Asymptotic behaviour and net force for the Navier-Stokes flows in exterior domains (Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics)

Choe, Hi Jun; Kozono, Hideo

数理解析研究所講究録 2001, 1234: 58-69

Issue Date: 2001-10

URL: http://hdl.handle.net/2433/41506

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Asymptotic behaviour and net force for the Navier-Stokes flows in exterior domains

Hi Jun Choe (Yonsei University, KOREA)
Hideo Kozono (Tohoku University, JAPAN)

To the memory of Professor Tosio Kato

1 Introduction.

Let \(\Omega \subset \mathbb{R}^n (n \geq 3) \) be an exterior domain, i.e., a domain having a compact complement \(\mathbb{R}^n \setminus \Omega \) with the smooth boundary \(\partial \Omega \). Consider the initial-boundary value problem of the Navier-Stokes equations in \(\Omega \times (0, \infty) \):

\[
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u + u \cdot \nabla u + \nabla p &= 0 \quad \text{in} \ x \in \Omega, \ 0 < t < \infty, \\
\text{div} u &= 0 \quad \text{in} \ x \in \Omega, \ 0 < t < \infty, \\
u &= 0 \quad \text{on} \ \partial \Omega, \quad u(x,t) \to 0 \quad \text{as} \ |x| \to \infty, \\
u|_{t=0} &= a,
\end{align*}
\]

(N-S)

where \(u = u(x,t) = (u_1(x,t), \ldots, u_n(x,t)) \) and \(p = p(x,t) \) denote the unknown velocity vector and the pressure of the fluid at the point \((x,t) \in \Omega \times (0, \infty) \), while \(a = a(x) = (a_1(x), \ldots, a_n(x)) \) is the given initial velocity vector.

The global existence of strong solutions \(u \) to (N-S) for small data \(a \) had been investigated by many authors, Fujita-Kato [8], Solonnikov [25], Heywood [13], Giga-Miyakawa [11] and Kato [15]. In exterior domains, Iwashita [14] proved the most remarkable result together with the asymptotic behaviour. In [14], it turns out that for small \(a \in L^n(\Omega) \cap L^s(\Omega) \) with \(1 < s \leq n \) there exists a unique strong solution \(u \) with the following decay property

\[
\begin{align*}
\|u(t)\|_{L^r(\Omega)} &= O(t^{-\frac{n}{2}\left(\frac{1}{s}-\frac{1}{r}\right)}), \quad s \leq r \leq \infty, \\
\|\nabla u(t)\|_{L^r(\Omega)} &= O(t^{-\frac{n}{2}\left(\frac{1}{\epsilon}-\frac{1}{r}\right)-\frac{1}{2}}), \quad s \leq r \leq n
\end{align*}
\]

as \(t \to \infty \). The first purpose of this article is to consider whether or not it is possible to take \(s = 1 \) in (1.1). Our problem is motivated by the fundamental question on the energy decay of solutions which was proposed by Leray [20]. For every \(a \in L^2(\Omega) \), there exists at least one weak solution \(u \) to (N-S). In his famous paper [20], he had asked whether every weak solution does satisfy

\[
\|u(t)\|_{L^2(\Omega)} \to 0 \quad \text{as} \ t \to \infty.
\]
After 50 years of Leary's proposal, Masuda [21] and Kato [15] independently gave a positive answer to his question for all weak solutions \(u \) satisfying the energy inequality of the strong form. Then much effort had been made to obtain the decay rate of \(\|u(t)\|_{L^2(\Omega)} \) as \(t \to \infty \). At the present, the best rate is given by Borchers-Miyakawa [3] who proved that if

\[
\|e^{-tA}a\|_{L^2(\Omega)} = O(t^{-\alpha}) \quad \text{as } t \to \infty \quad (A; \text{the Stokes operator}),
\]

then there holds

\[
\|u(t)\|_{L^2(\Omega)} = \begin{cases} O(t^{-\alpha}) & \text{for } 0 < \alpha \leq n/4, \\ O(t^{-\frac{n}{2}}) & \text{for } n/4 < \alpha < \infty \end{cases}
\]

as \(t \to \infty \). It should be noted that the decay rate \(t^{-n/4} \) can be obtained formally by taking \(r = 2 \) and \(s = 1 \) in (1.1). We shall show that if the initial data \(a \in L^1(\Omega) \cap L^n(\Omega) \) with certain regularity, then every strong solution \(u \) of (N-S) with (1.1) for \(s \) sufficiently close to 1 decays like

\[
\|u(t)\|_{L^r(\Omega)} = O(t^{-\frac{n}{2}(1-\frac{1}{r})}) \quad \text{for all } 1 < r < \infty
\]

as \(t \to \infty \).

