Certain associated graded rings of 3-dimensional regular local rings are regular (Newton polyhedrons and Singularities)

Author(s)
Tomari, Masataka

Citation
数理解析研究所講究録 (2001), 1233: 95-101

Issue Date
2001-10

URL
http://hdl.handle.net/2433/41498

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Certain associated graded rings
of 3-dimensional regular local rings are regular

金沢大学理学部 況 昌孝 (Masatake Tomari)

This note is a preliminary version.

Introduction. The study of various blowing-ups is very important in the theory of singularities. In many cases some blowing-up appears as the blowing-down of divisors of algebraic varieties, and is understood naturally as a filtered blowing-up. From this point of view, one of the most interesting results in this field is M. Kawakita's classification of a special divisorial contraction of dimension three [2]. In [2], Kawakita proved that every divisorial contraction to a smooth 3-dimensional point is a weighted blowing-up induced by certain weightings on a regular system of parameters of 3-dimensional regular local rings. It is natural to study his theorem from the theory of filtered blowing-ups, and this is my motivation for this talk.

In this paper, I will discuss the filtered blowing-up of singularities, and, by using special equi-singular deformation induced from a filtration on local ring, I show the following simple assertion.

Theorem 1. Let $A \cong \mathbb{C}\{x_1, x_2, x_3\}$ and $F = \{F^k\}_{k \geq 0}$ be a filtration on A such that $gr_F A = \bigoplus_{k \geq 0} F^k/F^{k+1}$ is an integral domain with isolated singularity. Then $gr_F A$ is regular, i.e., $gr_F A \cong \mathbb{C}[y_1, y_2, y_3]$.

In this paper, a filtration F on the local ring (A, m) is; $F = \{F^k\}$; a decreasing sequence of ideals $F^k \subset A$ such that $F^0(A) = A, m \supset F^1, F^k = A(k \leq -1), F^kF^l \subset F^{k+l}(\forall k, l)$ and $R = \bigoplus_{k \geq 0} F^kT^k \subset A[T]$ is a finitely generated A-algebra, where T is an indeterminate. There is an integer N such that the relation $F^{kN} = F^N \cdots F^N$ for all $k \geq 0$, and we assume that F^N is m-primary. We denote $G = gr_F(A)$ and remark that $G = R'/T^{-1}R'$, where $R' = \bigoplus_{k \in \mathbb{Z}} F^kT^k$ is the extended Rees algebra.

Theorem 1 is shown as a special case of the following more general results.

Theorem 2. Let (V, p) be a normal d-dimensional isolated terminal singularity of index r (resp. canonical, resp. log terminal, resp. log canonical), and $F = \{F^k\}$ be a filtration on $A = O_{V, p}$ such that $G = gr_F A$ is an integral domain with isolated singularity. Then

(1) G is normal and terminal singularity of index r (resp. canonical, resp. log terminal, resp. log canonical).

(2) There is a filtration $F_B = \{F^k_B\}$ on the canonical cover (the index one cover) $B = \bigoplus_{m=0}^{k-1} [m]_A$ such that $G_B = gr_{F_B} B \cong$ the canonical cover of G and there exists an integer $M \geq 1$ such that the relations $F^k_B \cap A = F^k \subset A$ for $k \geq 0$ and $(gr_{F_B \cap A}(A))(M) = gr_F(A)$ hold.

(3) If $d = 3$ and (V, p) is terminal, then the relation $e(m_B, B) = e((G_B)_+, G_B) (= 1, 2)$ holds.
We have a corollary as follows:

Corollary 3. (V,p): 3-dimensional cyclic terminal and F: as above, then $gr_F(A)^\wedge \cong A^\wedge$.

As the case of index one, we obtain Theorem 1 from Corollary 3. Here recall that every isolated quotient singularity of dimension not less than three is rigid.

In general, if we consider a filtration induced from a divisorial contraction, the associated graded ring is not necessary an integral domain with isolated singularity ([1,3]).

§1. Sketch of proof of Theorem 2.

We assume that there is no $N \geq 2$ such that $G^{(N)} = G$, where $G^{(N)}$ is defined by $G^{(N)} = \oplus_{k \geq 0} G_{kN} \subset G$.

