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ON A STABILITY THEOREM OF THE NAVIER-STOKES
EQUATION IN A THREE DIMENSIONAL EXTERIOR DOMAIN

Y OSHIHIRO SHIBATA

Dept. of Mathematical Sciences, Waseda University

1. INTRODUCTION

The motion of non-stationary flow of an incompressible viscous fluid past an isolated
rigid body is formulated by the following initial boundary value problem of the Navier-
Stokes equation :

u—Au+(u-Viu+Vp=f, V-u=0 in (0,00)x 8,

(L1) ulon =0, ulo =2,
lim u(t,z) = uy
|| —o00

Here, Q is an exterior domain in R® identified with the region filled by a viscous in-
compressible fluid; 92 denotes the boundary of Q which is assumed to be a smooth and
compact hypersurface ; u = *(uy,us,u3) (*M meaning the transposed M) and p denote
the unknown 3 dim. velocity vector and pressure, respectively, while f = ¢(fy, f2, f3) and
a = *(a1, a2, a3) denote the given external force and intital velocity, respectively; u. is a
given constant velocity vector at infinity. Here and hereafter, we use the standard notation
in the vector analysis. For example, we put

3
Au = (Auy, Aug, Aug), Auj = E V = %8,,0,,03), O 9
» k=1

2, .
0 u;
Ba:k’

2
ox;,

3
(u-V)v="((u-V)vy, (u- V), (u- V)vg), (u-V)v; = uppv;,
k=1

3 U101, U201, U3V
V-u=divu= E Ok, U® vV = | ujvy, ugvs, uzvy
k=1 UuU1v3, U2V3, U3V3
3 _
> k=10kf1k f11, fi2, fi3

V-F= | 0cfox |» F=| fo1, fo2, fos
> 1 Ok fax f31, fa2, fa3
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Putting u = us + v, (1.1) is reduced to the following equation :

Vi—AV+ (Upo - VIV+ (v-V)v+Vp=1f, V.-v=0 in (0,00) x Q,

(1.2) V|pe = —Uso, V|t=0 = @ — Uc,
lim V(t, x‘) = 0_
|z}—00

In this note, we consider the case where the external force f is independent of time variable
t, namely f = f(z). We will discuss the problem from the point of the stability of stationary
solutions. When the external force is independent of time, we expect that the low becomes
stable asymptotically in time because of the viscousity. Therefore, we also consider the
stationary problem corresponding to (1.2) which is given by the following formulas :

~AW+(U - V)W+ (W- V) W+ Vr=f, V-w=0 inQ,
1.3 { |

Wlon = —Ux, lim w(z)=0.
|£]—o00

Concerning (1.2), Leray [34, 35] and Hopf [23] proved the existence of square-integrable
weak solutions for an arbitrary square-integrable initial velocity, whose uniqueness is a still
unknown and challenging problem. Leray [34, 35] proved the existence of a smooth steady
solution with a finite Dirichlet integral. But, the solutions obtained by Leray and Hopf
did not provide much qualitative information. In particular, nothing was proven about the
asymptotic structure of the wake behind the body O = R — Q. This is a topic of great
interest in itself. Finn [9] to [14] studied (1.3) within the class of solutions, termed by
him physically reasonable, which tend to a limit at infinity like |z|~1/2¢ for some € > 0.
For small data he proved both existence and uniqueness whithin this class. In fact, his
solutions satisfy the following estimate :

(1.4) |w(z)| £ Clz|™ as|z| — oo and Vw € L3(Q)

where C is a constant. Furthermore, his solutions exhibit paraboloidal wake region behind
the body O. Rerated topics were also discussed in Fujita [15] and Ladyzhenskaia [33].

Finn has conjectured [14] that for sufficiently small data physically reasonable solutions
are attainable. Namely, if we put v(t,z) = w(x) + z(¢,z) and p(t,x) = w(z) + 7(¢,z) in
(1.2), (1.2) is reduced to the following equation :

z, — Az+(w-V)z+ (z-V)W+(z2-V)z+ V7T =0,
' V-z=0 1in (0,00) x (2,

(1'5) Z|aQ =0, th.—_o =b=a—-uy,—w,
lim z(t,z) =0.
|} —o00

Then, the attainable problem is to find a solution z(¢,z) of (1.5) such that z(t,z) — 0,
that is v(t,z) — w(z) — 0 as t — oo. This is called a stability problem.

The stability problem was first solved by Heywood [20, 21] in the L, framework. Roughly
speaking, he proved that if the Lo-norm of b(z) is very small and if C < 1/2, C being
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the constant in (1.4), then there exists a unique solution z(t,z) of (1.5) satisfying the
convergence property :

/ |V(u(t,z) — w(z))|*dz - 0 and / lu(t,z) — w(z)|dz — 0
’ B

as t — oo where R is any positive number. His result was sharpened, in particular with
respect to the rate of the convergence, by Masuda [37], Heywood himself [22], Miyakawa
[38] and Maremonti [36] (cf. further references cited therein ). But, as Finn showed in
[11], if w(z) is a physically reasonable solution and if the forced exerted to the body ©
by the flow does not vanish, then w(z) is not square-integrable over Q. Therefore, it is
natural to ask the question :

(Q) Seek a solution of the problem (1.5) which belongs to the same function class as
w(zx) belongs to for each time section.

In this direction, Kato [25] solved the problem (1.1) in the L,, - framework when Q = R®
(n22),ue =0, f=0and the L, norm of a is very small. He employed various L,
norms and L, - L, estimates for the semigroup generated by the Stokes operator. His
method gives us a simple but strong tool in proving globally in time existence theorem of
small and smooth solutions for the non-linear equations of the parabolic type. Iwashita
[24] and Dan and Shibata [6, 7] extended Kato’s result to the case where  # R" (n > 2
)s Ueo, £ =0 and the L, norm of a is very small.

In this note, in §2 we consider the case where Q # R3, u,, # 0 but |uoo| small enough,
f # 0 and a certain norm of f and the L3 norm of b are small enough. And we shall give
an answer to the question (Q).

Recently, when u,, = 0 and Q C R (n 2 3 ), Borchers and Miyakawa [4, 5], Kozono
and Yamazaki [31, 32] and Yamazaki [48] proved the stability of non-trivial physically
reasonable solutions by the small weak L, perturbation. Namely, they proved that if L,
weak norm of b is very small, then (1.5) admits a unique solution z(t,z) which converges to
w(z) ast — oo in the L, weak space with suitable rate of convergence. Since the physically
reasonable solution of (1.3) belong to L, weak space when u,, = 0, the question (Q) was
answered in the case where u,, = 0. In §3 and §4, we extend this result to the case
where u,, # 0, focusing on the uniformity with respect to u,,. Moreover, we consider a
convergence problem when |uy,| — 0.