The second purpose of this article is to consider whether the above decay rate \(t^{-\frac{n}{2}(1-\frac{1}{r})} \) is optimal in the norm of \(L^r(\Omega) \). In the whole space \(\mathbb{R}^n \), Wiegner [28] showed that there exists a weak solution \(u \) such that

\[
\|u(t)\|_{L^2(\mathbb{R}^n)} = O(t^{-\frac{n+2}{4}}) \quad \text{as } t \to \infty.
\]

It was proven by Schonbek [23], [24] that this decay rate \(t^{-\frac{n+2}{4}} \) is optimal in \(L^2(\mathbb{R}^n) \). In exterior domains \(\Omega \), however, we shall show that the strong solution \(u \) decays like

\[
\|u(t)\|_{L^r(\Omega)} = o(t^{-\frac{n}{2}(1-\frac{1}{r})}) \quad \text{for some } 1 < r < \infty
\]

as \(t \to \infty \) if and only if

\[
\int_0^\infty \int_{\partial\Omega} T[u, p](y, t) \cdot \nu \, dS_y \, dt = 0,
\]

where \(T[u, p] = \{ \partial u_i/\partial x_j + \partial u_j/\partial x_i - \delta_{ij}p \}_{i,j=1,\ldots,n} \) denotes the stress tensor and \(\nu = (\nu_1, \ldots, \nu_n) \) is the unit outward normal to \(\partial\Omega \). This implies that the faster decay rate than \(t^{-\frac{n}{2}(1-\frac{1}{r})} \) in \(L^r(\Omega) \) of the velocity causes necessarily physical restriction on the net force exerted by the fluid to the obstacle. As a result, from a physical point of view, the decay rate like (1.2) seems to be optimal.

\section{Results.}

Before stating our results, we first introduce some function spaces. Let \(C^\infty_{0,\sigma}(\Omega) \) denote the set of all \(C^\infty \) vector functions \(\phi = (\phi_1, \ldots, \phi_n) \) with compact support in \(\Omega \), such that \(\mathrm{div} \phi = 0 \). \(L^r_\sigma(\Omega) \) is the closure of \(C^\infty_{0,\sigma}(\Omega) \) with respect to the \(L^r \)-norm \(\| \cdot \| = \| \cdot \|_{L^r(\Omega)} \); \(\langle \cdot, \cdot \rangle \) denotes the duality pairing between \(L^r(\Omega) \) and \(L^{r'}(\Omega) \), where \(1/r + 1/r' = 1 \). \(L^r(\Omega) \) stands for the
usual (vector-valued) L^r-space over Ω, $1 \leq r \leq \infty$. It is known that for $1 < r < \infty$, $L^r_\sigma(\Omega)$ is characterized as

$$L^r_\sigma(\Omega) = \{ u \in L^r(\Omega); \text{div } u = 0 \text{ in } \Omega, \ u \cdot \nu = 0 \text{ on } \partial \Omega \text{ in the sense } W^{1-1/r',r'}(\partial \Omega)^* \}$$

and that there holds the Helmholtz decomposition

$$L^r(\Omega) = L^r_\sigma(\Omega) \oplus G^r(\Omega) \quad \text{(direct sum), } 1 < r < \infty,$$

where $G^r(\Omega) = \{ \nabla p \in L^r(\Omega); p \in L^r_{loc}(\overline{\Omega}) \}$. We denote by P_r the projection operator from $L^r(\Omega)$ onto $L^r_\sigma(\Omega)$ along $G^r(\Omega)$. Then the Stokes operator A_r is defined by

$$A_r = -P_r$, for $u \in W^{2,r}(\Omega) \cap L^r_{\sigma}(\Omega)|u_{\partial \Omega} = 0 \text{ in the sense } W^{1-1/r',r'}(\partial \Omega)^*.$$}

It is proved by Giga [10] and Giga-Sohr [12] that $-A_r$ generates a uniformly bounded holomorphic semigroup $\{ e^{-tA_r} \}_{t \geq 0}$ of class C^∞ in $L^r_{\sigma}(\Omega)$ for $1 < r < \infty$. Hence one can define the fractional power A_r^α for $0 \leq \alpha \leq 1$.