Step 1. Let $\psi : X = \text{Proj}(R) \rightarrow V = \text{Spec} A$ be the filtered blowing-up by F with $E = \text{Proj}(G)$. We obtain the relation $F^k = \phi_*(O_X(-kE))$ for $k \in \mathbb{Z}$. (cf [6, §2]).

Proof. Since G is an integral domain and $V = \text{Spec} A$ is normal, we can easily see that $R' = \oplus_{k \in \mathbb{Z}} F^kT^k \subset A[T, T^{-1}]$ is a normal domain.

This claim is shown as follows: We have $G = R'/uR'$, where $u = T^{-1} \not\in R_{\leq 1}$. If $P \in V(u) \subset \text{Spec}(R')$, then $G_P \cong R'_P/uR'_P$ satisfies the conditions R_0 and S_1, hence R'_P is normal. Further, if $P \not\in V(u)$, then we obtain the relations $R'_P = (R'_{f,P}) = A[T, T^{-1}]_P$ which is normal.

By the assumption that R is a finitely generated A-algebra, there is a positive integer $N > 0$ such that $F^{kN} = F^N \cdots F^N$, for $k \geq 0$, i.e., $R^{(N)} = A[F^NT^N]$. Here ψ is the blowing-up with center F^N and $F^{kN} = \psi_*(F^{kN}O_X)$. Since $Q(G)$ has a homogeneous element of degree 1, we have $O_X(k) = (O_X(1)^\otimes k)^{**}$ for $k \in \mathbb{Z}$. We have $O_X(1) = O_X(-E)$, hence $O_X(1) = O_X(-NE)$. Since G is an integral domain, $\{F^k\}$ defines a valuation V on $Q(A)$ such that $F^k = \{x \in Q(A) \mid V(x) \geq k\}$. Further $\{F^{kN}\}$ defines the valuation V' on $Q(A)$ as $F^{kN} = \{x \in Q(A) \mid V_E(x) \geq kN\}$ where $V_E(x) = ord_E(x)$ on X. Therefore $F^k = \{x \in Q(A) \mid V_E(x) \geq k\}$ for $k \in \mathbb{Z}$.

Step 2. X has only cyclic quotient singularities, in particular X has only log terminal singularities.

Proof. (cf §5 [6]). For $P \in E = \text{Proj}(G) \subset X = \text{Proj}(R)$, there exists $f \in F^d - F^{d+1}$, with $P \in V_+(f^*)$, where $f^* = fT^d \in R_d$. Here we denotes $fT^d \in G_d$. Now $R_{f^*} = \oplus_{k \in \mathbb{Z}} (R_{f^*})_k$ is a regular ring. This is shown as follows: We see that $(R_{f^*})_{(T^{-1})^{-1}} = A_{f[T, T^{-1}]}$ is regular and that $R_{f^*}/T^{-1}R_{f^*} = R_{f^*}/T^{-1}R_{f^*} = G_f$ is regular. Hence so is R_{f^*}.

Now let $B = (R_{f^*})_P = \oplus_{k \in \mathbb{Z}} ((R_{f^*})_P)_k$ and $t \in B$ be a homogeneous unit of the minimal degree $N(P)$. Let $C = B/t - 1$. Then, by [6,§5], C is a regular local ring. Here $((R_{f^*})_P)_0$ is a finite direct summand of C.

Step 3. (The log canonical condition of A implies that) G is normal.

Proof. Let $\omega_0 \in \omega_A^r$ be a generator at p as $\omega_A^r = A \cdot \omega_0$. We define the integer
a' by the relation $\text{div}_X(\omega_0) = -(r + a')E$ on X. That is $\omega_X^{[r]} \cong O_X(-(r + a')E)$ or $K_X = \psi^*(K_V) - (1 + \frac{a'}{r})E$. Since A is log canonical, we have $a' \leq 0$. We will show the following.

Claim. $R^1\psi_*(O_X(-mE)) = 0$ for $m \geq 1$, $(m \in \mathbb{Z})$.