2. EXISTENCE OF STATIONARY SOLUTION I

In order to describe the wake region, we introduce the Oseen weight function :
Sues () = || — T - Voo /|U1co |-
The following result was proved by Shibata [45, Theorem 1.1] and it tells us an unique

existence of small solutions to (1.3) which provides a qualitative information about the
asymptotic structure of the wake behind the body O in terms of s,,_ .
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Theorem 2.1. Let 3 < p < oo and let § and beta be any numbers such that 0 < § < 1/4
and 0 < 6§ < B < 1—6. Let f € Lyo(R2). Then, there exists a constant €, 0 < € <
1, depending on p, § and B but independent of uy such that if 0 < |ux| < € and
<< f >>955 €lue|?t9, then the problem (1.3) admits solution w and m possessing the
estimate :

(2.1) Iwllwz) + I1wllls + I7llwi) < luwl?,
where

<< £ >>95 = sup(l + |2|)%/3(1 + su_ (x))V22|f(z)],
€SN
lllwllls = sup(1 + [2])(1 + su,, (2))°|w(2)|
T€N

+ sup(L + |21)2(1 + su,, (2)) /2| Vw(z)|
z€

Remark. The estimate (2.1) represents the wake region behind O. By (2.1) we see easily
that w € L3(2) and Vw € L3/5(2). On the other hand, as we will state with references
in §4, in the case where u,, = 0, w ¢ L3(2) but € L3 (2) and Vw ¢ L3/5(f2) but
Vw € L3/9,00(S2), where Ly o, means the Lorents space defined in § 4, below. In fact, when
U = 0, w(z) = Clz|~! and Vw(x) = C’|z|~2 as || — oo with suitable constants C' and
C’. On the other hand, when uy # 0 by (2.1) we see easily that

*° dr ™ sin0dg 13
< B
”W“Ls = [2WA (1 + 7')37'6 A (1 . C030)6:| luool ’

' o dr T sin 60d6 2/3
< B
IVwllL,,, [2“/0 (1 + r)%/4rB+8)/4 /0 (1 cos g)(3+6)/4] lueo|”.

In order to prove Theorem 2.1, we have to investigate the estimate for solutions to the
following linear Oseen equation :

(2.2) ~Au+ (U - V)u+Vp=1£f, V.-u=0 in Q and u|sg =0.

In [45, Theorem 4.1], we proved the following theorem.

Theorem 2.2. Let 3<p< oo and 0<§ <1/4. Let << - >>95 and ||| - |||s be the same
as in Theorem 2.1. Assume that 0 < |us| £ 1. If << f >>95< 00, then the problem (2.2)
admits a unique solution (u,p) € W2(Q)> x W () having the estimate :

lullwz @) + Ipllwz ) + llullls £ Cp,sluce| ™ << £ >>95 .

Since we can construct a function d satisfying the properties : d € C$*(R3)3, V-d =0
in Q, d|lsg = —Ux and |02d| £ Cy|uw| for any «, putting w = d + z, (1.3) is reduced to
the equation :

(2.3) —Az+ (Vo - V)2+(d-V)z+(2-V)d+(z-V)z+ Vn
—f+Ad—(d-V)d and V-2 =0in Q,
zlaQ =0.
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Then, given y, let z be a solution to the linear Oseen equation :
~Az+ (U - V)z+ V7

=f+Ad-(d-V)d-(d-V)y—-(y-V)d—-(y-V)y in(Q,

V-z=0 inQ, z|sq=0.
And if we consider the map G : y — 2, then by using Theorem 2.2, we can easily show
that G is a contraction map in a suitable underlying space under a smallness assumption
on |uy|. The fixed point of G gives a solution to (1.3). In this way, we can show Theorem
2.1 by Theorem 2.2.

In order to prove Theorem 2.2, the essential part is to estimate the convolution operator

with the Oseen fundamental solution E(us) = (Ejkr(uc)) (cf. Oseen [43]) which is given
by the following formula :

(2.4 By (tso(2) = (852 — 8;0)Z(0) (2),
1 TSue(2) 1 _ g=a

E(o)(z) = g— A -

do, 0=|ux|/2#0

In fact let us consider the Oseen equation :
~AW+ (U V)IW+Vr=g, V-w=0 inR3

Then, the solution w is given by the formula : w = E(u ) * g, where * is the convolution.
Since

(2. Bsa{en(e)] S oo
C
|VEjk(Uoo(z)| < (oo (x))6sui BIEEEE
Cs ol/? 1
e At
we have the following theorem which was proved by [45 ,Lemma 4.3].
Theorem 2.3. Let 0 < § < 1/4. Let g € Lo (R?)3 and assume that

sup (1 + |])>/2(1 + su,, (2))/*+*|g(z)| < 0.
z€ER3

IVEjk(uoo ()| <

Then, for |x| 2 1 we have the relations :
|E(uc0) * 8()| S Csluco| (1 + sue. (2) 2|7,
|VE(uc0) * 8()| £ Csluco| (1 + su,, (2)~/+|a|73/2,

Remark. The more general estimation for the convolution operator with the Oseen fun-
damental solutions was given by Farwig [8], where he refined the argument due to Finn
[9, 10, 12, 13, 14]. A proof given in [45] is completely different from [8] for the gradient
estimate.

By Theorem 2.3 and a compact perturbation argument, we can prove Theorem 2.2. A
detailed proof was given in [45, §3]. This completes a rough sketch of a proof of Theorem
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3. STABILITY THEOREM I

In this section, we will discuss an unique existence theorem of globally in times solutions
to (1.5) according to Shibata [45]. As a corresponding linear problem to (1.5), we consider
the non-stationary linear Oseen equation :

(3.1) Vi—AVv+ (U V)V+p=0, V.-v=0 in(O,‘oo)xQ,

viga =0, V|0 =b.
Put

Jp = the completion in L,(€2)? of the set {u € C(Q)® | V-u=0 in Q},
Gp={Vr|me WHQ)}, W) = {7 € Ly10c(Q) | Vrr € L,(2)3}.

p

According to Fujiwara and Morimoto [16] and Miyakawa [38] (cf. Galdi [17, III]), the
Banach space L,(2)? admits the Helmholtz decomposition :

Ly(Q)® =T, ® G,.