The class of solutions which we consider is as follows.

Definition. Let $1 < s \leq n$ and let $a \in L^s_{\sigma}(\Omega) \cap L^n_{\sigma}(\Omega)$. A measurable function u on $\Omega \times (0, \infty)$ is called a strong solution of (N-S) in the class $CL^s_s(0, \infty)$ if

(i) $u \in C([0, \infty); L^s_{\sigma}(\Omega) \cap L^n_{\sigma}(\Omega))$;

(ii) $Au, \partial u/\partial t \in C((0, \infty); L^s_{\sigma}(\Omega))$;

(iii)

(N-S') \quad \left\{ \begin{array}{l}
\frac{\partial u}{\partial t} + Au + P(u \cdot \nabla u) = 0 \text{ in } L^n_{\sigma}(\Omega), \ 0 < t < \infty, \\
u(0) = a,
\end{array} \right.$

Remarks. 1. It was shown by Kato [15] and Iwashita [14] that for $1 < s \leq n$ there is a constant $\lambda(s,n)$ such that for every $a \in L^s_{\sigma}(\Omega) \cap L^n_{\sigma}(\Omega)$ with $||a||_n \leq \lambda$, there exists a unique strong solution u of (N-S) in the class $CL_s(0, \infty)$. Moreover, such a solution satisfies (1.1).

2. Every strong solution u in the class $CL^s_s(0, \infty)$ satisfies (N-S') also in $L^s_{\sigma}(\Omega)$ and there holds

$$\frac{\partial |\alpha| u}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}, \quad \frac{\partial u}{\partial t} \in C(\overline{\Omega} \times (0, \infty))$$

for all multi-indices $\alpha = (\alpha_1, \cdots, \alpha_n)$, where $|\alpha| = \alpha_1 + \cdots + \alpha_n$. Moreover, there exists a unique (up to an additive function of t) scalar function $p \in C^1(\Omega \times (0, \infty))$ with

(2.1) \quad $\nabla p \in C((0, \infty); L^s(\Omega) \cap L^n(\Omega))$

such that the pair $\{u, p\}$ satisfies (N-S) in the classical sense. We call such p the pressure associated with u.
3. If $1 < s < n$, by (2.1) and the Sobolev embedding ([12, Corollary 2.2]), we may take p as $p \in C((0, \infty); L^{ns/(n-s)}(\Omega))$.

Throughout this paper, we impose the following assumption on the initial data.

Assumption. For some $\frac{n}{n-2} < q_* < \infty$ and $\varepsilon > 0$ the initial data a satisfies

$$a \in L^1(\Omega) \cap L^n(\Omega) \cap D(A_q^\varepsilon).$$

Our first result on the decay property of strong solutions now reads:

Theorem 1. Let a be as in the Assumption. Suppose that u is the strong solution of (N-S) in the class $CL_s(0, \infty)$ with (1.1) for $1 < s < \min \left\{ \frac{n}{n-1}, \frac{2n}{n+2} \right\}$. Then $u(t)$ decays like

$$||u(t)||_r = O(t^{-\frac{n}{2}(1-\frac{1}{r})}) \quad \text{for all} \quad 1 < r < \infty.$$

Remarks.

1. Iwashita [14] showed the existence of the strong solution u in the class $CL_s(0, \infty)$ with (1.1) for $a \in L^s_\sigma(\Omega) \cap L^n_\sigma(\Omega)$ with $1 < s \leq n$ provided $||a||_n$ is small. Concerning the linear Stokes flows for $s = 1$, the author [19] proved

$$||e^{-tA}a||_r \leq Ct^{-\frac{n}{2}(1-\frac{1}{r})}(||a||_1 + ||a||_{q_*} + ||A^\varepsilon a||_{q_*}), \quad 1 < r \leq \infty,$$

$$||\nabla e^{-tA}a||_r \leq Ct^{-\frac{n}{2}(1-\frac{1}{r})-\frac{1}{2}}(||a||_1 + ||a||_{q_*} + ||A^\varepsilon a||_{q_*}), \quad 1 \leq r \leq n,$$

for all $t > 1$ and for all a as in the Assumption.

