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1 Introduction.

Let & C R®(n > 3) be an exterior domain, i.e., a domain having a compact complement
R™ \ Q with the smooth boundary 8Q. Consider the initial-boundary value problem of the
Navier-Stokes equations in 2 x (0, 00):

%—Au+u-Vu+Vp=O inzeN,0<t< oo,

(N-S) divu=0 inze0<t< oo,
u=0 on 9N, u(z,t) = 0 as |z| — oo,
u|t=0 =a,

where u = u(z,t) = (ui(z,t), -, un(z,t)) and p = p(z,t) denote the unknown velocity
vector and the pressure of the fluid at the point (z,t) € 2 x (0,00), while a = a(z) =
(a1(z),- - ,an(x)) is the given initial velocity vector.

The global existence of strong solutions u to (N-S) for small data a had been investigated
by many authors, Fujita-Kato [8], Solonnikov [25], Heywood [13],Giga-Miyakawa [11] and
Kato [15]. In exterior domains, Iwashita [14] proved the most remarkable result together
with the asymptotic behaviour. In [14], it turns out that for small a € L™(2) N L3(Y) with
1 < s < n there exists a unique strong solution u with the following decay property

(1.1) lu@llzr@) = Ot™2 f_l%)) 8 <r < oo,
IVu(®)llLr @) = O™ 2 '")_-) s<r<n

as t — o0o. The first purpose of this article is to consider whether or not it is possible to take
8 =11in (1.1). Our problem is motivated by the fundamental question on the energy decay
of solutions which was proposed by Leray [20]. For every a € L?(Q2), there exists at least one
weak solution u to (N-S). In his famous paper [20], he had asked whether every weak solution
does satisfy

IIU(t)”Lz(Q) —0 ast— oo.



After 50 years of Leary’s proposal, Masuda [21] and Kato [15] independently gave a positive
answer to his question for all weak solutions u satisfying the energy inequality of the strong
form. Then much effort had been made to obtain the decay rate of lw(t)llL2(q) as t — oo.
At the present, the best rate is given by Borchers-Miyakawa [3] who proved that if

||€_tAa”L2(Q) =0(t™®) ast— oo (A;the Stokes operator),

then there holds
ot ) for 0 < a < n/4,

()l L2(0) = { O(t~%) forn/A<a<oo

as t — oo. It should be noted that the decay rate t—™/4 can be obtained formally by taking
r=2and s = 1in (1.1). We shall show that if the initial data a € LY(Q) N L™(Q) with
certain regularity, then every strong solution u of (N-S) with (1.1) for s sufficiently close to
1 decays like

(1.2) lu(®) |-y = O™ 34~P) forall 1 <7 < oo

ast — o0.

The second purpose of this article is to consider whether the above decay rate t-30-9) is
optimal in the norm of L™(2). In the whole space R"™, Wiegner [28] showed that there exists
a weak solution u such that

lu@®l2@n) = O(t_%ﬁ) as t — 0o.

It was proven by Schonbek (23], [24] that this decay rate ¢t~ is optimal in L2(R®). In
exterior domains €2, however, we shall show that the strong solution u decays like

(1.3) ()| -y = ot 33~ for some 1 < r < 00

as t — oo if and only if -
(1.4) [ [ Tiuslnn - vas,a=o
0o Jan

where T[u,p] = {Oui/0z; + Ou;/0zi — 8ijp}ij=1,n denotes the stress tensor and v =
(v1,--+,Vn) is the unit outward normal to 8. This implies that the faster decay rate than
t~30-2) in L7 (Q) of the velocity causes necessarily physical restriction on the net force ex-
erted by the fluid to the obstacle. As a result, from a physical point of view, the decay rate
like (1.2) seems to be optimal.

2 Results.

Before stating our results, we first introduce some function spaces. Let C§%(§2) denote the set
of all C™ vector functions ¢ = (¢1, -, ¢n) With compact support in Q, such that div ¢ = 0.
L7 () is the closure of C§%(§2) with respect to the L™-norm || - ||» = || - llr(@); (-;*) denotes
the duality pairing between L"(€2) and L (), where 1/r +1/r’ = 1. L"(Q) stands for the
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usual (vector-valued) L"-space over , 1 < r < co. It is known that for 1 < r < oo, L7 () is
characterized as

Lg(92)
={ue L’ (Q);divu=0 inQ, u-v=0on0dQ in the sense W1-1/7"7(5Q)* }

and that there holds the Helmholtz decomposition
L'(Q)=L,(Q) &G () (direct sum),1 < r < oo,

where G"(Q?) = {Vp € L"(Q);p € L] (2)}. We denote by P, the projection operator from
L"(2) onto L7(Q) along G"(Q). Then the Stokes operator A, is defined by A, = —P,A
with the domain D(4,) = {u € W?"(Q) N L}(Q); ulan = 0}. It is proved by Giga [10] and
Giga-Sohr [12] that — A, generates a uniformly bounded holomorphic semigroup {e~*4r},5¢
of class Cp in L3(R) for 1 < r < co. Hence one can define the fractional power A¢ for
0<a<l.

