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ON L? BOUNDEDNESS OF A CLASS OF
PSEUDODIFFERENTIAL OPERATORS

MICHIHIRO NAGASE (R# 383l

ABSTRACT. Let p(z,£) be a symbol in Hormander class SJ ;. Then it is known
that the pseudodifferential operator p(X,D:) is LP(R™) bounded. In the
present paper we give a class of pseudodifferential operators and study the
L?(R"™) boundedness of the operators. The class of operators is closely related
to the Schrédinger operators with magnetic potentials.
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1. INTRODUCTION

Let S7% be the set of Hérmander class symbols, that is,

s = {p(x, ) : Ip(g) (2, £)| < C(&)™#1=+4I8l for any o and g}

Here we use that for any multiintegers a = (a1, -+ ,a,) and 8 = (81, , Bn)

p5) (2,€) = 8D, p(z,£)

o (BN _ (9N . (O\™"
6"(6&) ‘(6&) (af,.)

s_ (90 "_(_a_)"‘...( 9 )ﬂ"'
D." = (iaz) ~ \ifzy iz,

We define the pseudodifferential operator of symbol p(zx, ) by
1 ; .
P(X, DoYue) = o [ epla, @)t

where the integration is taken in R™ and %(£) denotes the Fourier transform of u(z),
that is,

and

w(¢) =-/ e u(z)dzr
We denote that the set of pseudodifferential operators with symbol of class o5 by
the same notation as the symbol class.

We say that a linear operator T' : LP(R") — LP(R"™) is LP bounded if there is a
constant C such that

ITullLe®n) < CllullLe(re) for any u € S

We denote the set of all L? bounded operators by £L(L?(R")). The following theorem
is known as Calderén-Vaillancourt theorem([1]).
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Theorem 1. Let 0 < 6 < p <1,6 < 1. Then we have
Sg,‘; C L(L*(R™)
For the general L? boundedness, we can see the following theorem([2],[4]).
Theorem 2. Let0<d<p<1, (0<1) and 1< p< oo. Then we have
Sps C L(LP)
if and only if m < —n(1 - p) I% - %I
We want to generalize these results to a class of pseudddiﬁerentia.l operators

which is useful to the study of Schrodinger operators with magnetic potentials.

2. PRELIMINARY RESULTS

Let a(z) = (a1()," - ,an(x)) be an R™ valued function such that 8%a;(z) are
bounded for any multiinteger @ # 0. Then we define a smooth function A(z, £) by

Mz, &) = VIE —a(@)]2 +1
Then it is not difficult that the function A(z, §) satisfies

(1) Az, 6) =1
(2) 18¢8EN(z,£)| < CapA(z, €)' 1ol

By using the function A(z,£) we define a class ST , of symbols by

Sysa = {p,6): |p§;';;(x,s)| < CaypA(z,)™ #1281 for any a;and 8

and denote
Sgan = U Spsa-
meR

This class of symbols is useful for the study of Schrﬁdihger operators with magnetic
potentials(see for example [7]). Then it is known that if 0 < d < p < 1,6 < 1
then the class of pseudodifferential operators with symbols S, o.5,, akes an algebra.
Moreover we can show the following L? boundedness theorem by using the method
in [5].
Theorem 3. We assume that 0 <d < p < 1. If a symbol p(z,§) is in Sz,a,» then
the pseudodifferential operator P = p(X, D) is L? bounded. That is, there is a
constant C such that

llp(X; Dz)ull < Cllull
where || - || means the usual L(R™) norm.

3. L? BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS

Let a(z) = (a1(x), - - - an(x)) be an R™ valued function, and let
(1) Az, &) =VIE—a@)P+1

In the following we don’t assume that the vector function a(z) is not smooth, we
need only the fact that a(z) is R™ valued and measurable.
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L? BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS

In the following we use always C as constant independent of variables. Hence
the value of C in inequalities are not the same at each occurrence. First we glve
simple boundedness lemmas of the pseudodifferential operators.