2. In (2.2), we do not know whether $r = 1$ is possible; the author [18] showed that $u \in C([0, \infty); L^1(\Omega))$ with its associated pressure $p \in C((0, \infty); L^{\frac{n}{n-1}}(\Omega))$ if and only if there holds

$$\int_{\partial \Omega} T[u, p](y, t) \cdot \nu dS_y = 0, \quad \text{for all} \quad 0 < t < \infty,$$

where $T[u, p] = \{ \partial u_i/\partial x_j + \partial u_j/\partial x_i - \delta_{ij} p \}_{i,j=1,\cdots,n}$ denotes the stress tensor and $\nu = (\nu_1, \cdots, \nu_n)$ is the unit outward normal to $\partial \Omega$. Hence, it seems to be difficult to take $r = 1$ in (2.2) for all a satisfying the Assumption.

We next investigate the faster decay than (2.2):

Theorem 2. Let a be as in the Assumption. Suppose that u is the strong solution as in Theorem 1. If

$$||u(t)||_r = o(t^{-\frac{n}{2}(1-\frac{1}{r})}) \quad \text{for some} \quad 1 < r \leq \infty$$

as $t \to \infty$, then there holds

$$\int_0^\infty dt \int_{\partial \Omega} T[u, p](y, t) \cdot \nu dS_y = 0.$$
Conversely, if (2.7) holds, then we have

\begin{equation}
\|u(t)\|_{r} = o(t^{-\frac{n}{2}(1-\frac{1}{r})}) \quad \text{for all } 1 < r \leq \infty
\end{equation}

as \(t \to \infty \).

Remarks.

1. In case \(\Omega = \mathbb{R}^{n} \), the situation is quite different. Wiegner [28] showed existence of a weak solution \(u \) of (N-S) with the property that

\[\|u(t)\|_{L^{2}(\mathbb{R}^{n})} = O(t^{-\frac{n}{4}-\frac{1}{2}}) \quad \text{as } t \to \infty. \]

Schonbek [23], [24] and Miyakawa-Schonbek [22] proved that there exist an initial data \(a \in L^{1}(\mathbb{R}^{n}) \cap L_{\sigma}^{2}(\mathbb{R}^{n}) \) and a weak solution \(u \) of (N-S) such that

\[\|u(t)\|_{L^{2}(\mathbb{R}^{n})} \geq Ct^{-\frac{n}{4}-\frac{1}{2}} \quad \text{for large } t. \]

Fujigaki-Miyakawa [6] proved that there exist an initial data \(a \in L^{1}(\mathbb{R}^{n}) \cap L_{\sigma}^{n}(\mathbb{R}^{n}) \) and a strong solution \(u \) of (N-S) such that

\[\|u(t)\|_{L^{r}(\mathbb{R}^{n})} \geq Ct^{-\frac{n}{2}(1-\frac{1}{r})-\frac{1}{2}} \quad \text{for large } t. \]

2. In case \(\Omega = \mathbb{R}_{+}^{n} \) (half space), based on the Ukai's formula [27] for \(e^{-tA}a \), faster decay rates than in \(\mathbb{R}^{n} \) were obtained by Bae-Choe [1], Bae [2] and Fujigaki-Miyakawa [7].

3. The net force plays an important role also for the spatial decay at infinity of the solutions to the stationary problem in \(\Omega \subset \mathbb{R}^{3} \):

\begin{align*}
\begin{cases}
-\Delta w + w \cdot \nabla w + \nabla p = \text{div} F, & \text{in } x \in \Omega \\
\text{div } w = 0 & \text{in } x \in \Omega, \quad \text{in } x \in \Omega \\
w = 0 & \text{on } \partial \Omega, \quad w(x) \to w^{\infty} \text{ as } |x| \to \infty,
\end{cases}
\end{align*}