Let P be a continuous projection from L,(Q2)3 to J, along G,. Applying P to (3.1), we
have the Oseen evolution equation : ’ '

Vi + @(UOO)V = 0, V|t=0 =b
where O(ue) = P(—A + (uy - V)) with domain:
D(O(ux)) = {v e Jp | ve W2(Q)?, v|sa =0}

Miyakawa [38] proved that O(us) generates an analytic semigroup {Ty__ (t)},>0. Applying
P to (1.5), we have ' - ,

(3.2) 2t + O(U)z + P{Lwz + (z- V)2} =0, 2|t—o = b,

where
Lwz=(w-V)z+ (z-V)w.

According to Kato [25], instead of (3.2) we consider the following integral equation :

(3.3) 2(t) = Tu_ ()b — /O T (t — $)P{Lwz(s) + (a(s) - V)a(s)} ds.

Shibata [45] proved the following theorem which is an answer to (Q).
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Theorem 3.1. Let 3 < p < oo and let 6 and 3 be the same as in Theorem 2.1. In
addition, we assume that 0 < § < 1/6. Let f € Lo (2) and b € J3. Then, there exists
ane > 0,0 < € £ 1, depending only on p, 3 and § essentially such that if 0 < Jus] < ¢,
<< £ >>95< €lug|P*® and ||b|| () S €, then the problem (3.3) admits a unique solution
z € BC([0,00), Jp) possessing the following properties :

(3.4) [2]3,0,t + [Z]oo,1/2-3/(2p),¢t + [VZ]3,1/2, S Ve,
tﬁ%l+ [Ilz(t, ) - b“La(Q) + [z]p,1/2—3/(2p),t + [Vz]3.1/2,t] = 0.

Here and hereafter, we put
(2]p,p,t = sup s°||z(s, )lIL, (@)
0<s<t

Moreover, we have the relations :

[2]4,1/2-3/(2q),t S Cq (e + 51/2+ﬂ) , p<q<oo,
lz(t, )lze € Cm (6 + 61/2+;3) =172,

for any t 2 1 where m is a number such that 3 < m < p.

When f = 0, the solution to (3.3) converges to the soluiton to the integral equation
corresponding to the case where u,, = 0 when |u.,| — 0. In order to state the theorem
more precisely, we formulate the problem. Let us consider the Navier-Stokes equation with
Uy =0 and f =0:

(3.5) yi—Ay+(y-V)y+Vp=0, V-y=0 in (0,00) x Q,
ylena =0, ¥li=0o =Db.

Put A = P(-A) with domain : D(A) = D(0(us)). Applying P to (3.5), we have
yt+Ay + P(y-V)y =0, yli=o =b.

Let {T'(t)};>o be an analytic semigroup generated by A. Then, instead of (3.5), we have
the integral equation :

(3.6) y(®) =TWb~ [ T(t-9)P(y(s)- V)y(s)ds.

A uniqué existence theorem of globally in time solution to (3.6) was proved by Iwashita
[24]. Concerning the convergence of solutions of (3.3) to solutions of (3.6) as |ue| — 0,
we have the following theorem.
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Theorem 3.2. Let f = 0. Let 0 < 8 < 1 and let b be an initial velocity. Then,
there exists an €, 0 < € £ 1, depending on 3 but independent of u,, and b such that if
0 < |ueo| £ €, b€ Js and ||bl|L, £ ¢, then (3.3) admits a unique solution z(t, ) such that
z(t,x) € BC([0,00),J3) and z has the estimate (3.4). Moreover, if y € BC([0,0), J3) be
a solution to (3.6), then we have the following convergence property :

12(2,-) = ¥ (&, Mg S Cq (¢ 0273 CD 4 83/20) Ju P, 3< g < o,
a(€2) q
I2(t,) = ¥ (6 M@ S Cm (£3732™) +1) Juce]?,
IV (2t ) = (&, Vlzee) S € (772 +1) flucol?

for any t > 0 where m is a constant > 3.

Now, we will give a rough sketch of a proof of Theorem 3.1 according to [45, §5]. We
will show the following assertion only in this note :

Assertion. There exists an € > 0 such that if w and b € J3 satisfy the condition :
Ibll ;) + |l|wllls < €, then (3.6) admits a unique solution y € BC([0,00), J3) satisfying
the estimate :

ly®)llLs@) £ Ce, Nly@)lle, ) £ Cet= /23D 19y (8)|| 1, ) S Cet™Y/2,
for any t > 0 with some constant C > 0.

Our proof is based on the following two theorems.

Estimate of Oseen semigroup I. Let |us| < M. Then, fort 2 1 we have the following
estimate :

_ 3/1 1
[Tuo (DallL, @) S Cmpat™llallz, ), v = 2 (5 ~ 5) , 1<p=Zq<oo,

IVTu (t)allz @) € Crpat™ D allL, @), 1<p<g< oo,
Moreover, for 0 <t <1 we have

IV T (DallL, @) S Crppat™ Pl @) 1<p<g< oo

The estimate of Oseen semigroup I was proved by Kobayashi and Shibata [26].

Hardy type inequality. Let 0 < o < 1/3 and put do(z) = su_ (2)*|x|'~*log |z|. Then,
we have
lv/dallLs(9) £ CallVollLy), v € W3(R) with v]gg = 0.

This kind of Hardy type inequality was proved by Shibata [45]. The integral equation
(3.6) is solved by contraction mapping principle. Therefore, the essential part is to estimate
the integral of the right-hand side of (3.6). Put

A(t) = / Tu(t - $)PLuy(s)ds, B(¢)= / Tu..(t — 5)P(y(s) - V)y(s) ds.
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Let y(t) € BC([0,00), J3) satisfy the condition : y(t) € W3(Q)2 and y(t)|an = O for ar
t > 0. Recall that Lyy(s) = (W-V)y(s)+(y(s)- V)w. To estimate A, we use the followir
relations :

|P(w - V)Y (8)llLs,22) S ClIWlLy@)IVY($)liLa() = CllWllslI VY ()]s

IP(y(s) - VIWllL, 5@) S ClldaVWI|Ly@)lly(s)/dallz, < ClIIWIlslIVY(8)llLs),
IP(W - V)Y (8)llLs@) S ClIWllLw@IVY($)liLs@) S CllIwlilsVy()liLa(,
IP(y(s) - V)WllLy@) S ClidaWllLo, @y (8)/dallLs@) £ CllIW|llslIVY($)lLs(e)-

Then, we have

IA® 2oy < Clliwllls / (t—5)"2(3-3)57% ds[Vys 12,
< CB(1/2,1/2)|[wllls[V¥]3,1/2.