Proof of the claim. We have the relation

$$O_X(-mE) \cong \omega_X^r((r-1)K_X + (r+a')E-mE) \cong \omega_X^r((r-1)(K_X+E)-(m-1-a')E).$$

Further $(r-1)(K_X+E)-(m-1-a')E$ is relatively numerically equivalent to $-\frac{r-1}{r}a'E-(m-1-a')E = -(m-1-\frac{a'}{r})E$ with respect to ψ. Since $-E$ is relatively ψ-ample, $(r-1)(K_X+E)-(m-1-a')E$ is ψ-nef. Hence by the vanishing theorem of Grauert-Riemenschneider,Kawamata-Viehweg, we obtain the claim.

Here we have the exact sequence

$$0 \rightarrow O_X(-(k+1)E) \rightarrow O_X(-kE) \rightarrow O_E(k) \rightarrow 0$$

for $k \in \mathbb{Z}$. By the claim, we obtain the following exact sequence

$$0 \rightarrow F^{k+1} = \psi_*(O_X(-(k+1)E)) \rightarrow F^{k} = \psi_*(O_X(-kE)) \rightarrow H^0(O_E(k)) \rightarrow R^1\psi_*(O_X(-(k+1)E)) = 0$$

for $k \geq 0$.

We have

$$0 \rightarrow H^0_{G_+}(G) \rightarrow G \rightarrow \oplus_{k \in \mathbb{Z}} H^0(O_E(k)) \rightarrow H^1_{G_+}(G) \rightarrow 0.$$

Since G is an integral domain, $H^0_{G_+}(G) = 0$. Further $\oplus_{k \in \mathbb{Z}} H^0(O_E(k)) = \Gamma_*(G)$ is normal. This is shown as follows: Let \bar{G} be the normalization of G in $Q(G)$. Since G has only isolated singularity, \bar{G}/G has finite length. Hence on $E = \text{Proj}(G)$, we have the relation $\bar{G}(k) = G(k)$. By Demazure, with $T \in Q(\bar{G})_1$, there exists $D \in \text{Div}(E)\otimes \mathbb{Q}$ as follows; $\bar{G}(k) = O_E(kD)T^k$, for $k \in \mathbb{Z}$. Hence $\Gamma_*(G) = R(E, D) = \bar{G}$.

Therefore, we obtain the relation $H^1_{G_+}(G) = 0$ for $k \leq -1$. And the relation $H^1_{G_+}(G) = 0$ follows.

Step 4. We will discuss the log terminal property of $G = R(E, D)$ under the assumption that A is log terminal of index r.

We have the following.

Lemma [8]. Let us assume the conditions that G is an integral domain where $\text{Spec}(G) - V(G_+)\mathbb{Z}$ is normal Gorenstein and that $\text{Spec}(A) - V(m)$ is Gorenstein. Then the following relations hold.

$$\frac{\omega_X^m(mE - \alpha E)}{\omega_X^m(mE - (\alpha+1)E)} \cong \omega_E^m(mD' + \alpha D) \text{ for } m, \alpha \in \mathbb{Z}.\)$$

Here $O_E(k) = O_E(kD)T^k$ as before, with $D = \sum_{V \in \text{Irr}^1(X)} \frac{p_V}{q_V} V$ with $(p_V, q_V) = 1$, $\text{Spec}(G) - V(m)$.

Hence by the vanishing theorem of Grauert-Riemenschneider,Kawamata-Viehweg, we obtain the claim.
\(q_V \geq 1 \) and \(D' = \sum_{V \in \text{Irr}^1(X)} \frac{q_V - 1}{q_V} V \).

By the relation
\[\omega_X^{[r]}(rE - \alpha E) \cong O_X(-(a' + \alpha)E), \text{ for all } \alpha \in \mathbb{Z} \]
we obtain
\[\omega_E^{[r]}(rD' + \alpha D) \cong O_E((\alpha + a')D), \text{ for all } \alpha \in \mathbb{Z} \]
by Lemma. Hence \(K_{R}^{[r]} = R(a') \) follows.

Here \(\text{Spec}(R) - V(R_+) = \text{Spec}(G) - V(G_+) \) is regular, \(G = R(E, D) \) is log terminal (resp. log canonical) if and only if \(a' < 0 \) (resp. \(a' \leq 0 \)) by Theorem (2.5) and Theorem (2.8) of [7].