where \(F = F(x) = \{F_{ij}(x)\}_{i,j=1,2,3} \) denotes the given \(3 \times 3 \) tensor, while \(w^{\infty} = (w_{1}^{\infty}, w_{2}^{\infty}, w_{3}^{\infty}) \) is the prescribed constant vector in \(\mathbb{R}^{3} \). Finn [4], [5] treated the case when \(F \equiv 0, w^{\infty} \neq 0 \). Introducing the notion of physically reasonable solution \(w \) of (E), i.e.,

\[|w(x) - w^{\infty}| = O(|x|^{-\frac{1}{2}-\varepsilon}) \quad (\varepsilon > 0) \quad \text{as } |x| \to \infty, \]

he proved that

\[|w(x) - w^{\infty}| = o(|x|^{-1}) \quad \text{as } |x| \to \infty, \]

if and only if there holds

\[\int_{\partial \Omega} T[w, p](y) \cdot \nu dS_{y} = 0. \]

Kozono-Sohr-Yamazaki [17] considered the case when \(F \neq 0, w^{\infty} = 0 \). They dealt with the \(D \)-solution \(w \), i.e.,

\[\int_{\Omega} |
\nabla w(x)|^{2} dx < \infty \]

and showed that \(w \in L^{3}(\Omega) \) if and only if

\[\int_{\partial \Omega} (T[w, p](y) + F(y)) \cdot \nu dS_{y} = 0. \]
3 Outline of the proof of the theorems.

In this section, we shall give a sketch of the proof of Theorems 1 and 2. Let us first recall the fundamental tensor \(\{E_{ij}(x,t)\}_{i,j=1,\ldots,n} \) to the linear Stokes system defined by

\[
E_{ij}(x,t) = \Gamma(x,t)\delta_{ij} + \frac{\partial^2}{\partial x_i \partial x_j}(\Gamma(\cdot,t) * G)(x), \quad i,j = 1,\ldots,n,
\]

where

\[
\Gamma(x,t) = \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}}, \quad G(x) = \frac{1}{n(n-2)\omega_n} |x|^{2-n}, \quad \omega_n = \text{vol.}(S^{n-1}).
\]

We have the following representation formula of the strong solution.

Lemma 3.1 (Representation formula) Let \(a \) be as in the Assumption. The strong solution \(u(t) \) to \((N-S)\) in the class \(CL_s(0,\infty)\) for \(1 < s \leq n \) can be represented as

\[
u_{i}(x, t) = \int_{\Omega} \Gamma(x-y, t)a_{i}(y)dy \\
+ \int_{0}^{t} d\tau \int_{\partial\Omega} \sum_{j,k=1}^{n} E_{ij}(x-y, t-\tau)T_{jk}[u,p](y, \tau)\nu_{k}(y)dS_{y} \\
+ \int_{0}^{t} d\tau \int_{\Omega} \sum_{j,k=1}^{n} \frac{\partial}{\partial y_{k}}E_{ij}(x-y, t-\tau)u_{k}\cdot u_{j}(y, \tau)dy
\]

(3.1)

\[
\equiv U_{i}(x, t) + V_{i}(x, t) + W_{i}(x, t), \quad i = 1,\ldots,n
\]

for all \((x, t) \in \Omega \times (0,\infty)\).

To make use of this representation formula, we need to investigate behaviour of the boundary integral

\[
\int_{\partial\Omega} (|\nabla u(y,t)| + |p(y,t)|)dS_{y} \quad \text{for all} \quad t \in (0,\infty).
\]

Lemma 3.2 Let \(a \) be as in the Assumption. Let \(q \equiv nq_*/(n+q_*) \).

(i) Every strong solution \(u \) of \((N-S)\) in the class \(CL_s(0,\infty)\) for \(1 < s \leq n \) and its associated pressure \(p \) satisfy

\[
\int_{\partial\Omega} (|\nabla u(y,t)| + |p(y,t)|)dS_{y} \leq Ct^{\alpha-1} \quad \text{for all} \quad 0 < t \leq 1
\]

with \(\alpha \equiv (\frac{1-1/q}{1-1/q_*})\epsilon \), where \(C = C(n,q_*,\epsilon) \).