A®) Nz, @ < Clliwllls / (-9 E b ds[Vyls 12,
< ct~(4=%)B(3/(2p), 1/2)NWllls[V¥l3.1/2.4

t—1
IVA®)|l L) < Clllwllls {/ (t—s)~ 31451 gs
' 0
t
+ (t— 5) 53 dﬂ?} (Vyla,i/2.
t—1
< Ct™ 3 |||wllls[Vyl2,1 2.t

where B(a,b) means the beta function. In order to estimate B(t), we fix ¢ such as 1/q
1/p +1/3 and we use the estimate :

1P(y1(s) - V)ya(s)llL, @) < Clly1()llL,@lIVy2(s)llLs@)-
Then, we have

IB(®)|| Ly < C / (t— )" 3G+3-3) s~ (3-%) 5% dslylp e [Vyls /2.

< CB(1-3/(2p),3/(2p)[¥lp,ut[V¥l3.1/2,60 1= % - 53;,

IB@®)||z,@ £ C / (t—5)"3C+5-3) s~ (3= %) 5= dsly),, 4 [Vyla, 12,0
< CB(1/2,3/2p))t FH) [yl L a[Vyls /2
IVB(®)|| () < C /0 (t—s) 23845~ (4=%) 5% dslyl, e[ Vyla /2

< CB(1/2 - 3/(2p), 3/(20))t™ 2 [Y]p,u,t[V¥3,1/2,t-
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From these estimations, we see easily that the map y(t) — z(?) :

2(t) = Tae (b = [ Tos(t = )PLLuy(e) + (¥()- Ty (o)) e,

is contraction, provided that ||b||,() and |||w|||s are small enough. This completes the
proof of Assertion. Further estimations in Theorem 3.1 is also obtained by using Kato’s
argument [25]. This is rough sketch of a proof of Theorem 3.1 by using Kato’s method,
further developed in combination with the L,-L, estimate of Oseen semigroup and Hardy
type inequality.

4. UNIFORM ESTIMATE OF STATIONARY SOLUTIONS WITH RESPECT TO Uy NEAR 0

In this section and next section, we consider the convergence problem as |us,| — 0 when
an external force f Z 0. In this section and next section, we assume that the external force

is given by potential only, namely,
f=V.F

with some potential force F'. The difficulty arises from the fact that the solution w of (1.3)
with Uy = 0, even if it is small enough, does not belong to the space L3({2) in general,
contrary to the case uy, 7 0 as already mensionted in the last part of § 1. In fact, Borchers
and Miyakawa [5, Theorem 2.4], Kozono and Sohr [ 29, Theorem C] and Kozono, Sohr and
Yamazaki [30, Theorem 2, (1)] showed that the solution w of (1.3) with u,, = 0 belong
to L3(€2) only in very restricted situations. More detailed references are found in Kozono
and Yamazaki [31, 32]. It follows that one cannot find the limit of the solution w in the
space L3(2) in general as |ue| — 0.

On the other hand, the problem (1.3) is considered by many authors in the u,, = 0
case. Novotny and Padula [41, 42] and Borchers and Miyakawa [4, 5] proved the following
assertion : If |[F(z)| £ c|x|~2 holds with sufficiently small ¢, then there exists a unique
solution w of (1.3) such that |w(z)| < Clz|~! and that |Vw(z)| £ C|z|~2. Furthermore,
Nazarov and Pileckas [39, 40] obtained the asymptotic expansion of the solution, the
principal term in which is homogeneous of order —1. Hence the solution w does not
belong to L3(2) in general, but belongs to the weak-L3 space L3 o (2) ,which is slightly
larger than L3(f2). Similarly, the derivative Vw belongs to L3/2 o (£2) but not to Lg/2(£2)
unlike the uy, # 0 case. ,

Later on, by introducing the weak - L,, spaces and modifying the L, - theory and duality
argument of Kozono and Sohr [27, 28] for n 2 4 accordingly, Kozono and Yamazaki [31]
gave a sufficient condition on the external force for the problem (1.3) to have a unique
small solution w € Ly o (§2) satisfying Vw € L, /3 o (€2) in the case u,, = 0 when n 2 3.
In this note, we will state an extension of Kozono-Yamazaki to the case uy, 7# 0 only when
n = 3. The argument due to Kozono and Yamazaki [31] is based on the homogeneity of the
Stokes operator and hence is not applicable to our situation here. Instead we construct the
parametrices of the stationary Oseen equation in exterior domains from the fundamental
solution on the whole space by way of the standard cut-off procedure. Our method is
similar to that of Shibata [45] , but in order to treat external forces with little regularity as
in Kozono and Sohr [28], we have to construct two parametrices on two different function
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spaces. We can prove that our argument holds in the case n = 4 as well with little extra
effort, cf. Shibata and Yamazaki [46, 47] and Yamazaki [49].

In order to state our main results precisely, first of all we introduce the definition of the
Lorenz spaces Ly, 4(€2) for 1 £ p < oo as follows:

© A
lyr = { [ 021 0F 2} 12 0< 00,

def

feL,,G) & 1

- ”f”z. (@) — SUp Jm(a', f) P < 00 q = o0,
P >0

where

f*(t) = inf{o > 0| m(o, f) S t}; m(o,f) = |{zx € G| |f(z)| > o}|

and | - | denotes the Lebesgue measure.
Note that under the assumption : V - w = 0 we have

(Ww-V)w=V.(wew).
Below, we say that (w, ) is a solution of (1.3) if (w, 7) satisfy the following formulas:
(Vw, Vo) + (U - V)W, ) = (WQ W, V) — (m,V - ) = —(F, V)
for any ¢ = *(¢1, p2, ¥3) € C§°(R2)?, and

V.w=0 inQ, wlsgg=—-uw, lim w(z)=0,
|z| =00

where

3
(u,v) = /Q u(@) - v(z)dz, (F,G)= Y

JRCINELE
,k=1

for two 3 x 3 matrix functions F' and G.
The following theorem is our main result in this section which is proved by Shibata and
Yamazaki [47].

Theorem 4.1. (1)(Existence) There eixsts an € > 0 such that if F = (Fj), Fjx €
L3/2,oo(n) and

3
Z |IE7"°|I1,3/2,°°(Q) + |uso| S ¢,
Jrk=1

then the problem (1.3) admits a solution (W, m) € L3 o0(2)® X L3/ 00(S2) such that Vw €
L3/2,00(£2)%*3, and moreover

va”%/z,oo(n) + ”w”z,a,oo(n) + ”7"”1,3/2,00(0) g Ce

where C is independent of F, w, w, € and U.
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(2) (Uniqueness) There exists an €’ > 0 such that if (w;,n;), j = 1,2, are solutions of (1.3)
with the same external force f such that w; € L3 s (S2), VW; € L3/ 06(S2), mj € L3/ 00(2)

and moreover
ij”La,w(n) s ¢

then wi = wg and m; = Ty.