We will discuss the index of \(R \). By Lemma, we have the following exact sequence.
\[
0 \to \frac{T^m \omega_{R}^{[m]}}{T^{m-1} \omega_{R}^{[m]}}, \to K_{R(E,D)}^{[m]} \to \\
\oplus_{k \in \mathbb{Z}} \text{Ker} \left\{ H^1(\omega_X^{[m]}(mE - (k+1)E)) \to H^1(\omega_X^{[m]}(mE - kE)) \right\} \to 0 \text{ for } m \in \mathbb{Z}.
\]

If there exist \(r' > 1 \) where the relation \(K_{R(E,D)}^{[r']} = R(a'') \) is satisfied for some integer \(a'' \in \mathbb{Z} \), we have the relation \(\frac{a''}{r'} = \frac{a'}{r} \). We obtain \(a'' < 0 \).

Here \((K_{R}^{[r']})_k = R_{k+a''}, \) hence \((K_{R}^{[r']})_k = 0 \) if \(k \leq -1 \).

For \(k \geq 0 \), we set \(m = r' \geq 1 \) and obtain the relations
\[\omega_X^{[m]}(mE - (k + 1)E) = \omega_X((m - 1)(K_X + E) - kE), \]
and
\[(m - 1)(K_X + E) - kE \equiv - \left(-\frac{m-1}{r}a' + k \right)E. \]

This is \(\psi \)-nef, hence the following vanishing hold
\[H^1(\omega_X^{[m]}(mE - (k+1)E)) = 0 \text{ for } k \geq 0. \]

Hence \(\frac{T^m \omega_{R}^{[m]}}{T^{m-1} \omega_{R}^{[m]}}, \cong K_{R(E,D)}^{[m]} \text{ with } m = r' \). Hence \(T^m \omega_{R}^{[m]} \) is locally principal along \(V(T^{-1}) = \text{Spec}(R(E, D)) \subset \text{Spec}(\mathcal{R}) \).

For \(c \neq 0 \in \text{Spec}(\mathbb{C}[T^{-1}]), \) it follows that \(\omega_{\mathcal{R}}^{[m]}/(T^{-1} - c) \omega_{\mathcal{R}}^{[m]} = \cup_{k \in \mathbb{Z}} \psi_*(\omega_{X}^{[m]}(-kE)) = \omega_{A}^{[m]} \) is a principal \(\mathcal{R}'/(T^{-1} - c) \mathcal{R}' = A \)-module for same \(c \).

Step 5. We will show: The condition that \(A \) is a canonical (resp. terminal) singularity implies that \(G \) is also a canonical (resp. terminal) singularity.

Proof. Let \(\omega : \mathcal{V} = \text{Spec}(\mathcal{R}') \to \text{Spec}(\mathbb{C}[T^{-1}] \cong \mathbb{C} \text{ with } V_0 = \text{Spec}(G), \) and \(V_c \cong V \) for \(c \neq 0 \). Let us introduce the filtration of ideals \(\{ F^l(\mathcal{R}') \} \) on \(\mathcal{R}' \) by the following way: \(F^l(\mathcal{R}') = \mathcal{R}' |_{\text{Spec}(\mathcal{R}') \subset \mathcal{R}'}, \) where \(\mathcal{R}' = \oplus_{k \geq l} F^l T^l \subset \mathcal{R}' \) for \(l \in \mathbb{Z} \). As is shown in [6]§5, we obtain the following diagram after the blowing-up of \(\mathcal{V} = \text{Spec}(\mathcal{R}') \) by this
\[Y'' = \Proj(\mathcal{R}(\mathcal{R}')) \xrightarrow{\xi} \Spec(\mathcal{R}') = \mathcal{V} \]

\[\omega'' \xrightarrow{\psi} \omega \]

\[\Spec\mathbb{C}[T^{-1}] \]

where \(\omega'' \) gives the filtered blowing-up for each fiber as follows: \(\omega''_0 : Y''_0 \to \Spec(\mathcal{V}_0) \) is nothing but the graded blowing-up of \(\Spec(\mathcal{G}) \) and \(\omega''_c : Y''_c \to \Spec(\mathcal{V}_c) \) is nothing but the blowing-up of \(\Spec(\mathcal{A}) \) by \(F \) for \(c \neq 0 \in \mathbb{C} \). By J. Wahl [9], \(\omega'' \) is a locally trivial family under the assumption that \(\Spec(\mathcal{G}) - V(G_+ \cup G_-) \) is regular. Here \(\mathcal{V} \) is an \(r \)-Gorenstein \(d + 1 \)-dimensional scheme and we have the following relation

\[K^{[r]}_{\mathcal{R}} \cong \mathcal{R}'(a' + r). \]