(ii) Let \(u \) be a strong solution of \((N-S)\) in the class \(CL_s(0,\infty)\) for \(1 < s \leq \min \left\{ \frac{n}{n-1}, \frac{2n}{n+2} \right\} \) with the decay property (1.1). For every \(l \) with \(1 < s \leq l < n \), \(u \) and its associated pressure \(p \) are subject to the estimate

\[
\int_{\partial\Omega} (|\nabla u(y,t)| + |p(y,t)|)dS_{y} \leq Ct^{-\frac{n}{2}(\frac{1}{s}-\frac{1}{l})-\frac{1}{2}} \quad \text{for all} \quad 1 < t < \infty,
\]

where \(C = C(n,s,l) \).
For the proof we need the trace theorem and the following estimate by Kozono-Ogawa [16]
\[
\|\nabla^2 u\|_s \leq C(\|Au\|_s + \|\nabla u\|_s), \quad 1 < s < \infty
\]
for all \(u \in D(A_s) \) together with the decay property
\[
\|Au(t)\|_l = O(t^{-\frac{n}{2}(\frac{1}{s}-\frac{1}{l})-1}), \quad s \leq l < \infty, \quad \text{as } t \to \infty.
\]

Proof of Theorem 1:

By Lemma 3.1, we may estimate \(U(t) \), \(V(t) \) and \(W(t) \) in \(L^r \), respectively. First, let us consider the case \(1 < r < n/(n-1) \).

Recall
\[
U_i(x,t) = \int_{\Omega} \Gamma(x-y,t)a_i(y)dy, \quad i = 1, \cdots, n
\]

Since
\[
\int_{\Omega} |a(x)|dx < \infty \quad \text{with } \text{div } a = 0 \text{ in } \Omega, \quad a \cdot \nu = 0 \quad \text{on } \partial \Omega,
\]
there holds
\[
\int_{\Omega} a_i(y)dy = 0, \quad i = 1, \cdots, n.
\]

Hence we have by the Hausdorff-Young inequality that
\[
\|U(t)\|_r = o(t^{-\frac{n}{2}(1-\frac{1}{r})}) \quad \text{as } t \to \infty. \tag{3.2}
\]

To deal with
\[
V_i(x,t) = \sum_{j,k=1}^{n} \int_{0}^{t} d\tau \int_{\partial\Omega} E_{ij}(x-y,t-\tau)T_{jk}[u,p](y,\tau)\nu_k(y)dS_y, \quad i = 1, \cdots, n,
\]
we need to notice that \(\{E_{ij}\}_{i,j=1,\cdots,n} \) can be expressed as
\[
E_{ij}(\cdot,t) = (\delta_{ij} + R_{\dot{i}} R_{j}) \Gamma(\cdot,t), \quad i,j = 1, \cdots, n, \tag{3.3}
\]
where \(R_i = \frac{\partial}{\partial x_i} (-\Delta)^{-\frac{1}{2}} \), \(i = 1, \cdots, n \) denote the Riesz transforms. Since \(R_i : L^r(\mathbb{R}^n) \to L^r(\mathbb{R}^n) \) is bounded, we have
\[
\|\partial_x^m \partial_t^k E_{ij}(\cdot,t)\|_r \leq C t^{-\frac{n}{2}(1-\frac{1}{r})-\frac{m}{2}-k}, \quad m, k = 0, 1, \forall t > 0, \tag{3.4}
\]
which yields
\[
\|V(t)\|_r \leq \sum_{i,j,k=1}^{n} \int_{0}^{t} d\tau \int_{\partial\Omega} \|E_{ij}(\cdot-y,t-\tau)T_{jk}[u,p](y,\tau)\nu_k(y)\|_r dS_y
\]
\[
\leq \sum_{i,j,k=1}^{n} \int_{0}^{t} d\tau \int_{\partial\Omega} |T_{jk}[u,p](y,\tau)\nu_k(y)||E_{ij}(\cdot-y,t-\tau)||_r dS_y
\]
\[
\leq C \int_{0}^{t} (t-\tau)^{-\frac{n}{2}(1-\frac{1}{r})} \left(\int_{\partial\Omega} (|\nabla u(y,\tau)| + |p(y,\tau)|) dS_y \right) d\tau. \tag{3.5}
\]
Applying Lemma 3.2 to the estimate of the R.H.S., we obtain

\[\|V(t)\|_r = O(t^{-\frac{n}{2}(1-\frac{1}{r})}) \quad \text{as } t \to \infty. \]