Since we have the uniform estimate of solutions w of (1.3) with respect to u.,, if we
fix the external force f = V - F, then when |u| — 0 the solution of (1.3) in the uy, # 0
case converges to the solution of (1.3) with u,, = 0 constructed by Kozono and Yamazaki
[31] in the weak * L3 o norm. But, this convergence is not in the strong L3 o norm. In
fact, since from the discussion in §2 we know that the solution of (1.3) in the us, # 0
case belongs to L3, if we have the strong convergence in the L3 , - norm, then the limit
function must belong to L3(§2). But, as we already stated, in general it does not hold, so
that we can not have the strong convergence in general. This fact was discussed in [47,
§4].

Now, we shall give a sketch of a proof of Theorem 4.1 below. The linearized equation
corresponding to (1.3) is the following Oseen equation in € :

4.1
( ) u|3g = (.

{—Au+(uoo-V)u+V7r:V-F, V-u in§,

As already mentioned, since the Oseen equation has the first order term uy, - V, Kozono
and Sohr method developed in [28] does not seem to match with the Oseen equation. We
used a compact perturbation method, the idea of which goes back to Shibata [44]. Namely,
combining the unique existence and estimates of solutions in the whole space case and in
the bounded domain case by using the cut-off techique, we reduce the problem to the
Fredholm type equation on the right hand side. And then, the sharp uniqueness theorem
for the Oseen equation in  implies the invertibility of this Fredholm equation. Since we
have to keep the divergence free condition, we use Bogovski-Pileckas lemma ([2, 3] and
also [17, 24]). While we have proved a linear theorem with very general exponents p and
g in [47], here we only state the following theorem in order to explain our basical idea.

Linear Theorem. Let 3/2 < p <3 and F = (F;;) ( 3 x 3 matrix ) with F;; € L, ().
Then, there exists an € > 0 independent of F' such that if |us| < €, then (4.1) admits a
unique solution (u,m) € Lap/(3—p),00(2)? X Lp,oo() with Vu € Ly, o,(2)3%3.

Moreover, there exists a constant C' independent of uy,, F, u and 7 such that

(4'2) ”u“Lap/(s_p)m(n) + Hvulll,p‘m(n) + ”7"“1,,,,00(9) é C”F”L,,,oo(n)'

Now, we explain how to solve (1.3) by using Linear Theorem. As was already stated in
§2, first we construct a vector of C$°(R3) functions d(z) satisfying the properties :

V-d(z) =0, d(),, = U, d(z)=0 (|z|]=3R),
109d(z)| £ Colus| Vo
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Such a vector-valued function is easily constructed by using the Bolovski lemma. Put
u =d + z and then (1.3) is reduced to (2.3). As the underlying space, we put

T, = {(u,7) € L30o()>XL3/2,00(?) | VU € L3/2,06(2)**3, |y =0, V-u=0
”u”L&w(n) + ||Vu|lz,3/2_oo(n) + ||V7l’|| () é U},

L3/2,00

because the exponent p for which the assertions that w € Lgp/(3-p)(§2) implies w @ w €
L,(£2) and that Vw € L,(2) imples w € L, /(3_p)(€2) is equal to 3/2 only. By using Linear
Theorem and the contraction mapping principle, we can prove the existence of solutions
to (1.3) in Z, immediately under suitable choice of small positive number o.

From now on, we give

A Sketch of Our Proof of Linear Theorem. 1st step : Analysis of solutions in R3. By
Fourier transform we can write a solution (u, m) to the equation in the whole space :

(~Au+ (Ueo - V))u+Vr=V-F, V-u=0 inR3

by the following form :

e+ €

3 . 2~
) = B # (V- DY@ = 77 |3 il (F,-(a - “ﬂ—fp@) (@)

() =% (V- F)(z) = Z §](€|£IF; i(8)) (z).

Since

aa(a) (€12 + iluoolén) Y| < Callel? + ilucolés]”! Ve,

23

where C,, is independent of |us|, by the orthogonal transformation in ¢ and the Lizorkin
theorem about the Fourier multiplier oprator we can see easily that

VUl sy + 17l g5y < Coll Fl

“u”LSP/(S—p)(Rs) Lp(R3) Lp(R3) = Lp(R3)*

Since Lp oo = (Lpy ;s Lp;)6,00 1/p = (1 - 6)/p1 + 0/p2 in the real interpolation sense, we
have -

(4‘3) ” “L3 p/(3— (R3) + Ilvu”me(RI%) + “7rll (R3) = ”F”L .oo(Rs).
After cuting off the solutions, we have to handle with the following equation :

(4.4) ~Au+ (U - V)u+Vr=f, V-u=0 inR3,
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where f € L, o(R?) with supp f C By = {x € R* | |z| < b}. Let (E(uco)(x), P(z)) denote
the Oseen fundamental solution, and then the solution of (4.4) is given by the convolution
formula : u = E(us) *f and 7 = 1 f where Ejx(us) is given by the formula (2.4) and

H(x) = :1}7—1:].’:—':" r = t(xl,$21x3)'
Since
C
‘ (uso # 0) '
3/2 1/2 C
Bus)(@)] < 70 [VE(ue) S P N 2 e
o (a0 = O)

as follows from (2.5) with § = 0 where C is independent of u.,, we have

1B, oy SC IVE@l,, . o) SC, I <c,

L3/2,00(R%)

where C is independent of u,. Therefore, by the generalized Young inequality we see that

'luH < “E(uOO)||L3/2'°°(R3)||f”Lq(R3) é Cb||f”Lp,°o(R3),

L3p/(3—p),oo(R3) =

190l s, S IVE@a, . o6l s, < Clell,,

Lp,co(R3) = Lq(R3) =

[l < [|11j] IEll,, s, = Collfll,

Lp,00(R3) = Lq(R3) =

,00 (R3)’

L3 /2,00 (R3) ,o0(R3)”

where 1 + (3 —p)/3p =1/3+1/q, 1+ 1/p=2/3+1/gand 1 £ g < p. To obtain that
g = 1, we need the assumption : p 2 3/2. The restriction : p < 3 comes from the Sobolev
inequality : ‘
[|ull S Gp||Vu|

L3p/(3-p),00 R®) = Lp®3)~

2nd step : Solutions in a bounded domain. Let D be a bounded domain in R3 with
smooth boundary dD. By interpolationg the well-known theorem concerning the Stokes
equation and Oseen equation in a bounded domain, we have the following theorem.