There is a meromorphic \(r \)-ple \(d + 1 \)-form \(\tilde{\Omega}_0 \) of \(\mathcal{R}' \) such that \(\mathcal{R}' \to K^{[r]}_{\mathcal{R}}; 1 \to \tilde{\Omega}_0 \) gives an isomorphism. This induces the isomorphism

\[\omega_{Y''}^{[r]} = O_{Y''}(r + a')\xi^*(\tilde{\Omega}_0), \]

that is, we have the relation \(\mathrm{div}_{Y''}\tilde{\Omega}_0 = -(r + a')E \), where the relation \(\Proj gr_{\mathcal{F}}(\mathcal{R}') = \mathcal{E} \cong E \times \mathbb{C} \). Here \(\mathcal{E} = \Proj(\mathcal{G}) \). Since \(a' \leq -r \), \(\xi^*(\tilde{\Omega}_0) \) is holomorphic on \(Y'' \). Hence \(\Res_{(Y'')_c}(\tilde{\Omega}_0) \) is a holomorphic \(r \)-ple \(d \)-form on \((Y'')_c \) which does not vanish on \((Y'')_c - E \). Here \((Y'')_c = \Proj(\mathcal{R}) \) for \(c \neq 0 \), and \((Y'')_c = \Proj(G^k) = C(E, D) \) for the case \(c = 0 \). Here \(\Res_{(Y'')_c}(\tilde{\Omega}_0) \) gives a generator of \(\omega_{Y''}^{[r]} \) for \(c \in \mathbb{C} = \Spec(\mathbb{C}[T^{-1}]) \).

We state the following claim.

Claim. There is a resolution of singularities \(\beta : \tilde{Y}'' \to Y'' \) such that the natural induced map \(\tilde{\omega}'' : \tilde{Y}'' \to \mathbb{C} \) is locally trivial along the fiber over \(\{0\} = V(T^{-1}) \):

\[\tilde{Y}'' \xrightarrow{\tilde{\omega}''} \Spec\mathbb{C}[T^{-1}] \]

Let \(\mathcal{F} \subset \tilde{Y}'' \to \mathbb{C} \) be the horizontal divisor of \(\tilde{Y}'' \) which is exceptional for \(\beta : \tilde{Y}'' \to Y'' \). For \(c \neq 0 \), we have the relation:

\[\Res_{|\tilde{Y}''_c}(\beta^*(\tilde{\Omega}_0)) = \beta^*(\Res_{|Y''_c}(\tilde{\Omega}_0)). \]

Since \((A, m)\) has only canonical singularities, this is holomorphic. Hence \(\tilde{\Omega}_0 \) is holomorphic on \(\tilde{Y}'' \). Therefore \(\Res_{|\tilde{Y}''_0}(\beta^*(\tilde{\Omega}_0)) \) is holomorphic.

Q.E.D. for the claim.

Step 6. Here we will introduce a filtration \(F_B \) on the local ring \(B = \oplus_{k=0}^{r} \mathcal{R}'_{k} \mathcal{R}_A \) which has the desired properties as is claimed in Theorem 2.

By a tentative way, we set \(F_B^k(\omega_A^{[m]}) \subset \omega_A^{[m]} \) as follows:

\[F_B^k(\omega_A^{[m]}) = \sum_{ma'+rh \geq k \cdot \gcd(a', r)} \psi_* \left(\omega_X^{[m]}(mE - kE) \right) \subset \omega_A^{[m]}, \]

and

\[F_B^k(B) = \oplus_{m=0}^{r-1} F_B^k(\omega_A^{[m]}) U^m \subset B = \oplus_{m=0}^{r-1} \omega_A^{[m]} U^m. \]
The main point which we have to check here is the assertion that the associated graded ring of $gr_{F_{B}}B$ is nothing but the graded canonical cover $G = R(E, D)$. We can show this assertion by the following formula about graded cyclic covers which we will recall in the below.

