ni (\frac{u^{r}+v^{r}}{2},uv) = (x,y) \xrightarrow{\nu_{|W|}} 4\frac{x^{2}}{y^{r}} - 2 = \xi^{r} + \xi^{-r} \in \mathbf{P}^{1}$$

Hence  $(W \setminus \{p\}) \times_{\mathbf{P}^1} \mathbf{P}^1$  is irreducible. Therefore, also is  $Z_0 \times_{\mathbf{P}^1} \mathbf{P}^1$ .

The  $D_{2r}$ -covering of  ${\bf P}^2$  induced from  $\nu$  and  $\varpi$ , ramifies only along C, because  $\nu^{-1}(-2)=2(g_1),\ \nu^{-1}(\infty)=r(g_2)$  and  $\nu^{-1}(2)=(f)+2(h)$ .

## 3 An example

Let l, m and h be homogeneous polynomials of degree 1, 1 and 2, respectively, with  $(l)\cap(m)\cap(h)=\emptyset$ . Let  $g_1=l^5-5l^3h+6mh^2$  and let  $g_2=l^2-2h$ . Then  $g_1^2-g_2^5=h^2f$ , where  $f=-15l^6+12l^5m+80l^4h-60l^3mh-80l^2h^2+36m^2h^2+32h^3$ . Assume that (l-m) crosses  $(g_2)$  normally at two points. Then  $(g_1)$  also does, because  $g_1=lg_2(l^2-3h)-6(l-m)h^2$  and  $(l-m)\cap(g_2)\cap(h)=\emptyset$ . Hence there exists a  $D_{10}$ -covering of  $\mathbf{P}^2$  ramifying along the sextic curve (f). We easily see that if (l) crosses (h) normally, then (f) has two (2,5) cusps at  $(l)\cdot(h)$  as well as at  $(l-m)\cdot(g_2)$ .



#### References

- [1] J. Buhler and Z. Reichstein: On the essential dimension of a finite group, Compositio Math. 106(1997), 159-179
- [2] M. Namba, On finite Galois coverings of projective manifolds, J. of Math. Soc. Japan 41(3), 1989, 391-403
- [3] M. Oka, Some plane curves whose complements have non-abelian fundamental groups, Math. Ann. 218(1975), 55-65

- [4] M. Oka, On the fundamental group of the c complement of certain plane curves, J. Math. Soc. Japan 30(1978), 579-597
- [5] H. Tokunaga, Dihedral coverings branched along maximizing sextics, Math. Ann.  $308(1997),\ 633\text{-}648$