Theorem. Given F = (F;;) € Lpoo(D)**®, Fy € Ly oo(D) and ¢ € R, there exists a
unique solution (w,m) € W} (D)? x Ly oo(D) to the equation :

(VW,Vo)p + (U - V)W, 0)p — (7, V- 0)p
= (F,Vo)p + (Fo,9)p V¢ € C5°(D),

/wdxzc, V.-w=0 inQ, w|,=0.
D

Moreover, if |ux| £ 09 and 1 < p < 3, then there exists a constant C' depending on p, D
and oo such that ~

Wley o o F 19, oy + 17l i S CIE Fl,,
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IfF =0, then w e W2 (D), = € W} (D) and
”w”W;?.oo(D) + ”’Tr”W,},oo(D) g C”FOHL,,,OO(D)'

Here ,

3
(uaV)D=/Du(a:)-v(:c)dx, (F,G)p = Z

[ Fx@)Gina) da
7,k=1

for any 3 x 3 matrices valued functions F and G.

For the latter purpose, we write the solution given in the above theorem as follows :

w = L(D,ux)|F, Fo,c], 7 =p(D,ux)|F, Fo,c.

3rd step : Bogouskii - Pileckas Operator. Let 1 < p < oo and let D be a bounded domain
in R3 with smooth boundary 8D. Put

WITOO»O(D) = {u € W;;),zoo(D) I 6?:”'80 =0 (Ial § m — 1)},

o
W pioo,0(D) = {u € W o(D) | Lde = 0}.

Interpolating the well-known Bogovskii - Pileckas lemma, (cf. [17, I1I 3]), we can construct

a linear operator B : IZ/;,',‘OO’O(D) — WIZ‘;"IO(D)"3 such that for f € V‘IJ/;”‘OO,O(D) we have
V -B[f] = fin D and
1B, sscpy S Ol o

where the constant C' depends on m, p and D. Since B[f] € W;:‘;}O(D):’, we can extend
B[f] to the whole space by 0 outside of D, and then B[f] € Wt 1(R®)3, supp B[f] C D,
V -B[f] = fo in R3 and
”B['f]”W;"";l(R3) § C”f”w;',loo(o)
where fo(z) also denotes the 0 extension of f to the whole space.
4th step : A Reduction to the Fredholm Type Equation. Devide solution to (4.1) into
three parts as follows :

U=Ve +Vo+ Ve T =TT + T+ Te.

Voo and 7, are defined in the following manner. Let ¢, and Yoo be functions in C°(R3)

such that
_{1 |z| 2 R y _{1 |lz| 2 R -1
=10 lsr-1" Y70 |<r-2°
Note that ¢, = 1 on supp . Put

Voo = 'Q[)ooEuoo [(PooF] - B[Vwoo : Euoo [‘PooF]], Moo = ¢oon[‘PooF]-
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Put @o = 1 — 9o and let 1o € C$(R3) such that

w()—{1 =l =
=10 |zl2R+1’

Take R so large that Bg_4 D 0. Put D = Qg2 = QN Br4s, and therefore
Vo = '¢'0['(Da uoo)[(pOFa 0, 0] - B[V¢O : ‘C(D, uoo)[(pOF7 07 0]],
o — ¢0p(D, uoo)[(pOF’ 07 0]'

Then, we arrive at the following equation to (v, 7) :

{—Avc-l—(uoo-V)vc-i-Vrc=r(uoo)[f], V-ve=0 inQ,

VCIaQ =0

Yo(x) =1 on supp o.

(4.5)

where r(Uoo)[F] € Lp,oo(Q), supp r(ue)[F]C D={z € R® | R-2< |z| £ R+ 1} and
Ir(use)[F1ll,, oy S IIFl4, .y With some constant C' > 0 independent of u., whenever
[uso| £ 0. From this point of view, we have to solve the following equation :

—Au+ (U V)u+Vr=f, V.-u=0 in,
(4.6)

ulan =0

where f € L, oo(2) and supp f C D = {z € R®* | R— 2 < |[z| £ R+ 1}. The equation (4.6)
is solved by the compact perturbation method. In fact, put

P(uxo)f = (1 — 9)E(us) * 2 + oL(QR42, 0)[O,f|QR+2 ,C]
+B[(Ve) - (E(uco) * £°)] = B(Ve) - L(Qr+2,0)[0,flq ., €]l
Qf = (1 - (p)p * £ + (PP(QR+2, O)[O’ f|nR+2 ) c]
where

c:/ T+ f0dz, o(r)=

QR42

1 |z|SR-2 0 f(z) zeQ
, ()=
0 |zj]2R+1 0 z ¢

and f |QR+2 is the restriction of f to Qp42. P(us)f and Qf satisfy the following equation :
(—A 4+ U - V)P(uso)f + V(Qf) =f + S(ue)f, V:-P(ux)f=0 inQ.
P(uco )f|pq =0
where
S(u)f = 2(Ve) - VE(uoo) * £° + (A@) E(ug) * 2 + [(U0o V-)9] E (U0 ) * £°
+2(Ve) - L(Qr+2,0)[0,fl, ] — (Ap)L(QR+2,0)[0,f], . ]~
+ (Uoo - V)(0L(QR12,0)[0, £, , - c])
+(~A+ UV )(BI(Ve) - (o) * ) ~ B{(Ve) - L2, 0)0, I, )
~ (Vo) *£° — p(Qr+2,0)[0, £, , . €])-
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Since S(uoo)f € W} ,(2) and supp S(us)f C D, S(us) is a compact operator from
Ly ,p(82) into itself, where

Lp,oo,0(Q) = {f € Lp,00(?)* | supp f C D}
By using the representation formula of E(u,) * f°, we see easily that

(4.7) 1S(ueo) = S(O)]l . < Cluce |2

p,00,D(V)) =

when |us| £ 1, where £(Lp o0,p(2)) is the set of bounded linear operators from L, o, »(£2)
into itself.
Our uniqueness theorem is the following one.

Uniqueness Theorem. Let 1 < p < co. If (u,7) € S'(2)* N (W2,.(Q)3 x W ,.(Q))
satisfies the homogeneous equation :
—Au+ (U V)u+Vr=0, V-u=0 inQ, ul,,=0

and the growth order condition :

lim R-3 f u(z)| =0, lim R~ / i(z)| dz = 0,
R—oo R— oo
RS[zIS2R RS[zIS2R
then u = 0 and m = 0. Here, we put

S'() = {u| U € S'such that u = Uon Q}.

Remark. if 1 < p < 3 and u € Lap/(3-p),00(£2), VU € Lp () and m € Ly, oo(§2), then
(u, 7) satisfies the growth order condition. But, in general the uniqueness does not hold
for the exterior domain when u € L, 1,.(9)® with Vu € Lpoo(2)3*3 and p 2 3.