Lemma 1. If the support of symbol p(z,§) is contained in {(z, E) |€ - a(x)| <R}
for some positive constant R and p(z,£) satisfies

@) P (,6)| <Ca

for any a with |a] < n + 1. Then the operator p(X, D,) is written as

P, DaJu(o) = [ K(z,z - yyu(s)dy

where the kernel K (z,z) satisfies

C

(3) | : - k(z,2)| < P ),,H‘

Proof. We can write

P(X,DJulz) = [ K(zz - yyu)dy

where -
1 ,
— iz§
K(@,2) = Gz [ 0l )¢
Then for |a| < n + 1 we have ‘
L B
o — (4 | iz€, ()
#K(@,2) = ()l [ (x,s)_,ds
Hence we have
KAl < g [0l
< L / Cude
- (27r)n £:|€;-a(z)| &
< C

where the last constant C is independent of the variable z. Thus we have the kernel
estimate (3). . O

Because of the estimate (3),we have
@ [ 1K@z <

Therefore we have

Proposition 1. Let p(z,€) satisfy the same assumption as in Lemma 1, then the
pseudodifferential operator p(X, D,) is L? bounded for 1 < p < oo and the bound
norm is estimated by M in (4).

For 2 < p < 0o we have
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Lemma 2. If the support of symbol p(z,&) contained in {(z,€) : |{ — a(z)| < R}
for some positive constant R and p(z,£) satisfies the inequality (2) for |o| < k =

[g—] +1, then the pseudodifferential operator p(X, D;) is L? bounded for 2 < p < co.

Proof. We can write
p(X,D.)u(z) = [ K(@,z - puls)iy

where

K(,2) = g [ €pta. €)de

Then by the Schwarz inequality and the Plancherel formula we have

/ |K(z,2)ldz < c{ / (2)~2" dz}1/2 { /(z)2"|K(z,z)|2dz}1/2

cy { / |z°K(z,z)|2dz}l/2

lxl<x

= C) { / |1‘o“'>(av,»5)12«145}1/2

o<

IA

= C
Thus we have
llp(X, D2 )ull Lo n) < CllullLoomn)
In a similar way we have

o, Dyl = [ | [ 1K@z - wyuey

< [{[e-wikes- P }{ [ - n @
= of{f <z>2~|K(z;z)|’} { [@-v*ia)ar}

¢ [ [@-*"iu)duds
| = ClulP
Hence by the Riesz-Thorin interpolation we get the Lemma. O

2
dz

IA

One of the main results in the present note is the following.

Theorem 4. Let a(z) be the same as in Lemma 1, and A(z,§) be defined by (1).
Let w(t) be a nonnegative and nondecreasing function on [0,00) such that

/Mdt<oo
o ¢

We assume that a symbol p(z,£) satisfies
I (z, )| < Cad(z,§) I™w(M(z,8)7")
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L? BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS

for any a with |a] < n+ 1. Then the pseudodifferential operator p(X, D) is L?
bounded for 1 < p < oo.

Proof. By Lemma 1, we may assume that the support of the symbol p(z,§) is
contained in {(z,£) : | — a(z)| > 2}. Now we take a smooth nonnegative functior

f(t) such that the support of f(t) is contained in the interval [%, 1] and

<, _
[ O

Then since the support of the symbol p(z, £) is contained in {(z,¢) : [¢ —a(z)| > 2},
we have

| |
PO Do) = g [ 3t [ [ 900, seeutw)duat

1 — .
= (2;’)"/" t:"l dt//eii_'ufe'("—y)a(z)l’(?,'f—-l-a(x))f(lfl)u(y)d{dy

1
= #—/ %dt/e“”(’)Kt(:c,z)u(a: —tz)dz
o t .

where

Ki(w,?) = o [ (e, § + o) f(ede
If we put p(z, &) = p(z, -f— + a(x)), then it is easy to see that

15 (2, £)] < Ca(®) lw((€)?)
for |a| < n+ 1. Since the equality
gled

@ t.i,. (;’) / et 5 (a, %)ag-a'f(la)da

o <a

2°Ky(z,2) =

holds for |a] < n + 1, we have

a 1 1 a ~(a 6 a—a'
K@ S G Y g (&) [ o= saeniae

1 [a '
Y
2 el \e' /) J1ja<ie1<1

a'<a

< Cuw(?)

g
n

Iu_)(l% ~—1)d€

for |a] < n + 1. Therefore we have
(5) - |Ke(z,2) < CE) T Tw(t)
By the inequality (5) and the equality

X .
(X, D;)u(z) = -(%;/0 %dt/e“’"’(”)Kt(x, 2)u(z — tz)dz

49



MICHIHIRO NAGASE

we can see that the operator p(X,D.) is L! bounded and L* bounded. That is
inequalities

lp(X, Dz)ullrgey < Cllullorge)

lp(X, Dz)ullLore)y < Cllullpeown)

holds. So By the Riesz-Thorin interpolation theorem we have the LP boundedness
for1<p< . a

When 2 < p, we can show a little more general result than Theorem 4, by using
the Plancherel Theorem.

