ON L^p BOUNDEDNESS OF A CLASS OF PSEUDODIFFERENTIAL OPERATORS

MICHIHIRO NAGASE (長瀬 道弘)

ABSTRACT. Let $p(x,\xi)$ be a symbol in Hörmander class $S^0_{1,\delta}$. Then it is known that the pseudodifferential operator $p(X,D_x)$ is $L^p(\mathbb{R}^n)$ bounded. In the present paper we give a class of pseudodifferential operators and study the $L^p(\mathbb{R}^n)$ boundedness of the operators. The class of operators is closely related to the Schrödinger operators with magnetic potentials.

Keywords: pseudodifferential operators, BMO, interpolation

1. Introduction

Let $S^m_{\rho,\delta}$ be the set of Hörmander class symbols, that is,

$$S_{\rho,\delta}^m = \{p(x,\xi) : |p_{(\beta)}^{(\alpha)}(x,\xi)| \le C\langle \xi \rangle^{m-\rho|\alpha|+\delta|\beta|} \text{ for any } \alpha \text{ and } \beta\}$$

Here we use that for any multiintegers $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$

$$p_{(\beta)}^{(\alpha)}(x,\xi) = \partial_{\xi}{}^{\alpha} D_{x}{}^{\beta} p(x,\xi)$$

and

$$\partial_{\xi}^{\alpha} = \left(\frac{\partial}{\partial \xi}\right)^{\alpha} = \left(\frac{\partial}{\partial \xi_{1}}\right)^{\alpha_{1}} \cdots \left(\frac{\partial}{\partial \xi_{n}}\right)^{\alpha_{n}}$$

$$D_{x}^{\beta} = \left(\frac{\partial}{i\partial x}\right)^{\beta} = \left(\frac{\partial}{i\partial x_{1}}\right)^{\beta_{1}} \cdots \left(\frac{\partial}{i\partial x_{n}}\right)^{\beta_{n}}$$

We define the pseudodifferential operator of symbol $p(x,\xi)$ by

$$p(X, D_x)u(x) = \frac{1}{(2\pi)^n} \int e^{ix\xi} p(x, \xi) \hat{u}(\xi) d\xi$$

where the integration is taken in \mathbb{R}^n and $\hat{u}(\xi)$ denotes the Fourier transform of u(x), that is,

$$\hat{u}(\xi) = \int e^{-ix\xi} u(x) dx$$

We denote that the set of pseudodifferential operators with symbol of class $S^m_{\rho,\delta}$ by the same notation as the symbol class.

We say that a linear operator $T:L^p(\mathbb{R}^n)\to L^p(\mathbb{R}^n)$ is L^p bounded if there is a constant C such that

$$||Tu||_{L^p(\mathbb{R}^n)} \le C||u||_{L^p(\mathbb{R}^n)}$$
 for any $u \in \mathcal{S}$

We denote the set of all L^p bounded operators by $\mathcal{L}(L^p(\mathbb{R}^n))$. The following theorem is known as Calderón-Vaillancourt theorem([1]).

Theorem 1. Let $0 \le \delta \le \rho \le 1, \delta < 1$. Then we have

$$S^0_{\rho,\delta} \subset \mathcal{L}(L^2(\mathbb{R}^n))$$

For the general L^p boundedness, we can see the following theorem([2],[4]).

Theorem 2. Let $0 \le \delta \le \rho \le 1$, $(\delta < 1)$ and 1 . Then we have

$$S_{a,\delta}^m \subset \mathcal{L}(L^p)$$

if and only if
$$m \leq -n(1-\rho)\left|\frac{1}{2} - \frac{1}{p}\right|$$

We want to generalize these results to a class of pseudodifferential operators which is useful to the study of Schrödinger operators with magnetic potentials.

2. Preliminary results

Let $a(x) = (a_1(x), \dots, a_n(x))$ be an \mathbb{R}^n valued function such that $\partial_x^{\alpha} a_j(x)$ are bounded for any multiinteger $\alpha \neq 0$. Then we define a smooth function $\lambda(x, \xi)$ by

$$\lambda(x,\xi) = \sqrt{|\xi - a(x)|^2 + 1}$$

Then it is not difficult that the function $\lambda(x,\xi)$ satisfies

(1) $\lambda(x,\xi) \geq 1$

$$(2) |\partial_{\xi}^{\alpha} \partial_{x}^{\beta} \lambda(x,\xi)| \leq C_{\alpha,\beta} \lambda(x,\xi)^{1-|\alpha|}$$

By using the function $\lambda(x,\xi)$ we define a class $S^m_{\rho,\delta,\lambda}$ of symbols by

$$S_{\rho,\delta,\lambda}^m = \left\{ p(x,\xi) : |p_{(\beta)}^{(\alpha)}(x,\xi)| \le C_{\alpha,\beta}\lambda(x,\xi)^{m-\rho|\alpha|+\delta|\beta|} \text{ for any } \alpha; \text{ and } \beta \right\}$$

and denote

$$S_{\rho,\delta,\lambda}^{\infty} = \bigcup_{m \in \mathbb{R}} S_{\rho,\delta,\lambda}^{m}.$$

This class of symbols is useful for the study of Schrödinger operators with magnetic potentials (see for example [7]). Then it is known that if $0 \le \delta \le \rho \le 1, \delta < 1$ then the class of pseudodifferential operators with symbols $S_{\rho,\delta,\lambda}^{\infty}$ makes an algebra. Moreover we can show the following L^2 boundedness theorem by using the method in [5].