By using the Fredholm alternative theorem for the I+ compact operator, we have the
following lemma.

Key Lemma. There exists an € > 0 such that if |u,| < €, then the inverse operator
(I + S(us))™! of I + S(us) exists as a bounded operator from Ly o p(R) into itself.
Moreover, we have

||(I+ S(uoo))_lllt(bp,oo,p(n)) é c

where C is independent of u,, whenever |uy| < .

Proof. By (4.7), it is sufficient to show the lemma in the case where u,, = 0. In view of
Fredholm alternative theorem, it is sufficient to show the injectivity of I+ S(0). Therefore,
we take f € Ly 0, p(€2) such that (I + S(0))f = 0. And, we will show that f = 0. By the
definition of S(0) we have —AP(0)f + VQf = 0in Q, V- P(0)f = 0in Q and P(0)f|,, = 0.
By the uniqueness theorem, P(0)f = 0 and Qf = 0. And then, employing the argument
due to Koboayashi and Shibata [26], Shibata [44, 45] and Iwashita [24], we see that f = 0.

By Key lemma, the solution (v, w.) of (4.5) can be written by the formula :

Ve = P(uoo)(I + 8(ue)) ' (ueo)[f],  7e = QI + S(u0o)) ™ (o) [f],

which completes our proof of Linear Theorem.
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5. UNIFORM STABILITY THEOREM OF STATIONARY
SOLUTIONS WITH RESPECT TO Uy NEAR 0O

In this section, we consider the stability of stationary solution obtained in Theorem 4.1,
focusing on the uniform estimate for solutions to (1.5) with respect to u near 0. In order
to state our main result precisely, first we formulate the problem. Since V-w = 0 and
V -z = 0, we have

(w-V)z+(z-V)w+(z-V)z:V-(w®z+z®vw+z®z).

Noting this and applying the Helmholtz projection P to (1.5), we have the Cauchy problem
of the semilinear evolution equation :

2+ 0u)z+ P[V- (WRz+2Q@wW+2®2)] =0 fort >0, 2|0 =Db.

Applying the Duhamel’s principle, we have
t §
2(t) = Tu_(t)b / T (t — )PV - (w® 5(s) + 2(s) ® W + 2(5) ® 2(3))] ds.
0 ;

Testing the equation by ¢ € C§%(Q)® = {¢ = (p1,¥2,93) € CP(QP |V -p=0inQ },
we have

(2(t), ¢) = (Tun (t)b, 9)
= /0 (Tu,, (t — $)P[V - (W z(s) + z(s) @ W + z(s) ® z(s))], ¢) ds
= (Tuoo (t)bv 90)

+ /0 (W ® 2(s) + 2(s) ® w + () ® 7(s), V[T—u_ (t — 5)0]) ds.

We introduce the following definition.

Definition. Let 3 < p < oco. We call z a mild solution of (1.5) in the class S, if z satisfies
the following conditions :

(i) 2z € BC((0,00); L3oo()), V-2z=0, t1/273/2P)z(t .) € BC((0,00); Lp oo ());
(ii) (2(t), ¥) = (Tus (t)b, ¥)

n / (w ® 2(s) + 2(5) ® W + 2(5) @ &(5), V[T—n__ (t — 5)¢]) ds:

(i) Jim. (2(),¢) = (by9) Vo € CE5 (D).

If a mild solution is regular in the usual sense, then it satisfies (1.5). To prove the
regularity is now rather standard (cf. Kozono and Yamazaki [32], also Yamazaki [48]), and
therefore we only give a sketch of our proof about the following existence theorem of mild
solutions below.
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Theorem 5.1. Let 3 < p < oo. Then, there exists ac > 0 such that if |b||,, o +|uc| =

o and V -b =0, then (1.5) admits a mild solution z in class Sp. Moreover, z satisfies the
following estimate :

(5.1) [Z]3,°o,t + [z]p,oo,t <Co vVt e (0,00),

where C > 0 is a constant independent of u,, and b,

[2]3,00,¢ = oel, LICRD] PR
8
5.2
(5.2) [2]p 00t = SUP 3(1/2—3/21’)”2(3,
0<s<t

')”L,,,oo(n)'
Remark. By Marcinkiewitz interpolation theorem, for any r € (3,p) we have

”Z(t, ')”L,(n) é Cr t~(1/2=3/2r) g Vte (0, OO)

Open Problem. Show the following decay property of our mild solution z :

sup s1/?

0<s<t

sup s'/?||Vz(s, )|,
<8<t !

”z(s’ ')"Lw(n) < Co,

< Co.

oo ()

Our proof of Theorem 5.1 is based on the following L, - L, estimate of the Oseen semigroup
{Tuoo }tZO‘

Estimate of Oseen semigroup II. (i) Whent 2 1 and |us,| £ M, we have the following
estimates :

ITlloo (t)a“z,q‘,.(n) g Ct_ullallz,,,‘,.(n)’

3/1 1
1< p< oo, V=§(—_E)’ 1<pSg<oo, 1S7r £ .

7 =
1 Tuo (t)a“L,,o(n) S Ct—alzp”a”L,,,(n)v l1<p<oo, 157 <00
9. Dl .0 S CECH2all, 0, 1<pSgS3, 157 S o0
VT (Ball,, oy £ CE¥2ljall,, o,
1<p<gq 3<g<oo, 12r<L .
IIVTuoo(t)a”Loo(n) < Ct_3/2p“a”t,,,,,(n)7 1<p<oo, 157 £ .
Here, C is independent of uy, while C depends on p, q, r and M.
(ii) When 0 < t £ 1 and |ux| £ M, we have the following estimates :
”Tuoo (t)a”Lq,r(n) = Ct_ullallt,p‘,(n)’ l1<pSqg<oo, 1 Sr<oo.
IVTue(®all,, .y S CtPall, 0y 1<pSg<oo, 157 < .
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Here, C is also independent of u, while C depends on p, g, r and M.