The class of solutions which we consider is as follows.

Definition. Let 1 < 3 < n and let a € L(Q) N L?(R). A measurable function u on
2 x (0,00) is called a strong solution of (N-S) in the class CL,(0, 00) if

(i) v € C([0,00); L5(2) N LE(R));
(i) Au,8u/6t € C((0, 00); L(R2));

(iii)
ou .
(N-S?) { 5 +Au+ P(u-Vu) =0 in L?(Q), 0< t < oo,
u(0) = q,

Remarks. 1. It was shown by Kato [15] and Iwashita [14] that for 1 < s < n there is a
constant (s, n) such that for every a € L(2) N L3(Q) with fla]|n < A, there exists a unique
strong solution u of (N-S) in the class CL,(0, 00). Moreover, such a solution satisfies (1.1).

2. Every strong solution u in the class C'L,(0, o) satisfies (N-S’) also in L5(f2) and there
holds

dloly ou ~
m, E € C(Q X (0, OO))

for all multi-indices a = (a1, -, an), where |a| = a3 + - -- + an. Moreover, there exists a
unique(up to an additive function of t) scalar function p € C1(£2 x (0, 00)) with

(2.1) Vp € C((0,00); L*(2) N L™(Q))

such that the pair {u,p} satisfies (N-S) in the classical sense. We call such p the pressure
associated with u.



3. If 1 < s < m, by (2.1) and the Sobolev embedding([12, Corollary 2.2]), we may take p
as p € C((0, 00); L™/ "=2)(Q2)).

Throughout this paper, we impose the following assumption on the initial data.

Assumption. For some < g« < 0o and € > 0 the initial data a satisfies

n—2

a€ LY Q) NLE(Q) ND(A;,).

Our first result on the decay property of strong solutions now reads:

Theorem 1. Let a be as in the Assumption. Suppose that u is the strong solution of
(N-S) in the class CL4(0,00) with (1.1) for1 < s < mz’n.{ 8,2 } Then u(t) decays like

n—1’n+¥2
(2.2) lu(@)|l, = 0 307)) foralll <1 < oo.
ast — oo

Remarks. 1. Iwashita [14] showed the existence of the strong solution w in the class
CLs(0,00) with (1.1) for a € L(2) N L?(Q) with 1 < s < n provided [|a||, is small. Con-
cerning the linear Stokes flows for s = 1, the author [19] proved

(2:3) letall, < Ct=30-D(llall1 + llallq. + 14%llg.), 1<7 < oo,
(2.4) IVet4al, < Ct~30-D=2(||ally + ||allg, + I 4%allq.), 1< 7 <,

for all t > 1 and for all a as in the Assumption.
2. In (2.2), we do not know whether r = 1 is possible; the author [18] showed that
u € C([0,00); L} (2)) with its associated pressure p € C((0, 0o; L7=1(Q)) if and only if there
holds
(2.5) / T[u,p)(y,t) - vdSy =0, forall 0 <t < oo,
1219

where T[u,p] = {Oui/dz; + Ou;/0z; — 6ijp}ij=1,...n denotes the stress tensor and v =
(v1,---,vy) is the unit outward normal to Q. Hence, it seems to be difficult to take r = 1
in (2.2) for all a satisfying the Assumption.

We next investigate the faster decay than (2.2):

Theorem 2. Let a be as in the Assumption. Suppose that u is the strong solution as in
Theorem 1. If

(2.6) [u@®)|lr = ot 32))  for some 1 < r < oo

as t — oo, then there holds

(2.7) /0 dt ./an T[u,p](y,t) - vdS, = 0.
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Conversely, if (2.7) holds, then we have
(2.8) @)l = ot 31"))  foralll <7 < oo
ast — 0o.

Remarks. 1. In case = R™, the situation is quite different. Wiegner [28] showed
existence of a weak solution u of (N-S) with the property that

lu(®)llz2mn) = O(t™377) as t — oo.
Schonbek [23], [24] and Miyakawa-Schonbek [22] proved that there exist an initial data a €
L'(R™) N LZ(R™) and a weak solution u of (N-S) such that

lu(t)|| L2(rm) 2 Ct %% for large t.
Fujigaki-Miyakawa [6] proved that there exist an initial data a € LY(R™) N L?(R™) and a
strong solution u of (N-S) such that

Nu(®)llr@n) 2 Ct~30-2-2  for large t.