Finally, we treat the third term

\[W_i(x, t) = \int_0^t d\tau \int_\Omega \sum_{j,k=1}^n \frac{\partial}{\partial y_k} E_{ij}(x - y, t - \tau) u_k \cdot u_j(y, \tau) dy, \quad i = 1, \ldots, n \]

By (3.4) and the Housdorff-Young inequality, we have

\[\|W(t)\|_r \leq \int_0^t \|\nabla E(\cdot, t - \tau)\|_r \|u \otimes u(\tau)\|_1 d\tau \leq C \int_0^t (t - \tau)^{-\frac{n}{2}(1-\frac{1}{r})-\frac{1}{2}} \|u(\tau)\|_2^2 d\tau. \]

Since \(\|u(t)\|_2 \leq Ct^{-\frac{n}{2}(\frac{1}{s}-\frac{1}{2})} \) (see (1.1)), we obtain from the above estimate

\[\|W(t)\|_r = O(t^{-\frac{n}{2}(1-\frac{1}{r})-\frac{1}{2}}) \quad \text{as } t \to \infty. \]

Notice that \(-\frac{n}{2}(1-\frac{1}{r}) - \frac{1}{2} > -1 \iff r < n/(n-1)\). Then by (3.2), (3.6) and (3.7), we have the desired decay for \(\|u(t)\|_r \) provided \(1 < r < n/(n-1) \).

In case \(n/(n-1) \leq r < \infty \), some skillful technique by duality is necessary. Here we omit the detail. This proves Theorem 1.

Proof of Theorem 2:

Without loss of generality, we may assume that

\[\|u(t)\|_r = o(t^{-\frac{n}{2}(1-\frac{1}{r})}) \quad \text{for some } r \text{ with } 1 < r < n/(n-1). \]

as \(t \to \infty \). Indeed, if (2.6) holds for some \(n/(n-1) \leq r \leq \infty \), then by choosing \(1 < r_0 < r_1 < n/(n-1) \) and \(0 < \theta < 1 \) with \(1/r_1 = (1-\theta)/r_0 + \theta/r \), we have

\[\|u(t)\|_{r_1} \leq \|u(t)\|_r^{1-\theta} \|u(t)\|_{r_0}^\theta \]

\[= O(t^{-\frac{n}{2}\left(1-\frac{1}{r_0}\right)(1-\theta)}) \cdot o(t^{-\frac{n}{2}(1-\frac{1}{r})\theta}) \]

\[= o(t^{-\frac{n}{2}(1-\frac{1}{r_1})}) \]

as \(t \to \infty \), which yields (3.8).

By Lemma 3.1, we have similarly to (3.1) that

\[u_i(x, t) = U_i(x, t) + \tilde{V}_i(x, t) + W_i(x, t) + \sum_{j,k=1}^n E_{ij}(x, t) \int_0^t d\tau \int_{\partial \Omega} T_{jk}[u, p](y, \tau) u_k(y) dS_y, \]

\[i = 1, \ldots, n, \]
for all \((x, t) \in \Omega \times (0, \infty)\), where

\[U_i(x, t) = \int_{\Omega} \Gamma(x - y, t)a_i(y)dy, \]

\[\tilde{V}_i(x, t) = \sum_{j,k=1}^{n} \int_{0}^{t} d\tau \int_{\partial\Omega} \{E_{ij}(x-y, t-\tau) - E_{ij}(x, t)\} T_{jk}[u, p](y, \tau)\nu_k(y)dS_y, \]

\[W_i(x, t) = \int_{0}^{t} d\tau \int_{\Omega} \sum_{j,k=1}^{n} \frac{\partial}{\partial y_k}E_{ij}(x-y, t-\tau)u_k \cdot u_j(y, \tau)dy \]

for \(i = 1, \cdots, n\). Since \(1 < r < n/(n-1)\), we have by (3.2) and (3.7) that

\[\|U(t)\|_r = o(t^{-\frac{n}{2}(1-\frac{1}{r})}) \]

\[\|W(t)\|_r = O(t^{-\frac{n}{2}(1-\frac{1}{r})-\frac{1}{2}}) \]