Now, K_{G} is a Q–Cartier divisor of index r and there exists $\varphi \in k(X)$ such that $rK_{E} - a'D = div_{X}(\varphi)$.

Corollary (1.7.1) of [7]. Let $S = S(R, K_{R}, \varphi T^{a'})$ be the normal graded cyclic r-cover of $R = R(X, D)$ as described in [7]. Then the Pinkham-Demazure construction S with respect to $T = T^{b}u^{\alpha}$ with $\alpha a' + \beta r = s(= (r, a'))$ is given by $S = R(F, D)$ as follows:

1. F is the cyclic cover of E given by
 \[\rho : F = Spec_{E}(\bigoplus_{l \geq 0} O_{E}(l \left(\frac{r}{s}(K_{X} + D') - \frac{a'}{s}D \right))) \rightarrow E. \]

2. $\tilde{D} = \rho^{*}\{\alpha(K_{X} + D') + \beta D\}$.

3. We obtain the relation $K_{S} = S(\frac{a'}{s})$.

By using Lemma B and the above theorem we can check the assertion. The details are left to the readers.

Further we obtain the following relations;

\[F_{B}^{k} \cap A = F_{B}^{k}(\omega_{E}^{[0]}) = \sum_{h \geq k^{\text{red}}(a', r)} \psi_{*}(O_{X}(-hE)) = F(k^{\text{red}}(a', r)). \]

Step 7. Now we assume that $d = \dim A = 3$ and that (V, p) is a terminal singularity of index r. Then so is $gr_{F}(A) = R(E, D)$. Since $gr_{F_{B}}(B)$ is the graded canonical cover of $gr_{F}(A)$, $gr_{F_{B}}(B)$ is a terminal 3-dimensional singularity of index one, hence is regular or compound Du Val singularity. In particular, $gr_{F_{B}}(B)$ is a hypersurface isolated singularity by M. Reid [4].

We have the following results on multiplicities of filtered rings;

Lemma [5]. Let $P(G_{B}, \lambda) = \sum_{k>0} l((G_{B})_{k}) \lambda^{k} \in Z[[\lambda]]$ and $x_{1}, \ldots, x_{s} \in (G_{B})_{+}$ be a homogeneous minimal generator with $\deg x_{1} \leq \deg x_{2} \leq \ldots \leq \deg x_{s}$. Then we have the followings.

1. $\deg x_{1} \cdot \deg x_{2} \cdots \deg x_{d} \lim_{\lambda \rightarrow 1} (1 - \lambda)^{d}P(G_{B}, \lambda) \leq e(m_{B}, B) \leq e((G_{B})_{+}, G_{B})$.

 Hence, if $e((G_{B})_{+}, G_{B})$ equals the round up of the rational number $\deg x_{1} \cdot \deg x_{2} \cdots \deg x_{d} \lim_{\lambda \rightarrow 1} (1 - \lambda)^{d}P(G_{B}, \lambda)$, then we have the equality $e(m_{B}, B) = e((G_{B})_{+}, G_{B})$.

2. If G_{B} is a hypersurface isolated singularity which is defined by a quasi-homogeneous polynomial of type $(\deg x_{1}, \ldots, \deg x_{d+1}; h)$, then $\deg x_{1} \cdot \deg x_{2} \cdots \deg x_{d} \lim_{\lambda \rightarrow 1} (1 - \lambda)^{d}P(G_{B}, \lambda) = \frac{h}{\deg x_{d+1}}$ and $e((G_{B})_{+}, G_{B})$ equals to the round up of the rational number $\frac{h}{\deg x_{d+1}}$.

Hence we obtain the relation $e(m_{B}, B) = e((G_{B})_{+}, G_{B})(= 1, or 2).
This completes the proof of Theorem 2.

References
3. Y. Kawamata: Divisorial contractions to 3-dimensional terminal quotient singularities. in "Higher-dimensional complex varieties (de Gruyter, 1996)" 241–245
5. M. Tomari: Multiplicity of filtered rings and simple K3 singularities of multiplicity two. preprint
8. M. Tomari: Papers which include the proof of Lemma in Step 4 of §2, in preparation.