2. In case Q = R7 (half space), based on the Ukai’s formula [27] for e~t4a, faster decay
rates than in R™ were obtained by Bae-Choe [1}, Bae [2] and Fujigaki-Miyakawa [7].

3. The net force plays an important role also for the spacial decay at infinity of the
solutions to the stationary problem in Q C R3:

{ -Aw+w-Vw+Vp=divF, inze

divw=0 inze, inzxe
w=0 ondQ w()—>w® as|r|— oo,

(E)

where F = F(z) = {F;j()}i,j=1,2,3 denotes the given 3 x3 tensor, while w*® = (w{°, w5°, w5°)
is the prescribed constant vector in R3. Finn [4], [5] treated the case when F' = 0, w™ # 0.
Introducing the notion of physically reasonable solution w of (E), i.e.,

lw(z) —w™| = O(lz|"37%) (¢ >0) as |z| — oo,

he proved that
|lw(z) —w™| = o(|z|™!)  as|z| — oo

if and only if there holds
/ T(w, p)(y) - vdS, = 0.
an

Kozono-Sohr-Yamazaki [17] considered the case when F # 0, w™ = 0. They dealt with the
D-solution w, i.e., / |Vw(x)|2dz < oo and showed that w € L3(Q) if and only if
Q

/ (Thw, 2l() + F(y)) - vdS, = 0.
on
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3 Outline of the proof of the theorems.

In this section, we shall give a sketch of the proof of Theorems 1 and 2. Let us first recall
the fundamental tensor {E;;(z,t)}; j=1,..n to the linear Stokes system defined by

2
Eij(:v,t)=r(a:,t)6,-j+aaa T8 *G)(z), ij=1,---,n,
where . , .
= — _Jﬂt— - |p|2—n — n—1
[(z,t) = ( 47Tt)%e i, G(z) . |z|2™,  wp = vol.(§"7Y).

We have the following representation formula of the strong solution.

Lemma 3.1 (Representation formula) Let a be as in the Assumption. The strong solu-
tion u(t) to (N-S) in the class CL4(0,00) for 1 < s < n can be represented as

ui(z,t) = /F(w—y,t)ai(y)dy
/ ar [ 3 Bygle vt — 1T,y Tn(s)dS,

o k=1
/dT/ Z a 1_’[(x y,t—T)'lLk u](y, )
Q k= )0
(31) = Uz(.’E,t)‘i"/z(iE,t)‘f-Wl(fL',t), i=1--,n

for all (z,t) € Q x (0,00).
To make use of this representation formula, we need to investigate behaviour of the boundary

integral
[ (Vu(w 01+ o)) s, for il ¢ € (0,00).
on

Lemma 3.2 Let a be as in the Assumption. Let ¢ = nq./(n + q.)-
(i) Every strong solution u of (N-S) in the class CLs(0,00) for 1 < s < n and its
associated pressure p satisfy

/ (IVu(y, t)| + |p(y, t)])dSy < Ct* ! forall0<t<1
on

with a = (}_%q)s where C = C(n, ¢, €).

(ii) Let u be a strong solution of (N-S) in the class CL4(0,00) for1 < s < min. { 2n

n—1’ n+2
with the decay property (1.1). For everyl with 1 < s <l < n, u and its associated pressure
p are subject to the estimate

1

/ (IVu(y, t)] + p(y, ))dS, < Ct+~ 3612 forall1 <t < oo,
N

where C = C(n, s,1).
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For the proof we need the trace theorem and the following estimate by Kozono-Ogawa [16]
IV2ulls < C(Il Aulls + | Vulls), 1<s<oo

for all u € D(A;) together with the decay property
lAu@®)|, = Ot~ 3G, s<li<oo, ast— oo.
Proof of Theorem 1:

By Lemma 3.1, we may estimate U(t), V(t) and W(t) in L", respectively. First, let us
consider the case 1 < r < n/(n —1). Recall

Ui(.’L‘, t) = / P(.’E - y,t)a1(y)dy, 1=1,---,n
Q

Since

/ la(z)|dz < 00 withdiva=0inQ, a-v =0 o0n 09,
there holds "’ v
/ﬂag(y)dy= 0, i=1,---,n.
Hence we have by the Hausdorff-Young inequality that
(3:2) @)l = o(t™307)  as ¢ — oo
To deal with

n t
Vi(z,t) = Z/d"/ Eij(x —y,t — 7)Tjk[u, pl(y, T)vk(y)dSy, i=1,---,n,
o Jea

we need to notice that {E;;}; j=1,..n can be expressed as
(3.3) Eij(-,t) = (61'_1' + RiRj)F(-,t), 5,7=1,---,n,
where R; = %(—A)'%, i = 1,---,n denote the Riesz transforms. Since R; : L"(R") —
L™(R™) is boun:ied, we have
(3.4) 102 0F Eij(, )|l < Ct30-)~5~k  m k=0,1,V¢t >0,
which yields
n t
VOl < 3 [ar [ 18- nt- )T sl In) s,

ij.k=1

IA

n t
> [ar [ (Tl rln, @B~ vt =7,

i,5,k=1

35) < 0 [(6-n#0b ([ (Vuunl+ b, as, ) ar.
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Applying Lemma 3.2 to the estimate of the R.H.S., we obtain
(3.6) V@)l = 0"20-%))  ast — co.
Finally, we treat the third term
t n LR
Wi(z,t) = / dT/ Y a-Bij@—yt—Tu-ui(y, )y, i=1,--,n
o Ja 5= O