A Sketch of A Proof of Estimate of Oseen semigroup 11

In order to show Estimate of Oseen semigroup II, we use the following estimate due to
Kobayashi and Shibata [26] :

1
(5.3) Y 18! Tur (Dallwmagy S Com,r(L+1)~*%|lall, o,
j=0

for any 1 < p < oo, m 2 0 and R >> 1 with a suitable constant Cp, 4 r independent of
Uo. Interpolating this inequality, we have

1

(5.4) Z ||8{Tuoo (t)allwgg(nR) < Cpm,r(1+ t)_3/21’”a“1,,,,q(n)
3=0

forany 1 < p< ooand 1l < g £ oo. Let Sy (t)a denote a solution of the evolutional
Oseen equation in the whole space. By the usual L, - L, estimate and the interpolation
theorem, we have

(5.5) 10707 Suo (Wall, | gsy < CP"I’T’ivat_(VHHaW)”a”L,,,,(Rs)’
withuz%(z—lj—%) forl<p<g<oo,1<r=<00,and
(5‘6) ||6:t78:Suoo (t)aHLoo(R.'i) é CP:Qarvjaat—(3/2p+j+|al/2)“a”Lp’r(R:i)

for1<p<ooand 1< r £ oo, when t > 0. By using the cut-off function and combining
(5.4) - (5.6) and employing the same argument due to Kobayashi and Shibata [26] and also
Iwashita [24], we have Estimate of Oseen semigroup II.

A Sketch of A Proof of Theorem 5.1.

Now, we will give a sketch of our proof of Theorem 5.1. We shall prove Theorem 5.1 by
the contraction mapping principle. As the underlying space, we put

T, = {u(t,-) € BC((0,00); L3,0(2)*) | V-u=01in Q,
[1]3.00,¢ + [U]p,00,t < 0 for Vi > 0}.

Given u(t) = u(t,-) € Z,, let us define v(t) = v(t,-) for each ¢t > 0 by the formula :
(v(t),#) = (T, (t)b, ¢)

- /0 (w®u(s) +u(s,:) @w +u(s) ®u(s), V[T_u_ (t — 8)¢]) ds
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for all ¢ € C§%,(€2). What we have to show is that

(5.7) [(v(2), ©)|

< C{Iblluy oo + 1wy oy (3,00, + (013 0 MO, Lo
(5.8) [(v(2), ¥)I

S Ct=O2320b|l,, ey + W, oy [0

+ [u]3,00,t[u[p,oo,t}”(p”Lp_l(n)7

Since we can get the continuity with respect to ¢ > 0 of v(¢, -) by considering the difference
¢ (v(t1) — v(t2),¢), we see that v € Z,. Taking o smaller if necessary, we can also see
easily that the map : u — v is a contraction one from Z, into iteself, which completes the
proof of Theorem 5.1.

Therefore, we shall explain how to get (5.7) and (5.8) from now on. The key is the
following lemma.

LEMMA. Ifl1<g<r<3andl/q—1/r =1/3, then we have

[o o]
/0 IV 611,y 4t < Crallolly, o

Remark. From the usual L, - L, estimate, we have

IV [Taes (D€, 0y = Crgt™ Il o

when 1/g — 1/r = 1/3, which does not imply the integrability. In order to get the integra-
bility, we used a little bit smaller spaces L, ; and L, ; than L, and Lg, which is a crusial
part of our argument.

Proof of LEMMA. Observe that

JRCRCE TS Sl ML e 153 3 o'm

J——OO
where
. m; = Sup ”V[Tuoo(tW”an)
21-1<¢L29

By L, - Lg, estimate,

3 A1 +L
19T 1l o S et G D gy,

with suitable constant d,, independent of u, for k =0, 1, where 1 < py < ¢ < p; < r < 3.
Since 291 <t < 27, we see that

mjgdpk2(%(ﬁ 'r') %) 21) (E(Pk ;)+%)“(p”!~pk,1(“)'



Cp = dp,203GE1) ) ang 4, =

N o

1 1 +1
Pk T 2’

k=0,1.

and then

sup (29)**m; < Cp,|loll,

JEZ pi1 (D7

By the real interpolation, we see that
(€50, 00)e1 =1, s=(1—0)s0+0s1, 0<H<1
(cf. Joran Bergh and Jorgen Lofstrom [1, Theorem 5.6.1]). Therefore, we have

1-6 8

Do D1

w .
Z 2°m; S C‘IHQOHLQ‘I(Q)’

j=—o0

In particular,

1
s:(1—9)30+031=§ l—— +1:1
2\q r 2

because 1/q — 1/r = 1/3, and therefore we have
o~ ,
Z 2]mj é CQH(p“Lq‘l(Q)v
j=—o0
which completes the proof of the lemma.

To show (5.7), observe that

T (OB, oy < Cllb

= L3,°°(Q)'I

/0 (W& u(s), V[Tu (t - 5)g]) ds

t
< 19y [ 85 i IV = 96
< 1wl (Wl | IV (€= 5)elL, o
using LEMMA and noting that 2/3 —1/3 = 1/3,

s CI|W”L3'°°(Q) [u]3,00,t”90”L3/2,1(n);

] [ (6) © u(s), VT 6= s)) ds

t
< [ IR, I (= 99l o
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[0 o]
< Clul., / IVIT-un (¢ = )6l oy 48
< C[u]rzi,oo,t”‘P”Ls/z‘l(n)'
To show (5.8), observe that
—(1_3
|Tue @bl ey S CEE=H Il 0.

Choose r so that 1/3+1/p+ 1/r = 1, and then 1/¢ — 1/r = 1/3. Therefore,

1 /0 (w ® u(s), V[Tu_ (t — 5)p]) ds

t
T [ O TR e TR R

t
—(i-2Z
g ”w”L:"w(ﬂ) [u]p,W,tA‘ s (2 2")”V[T-u°° (t - 3)90“1,,,'1(9) ds

—(i_3
<ot =Hjwll,, _ o llpeodllel,, -

In fact, since
IVIT-uee (t = 9o, S CE = 8) M0, o)

as follows from that (3/2)(1/q — 1/r) + 1/2 = 1, we have

t/2
[ ORIV = )l

t/2 (.L )
sc [ s Be-9dslel,, 0

wl-—-

< C(t/2)! / (-

0

<c/2) /el | @
< C—(%—%) “‘p”Lq'l(n) .

%) ds|oll,, e

On the other hand,

i

t
/;n 8-(2—531‘7)”‘7[71—%o (t— 3)‘P”|L, 1) ds

< (t/2)" (%) / V(T (¢ = 8)61ll,. o

< ct-(3-%) / IV -uee ()1l (o 8
: |

—(i_3
< Ct (3 2"')”‘F’”Lq‘l(n)’
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and therefore we have

Lpi() =

t | 3 |
/0 s BNV (- )0l o S CE B0l oy

In the same manner, we have

’/Ot(u(s) ®u(s), V[T_u_ (t — 8)¢]) ds

t
< [ Iy i 8y 19T (= D0,

[V

< Cluls oot [Ulpoor / BV Tous = ), o 5

< 0t~ (=B u)s o0 s [ulp,contllel

Lq,l(n) -

Combining these estimations implies (5.8), which completes the proof of Theorem 5.1.
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