Theorem 5. Let a(z) and \(z,£) be the same as in Theorem 4. Let w(t) be a
nonnegative and nondecreasing function on [0,00) such that

/Mdt<oo
o t

We assume that a symbol p(z,§) satisfies

1P (z,6)| < CaA(z,8) Plw(A(z,6)7)
for any o with |a| < k = [g] + 1. Then the pseudodifferential operator p(X,D.) is
L? bounded for 2 < p < oo.

Proof. We first show the L> boundedness. We write the operator p(X, D,), as in
the proof of Theorem 4, by

i ‘
(X, D;)u(z) = (271_)"./0 %—t—/e‘”“(z)Kt(z, 2)u(z — tz)dz

where
1

(2m)"

Ki(a,2) = e [ €pla, & + al2))f(eDag

Then writing k = [%] + 1, we have

[ 1K@tz = [ a)ikie, 2)idz

{/ <z>-2~dz}1/2 { [eix, z)I2d2}1/2

< C Z {/lz"Kt(x,z)|2dz}1/2

| <=

IA

Using the Plancherel equality, we have
/ |22 Ky (z, z)|2dz

[ 1085tz $r50yPag
< Casll
Hence we have ’

1P(X, D.)u(@)| < Clullzequey
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LP BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS

In order to show L2 boundedness of the operator p(X, D,), we use the same repre-
sentation :

p(X, D, )u(x) =v6%)7 /0 1 fl; / 5@ K, (z, 2)ule — t2)dz

where : :
Kile,2) = gy [ €50, & + (@) £(eDet

From this representation we have

1 [t itoal-
105 Dy < o | 5 | [ 0Kt -ty

-
/‘/th(x,z)u(z'—tz)Wz

2 < / (2)*"|Ke(z, 2)"dz / (2) " |u(z — t2)|*dz

L3(R™)

Then we have
2 .

/é“‘“(’)Kt (z,z)u(:b —tz)dz

/eit’“(')Kt(-, 2)u(- — tz)dz

2
dx

IA

By using the Schwarz inequality we have

‘/ |Ki(z, 2)u(z — tz)|dz
As above we can see

[k are < 5 1K ard

laf<«
£ 2
= ) [ 10 qp(z,> +a@)f(IE]) ¢ 7€
= [ oo s censn)
< Cu(t)?
Therefore we get

2

< C//(z)'zf.“lu(x—tz)l‘zdzd»z |
< Cw(t)|ulf?

/e“z“(‘)Kt(-, 2)u(- — tz)dz

Thus from the assumption of w(t) we have the L? estimate
llp(X, Dz)ull < Cllull

Again by the Riesz-Thorin interpolation theorem we have the L? iboundedness for
2<p< 0. E o

Remark 1. Theorems in this section we don’t always assume that the vector func-
tion a(z) = (a1(x), :+ ,an(z)) satisfies the estimate

Iazaj(z)l < C

In several theorems we can prove the theorem under only the measurability of a(z).
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Remark 2. If the vector function a(z) is bounded, then the symbol class S™ 5
coincide with the usual Hormander class S];. Hence using the similar method of
usual class, the LP boundedness in Theorem 4 can be shown(see for ezample, [6]).
Even if a(z) is not bounded, we have

Proposition 2. Let a(z) and A(z, &) be the same as in Theorem 4. For any smooth
function ¢ with compact support, we have

lle(z)p(X, Dz )ullLege) < CllullLs @)
4. CONJECTURE

As we see in the previous sections we can expect that the following L? bound-
edness theorem.

Conjecture 1. If the vector function a(z) = (a1(z),--- ,a,(x)) satisfies

10%a;(z)| < Ca
Jor any a # 0. Then for 1 < p < oo , the operator p(X D) in S? s, 18 LP bounded.
That is,

Stsa C L(LP(R™))
holds.

As we stated in section 2 it is known that if the vector function a(z) satisfies
the estimates in the above conjecture, the operators in SY 5, with (§ < 1) are L?
bounded. So if we can show the weak type (1,1) estimates or boundedness from
L*(R") to BMO, then we can get the above conjecture, that is, L? boundedness
for 1 < p < 0o by using the mterpolatlon theorems(see for example [8], [3]). The
fundamental conjecture is

Conjecture 2. If the vector function a(z) = (a1(z),--- ,an(x)) satisfies
|[0%;(z)| < Co

for any a # 0. Then the operator p(X, D) in S? Lo 18 bounded from L*(R") to
BMO, that is, there is a constant C such that

lp(X, Dz)ullermo < Cllullpeo(rn)
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