By (3.4) and the Housdorff-Young inequality, we have
¢
W@l < [ IVECE= Dl urlhds

- t
< c / (t — )~ 30D} ||u(r) |2dr.
0

n

(3.7) W@, = 0t 30-D-3) ast — oo.

Notice that —2(1— 1) — 3> -1<=r <n/(n—1). Then by (3.2), (3.6) and (3.7), we have
the desired decay for ||u(t)||, provided 1 <r < n/(n —1).

In case n/(n — 1) < r < oo, some skilful technique by duality is necessary. Here we omit
the detail. This proves Theorem 1.

Proof of Theorem 2:
Without loss of generality, we may assume that

(3.8) lu@®]lr = o(t_%(l‘%)) for some r with 1 <r < n/(n—1).

as t — oo. Indeed, if (2.6) holds for some n/(n — 1) < r < oo, then by choosing 1 < rg <
ri<n/(n-1)and 0 < § < 1 with 1/r; = (1—6)/ro + 6/r, we have

lu@lle, < llul@)llsy *lu@))?
_ O(t—%(l—%)(l—o)) o(t~ 3010y
= ot 2077
as t — oo, which yields (3.8).
By Lemma 3.1, we have similarly to (3.1) that
(3.9 ui(z, )

= Uie,t) + V(e ) + Wia,t) + 3 Eiy(a 1) / dr /a Talu ) )ds,
Ge=1 0
i=1,---,n,



for all (z,t) € 2 x (0,00), where

Ui(z,t)

Vi(z, )

= [ T v mtd
= Z /0 dr /an {Eij(z —y,t — 7) — Ejj(z, )} Tjrlu, pl(y, T)vi(y)dSy,

k=1

t n a
Wi(z,t) =/0 dT/Q ; 6_ykEij(x_y,t‘7')uk'uj(y>7')dy
J,k=1

fori=1,---,n. Since 1 < r < n/(n— 1), we have by (3.2) and (3.7) that

(3.10)

W@l = o(t~20=9), W), = 0@~ 30-1)-1%)

as t — oo. Using the expression

Vi(z, )
= i /0 “dr /aﬂ ( /0 1 %E,-j(x — Oy, t — 01)d0) Tjk[u, pl(y, T)ve(y)dSy

k=

1

= 3 [ar [ ([ 9= out-0r) - (-0a0) Tl i ints,

Jik=

+

1

an /Ot dr /aﬂ ( /0 1 O Eij(x — Oy, t — 07)(—7)(10) Tj[u, p](y, )vk(y)dSy,

Jk=1

we can show, with the aid of some technical calculation, that

(3.11)

IV(@)llr = ot~ 33-7)) as t — 0.

On the other hand, there holds

(3.12)

where

lim inf ¢3(1—3)
t—00
r

Py}
yeRn

fi(r) = /a 3 Tl 0, S, =1
k=1

n t
S Byl t) /0 f5(r)dr

j=1

;Eij(y, 1) /0 f3(r)dr

Now, assume that

lu(®)llr = o(t=319) ast — oo.
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Then it follows from (3.10), (3.11) and (3.12) that

n 00
(3.13) ZE,-j(y, 1)/ fi(r)dr =0, i=1,---,n, forallyeR".
i—1 0

Since Eij(ﬁ, 1) = (&-j — ng) e"ﬂz, i,j =1,---,n, we have by (3.13) that

n 0o ‘
Z(éij - w,-wj)/ fi(r)dr =0, i=1,---,n
=1 0

for all w = (w1, - -+, wn) € R™ with |w| = 1. Obviously, we conclude that

/0 fi(r)dr = / falr)dr =

which implies

(e} n .
/ dT/ > Tiklu, pl(y, )i (y)dSy =0, j=1,---,n
0 0

This shows (2.7).

Conversely, if (2.7) holds, then we have by (3.9), (3.10) and (3.11) that
lu@®llr < ||U(t)||r + IVl + IW@)lr

£ 3 1Bl | [ firar

i,j=1
= o(t__(l“l))

for all 1 <7 < n/(n—1) ast — co. By the same technique as before, we get (2.8). This

proves Theorem 2.
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