as \(t \to \infty\). Using the expression

\[\tilde{V}_i(x, t) \]

\[= \sum_{j,k=1}^{n} \int_{0}^{t} d\tau \int_{\partial\Omega} \left(\int_{0}^{1} \frac{d}{d\theta}E_{ij}(x-\theta y, t-\theta\tau)d\theta \right) T_{jk}[u, p](y, \tau)\nu_k(y)dS_y \]

\[+ \sum_{j,k=1}^{n} \int_{0}^{t} d\tau \int_{\partial\Omega} \left(\int_{0}^{1} \nabla E_{ij}(x-\theta y, t-\theta\tau) \cdot (-y)d\theta \right) T_{jk}[u, p](y, \tau)\nu_k(y)dS_y, \]

we can show, with the aid of some technical calculation, that

(3.11) \[\|\tilde{V}(t)\|_r = o(t^{-\frac{n}{2}(1-\frac{1}{r})}) \] as \(t \to \infty\).

On the other hand, there holds

\[\liminf_{t \to \infty} t^{\frac{n}{2}(1-\frac{1}{r})} \left\| \sum_{j=1}^{n} E_{ij}(\cdot, t) \int_{0}^{t} f_j(\tau)d\tau \right\|_r \]

\[\geq \left(\int_{y \in \mathbb{R}^n} \left\| \sum_{j=1}^{n} E_{ij}(y, 1) \int_{0}^{\infty} f_j(\tau)d\tau \right\|_r \right)^{\frac{1}{r}}, \quad i = 1, \cdots, n \]

where

\[f_j(\tau) = \int_{\partial\Omega} \sum_{k=1}^{n} T_{jk}[u, p](y, \tau)\nu_k(y)dS_y, \quad j = 1, \cdots, n. \]

Now, assume that

\[\|u(t)\|_r = o(t^{-\frac{n}{2}(1-\frac{1}{r})}) \] as \(t \to \infty\).
Then it follows from (3.10), (3.11) and (3.12) that

\[
\sum_{j=1}^{n} E_{ij}(y, 1) \int_{0}^{\infty} f_{j}(\tau) d\tau = 0, \quad i = 1, \ldots, n, \text{ for all } y \in \mathbb{R}^{n}.
\]

Since \(\hat{E}_{ij}(\xi, 1) = (\delta_{ij} - \frac{\xi_{i} \xi_{j}}{|\xi|^{2}}) e^{-|\xi|^{2}} \), \(i, j = 1, \ldots, n \), we have by (3.13) that

\[
\sum_{j=1}^{n} (\delta_{ij} - \omega_{i} \omega_{j}) \int_{0}^{\infty} f_{j}(\tau) d\tau = 0, \quad i = 1, \ldots, n
\]

for all \(\omega = (\omega_{1}, \ldots, \omega_{n}) \in \mathbb{R}^{n} \) with \(|\omega| = 1 \). Obviously, we conclude that

\[
\int_{0}^{\infty} f_{1}(\tau) d\tau = \cdots = \int_{0}^{\infty} f_{n}(\tau) d\tau = 0,
\]

which implies

\[
\int_{0}^{\infty} d\tau \int_{\partial \Omega} \sum_{k=1}^{n} T_{jk}[u, p](y, \tau) \nu_{k}(y) dS_{y} = 0, \quad j = 1, \ldots, n.
\]

This shows (2.7).

Conversely, if (2.7) holds, then we have by (3.9), (3.10) and (3.11) that

\[
||u(t)||_{r} \leq ||U(t)||_{r} + ||\tilde{V}(t)||_{r} + ||W(t)||_{r} + \sum_{i,j=1}^{n} ||E_{ij}(\cdot, t)||_{r} \left| \int_{0}^{t} f_{j}(\tau) d\tau \right| = o(t^{-\frac{n}{2}(1-\frac{1}{r})})
\]

for all \(1 < r < n/(n-1) \) as \(t \to \infty \). By the same technique as before, we get (2.8). This proves Theorem 2.

References

[1] Bae, H.O., Choe, H. J., Decay rate for the incompressible flows in half space. to appear in Math. Z.

[2] Bae, H.O., Decays in \(L^{1} \) and \(L^{\infty} \) spaces for the Stokes flows in half spaces. Preprint