Theorem 3. We assume that $0 \le \delta < \rho \le 1$. If a symbol $p(x,\xi)$ is in $S^0_{\rho,\delta,\lambda}$, then the pseudodifferential operator $P = p(X,D_x)$ is L^2 bounded. That is, there is a constant C such that

$$||p(X, D_x)u|| \le C||u||$$

where $\|\cdot\|$ means the usual $L^2(\mathbb{R}^n)$ norm.

3. L^p boundedness of pseudodifferential operators

Let $a(x) = (a_1(x), \dots a_n(x))$ be an \mathbb{R}^n valued function, and let

(1)
$$\lambda(x,\xi) = \sqrt{|\xi - a(x)|^2 + 1}$$

In the following we don't assume that the vector function a(x) is not smooth, we need only the fact that a(x) is \mathbb{R}^n valued and measurable.

In the following we use always C as constant independent of variables. Hence the value of C in inequalities are not the same at each occurrence. First we give simple boundedness lemmas of the pseudodifferential operators.

Lemma 1. If the support of symbol $p(x,\xi)$ is contained in $\{(x,\xi): |\xi-a(x)| \leq R\}$ for some positive constant R and $p(x,\xi)$ satisfies

$$|p^{(\alpha)}(x,\xi)| \leq C_{\alpha}$$

for any α with $|\alpha| \leq n+1$. Then the operator $p(X, D_x)$ is written as

$$p(X, D_x)u(x) = \int K(x, x - y)u(y)dy$$

where the kernel K(x,z) satisfies

$$|k(x,z)| \le \frac{C}{\langle z \rangle^{n+1}}$$

Proof. We can write

$$p(X, D_x)u(x) = \int K(x, x - y)u(y)dy$$

where

$$K(x,z) = \frac{1}{(2\pi)^n} \int e^{iz\xi} p(x,\xi) d\xi$$

Then for $|\alpha| \leq n+1$ we have

$$z^{lpha}K(x,z)=(i)^{|lpha|}rac{1}{(2\pi)^n}\int e^{iz\xi}p^{(lpha)}(x,\xi)d\xi$$

Hence we have

$$|z^{\alpha}K(x,z)| \leq \frac{1}{(2\pi)^n} \int |p^{(\alpha)}(x,\xi)| d\xi$$

$$\leq \frac{1}{(2\pi)^n} \int_{\xi:|\xi-a(x)|} C_{\alpha} d\xi$$

$$\leq C$$

where the last constant C is independent of the variable x. Thus we have the kernel estimate (3).

Because of the estimate (3), we have

$$(4) \qquad \int |K(x,z)| dz \leq M$$

Therefore we have

Proposition 1. Let $p(x,\xi)$ satisfy the same assumption as in Lemma 1, then the pseudodifferential operator $p(X,D_x)$ is L^p bounded for $1 \le p \le \infty$ and the bound norm is estimated by M in (4).

For $2 \le p \le \infty$ we have

Lemma 2. If the support of symbol $p(x,\xi)$ contained in $\{(x,\xi): |\xi-a(x)| \leq R\}$ for some positive constant R and $p(x,\xi)$ satisfies the inequality (2) for $|\alpha| \leq \kappa = \left\lfloor \frac{n}{2} \right\rfloor + 1$, then the pseudodifferential operator $p(X,D_x)$ is L^p bounded for $2 \leq p \leq \infty$.

Proof. We can write

$$p(X, D_x)u(x) = \int K(x, x - y)u(y)dy$$

where

$$K(x,z) = \frac{1}{(2\pi)^n} \int e^{iz\xi} p(x,\xi) d\xi$$

Then by the Schwarz inequality and the Plancherel formula we have

$$\int |K(x,z)|dz \leq C \left\{ \int \langle z \rangle^{-2\kappa} dz \right\}^{1/2} \left\{ \int \langle z \rangle^{2\kappa} |K(x,z)|^2 dz \right\}^{1/2}$$

$$\leq C \sum_{|\alpha| \leq \kappa} \left\{ \int |z^{\alpha} K(x,z)|^2 dz \right\}^{1/2}$$

$$= C \sum_{|\alpha| \leq \kappa} \left\{ \int |p^{(\alpha)}(x,\xi)|^2 d\xi \right\}^{1/2}$$

$$= C$$

Thus we have

$$||p(X, D_x)u||_{L^{\infty}(\mathbb{R}^n)} \le C||u||_{L^{\infty}(\mathbb{R}^n)}$$

In a similar way we have

$$||p(X, D_x)u||^2 = \int \left| \int |K(x, x - y)u(y)dy \right|^2 dx$$

$$\leq \int \left\{ \int \langle x - y \rangle^{2\kappa} |K(x, x - y)|^2 \right\} \left\{ \int \langle x - y \rangle^{-2\kappa} |u(x)|^2 dy \right\} dx$$

$$= C \int \left\{ \int \langle z \rangle^{2\kappa} |K(x, z)|^2 \right\} \left\{ \int \langle x - y \rangle^{-2\kappa} |u(x)|^2 dy \right\}$$

$$\leq C \int \int \langle x - y \rangle^{-2\kappa} |u(x)|^2 dy dx$$

$$= C||u||^2$$

Hence by the Riesz-Thorin interpolation we get the Lemma.

One of the main results in the present note is the following.

Theorem 4. Let a(x) be the same as in Lemma 1, and $\lambda(x,\xi)$ be defined by (1). Let $\omega(t)$ be a nonnegative and nondecreasing function on $[0,\infty)$ such that

$$\int_0 \frac{\omega(t)}{t} dt < \infty$$

We assume that a symbol $p(x,\xi)$ satisfies

$$|p^{(\alpha)}(x,\xi)| \le C_{\alpha}\lambda(x,\xi)^{-|\alpha|}\omega(\lambda(x,\xi)^{-1})$$

for any α with $|\alpha| \leq n+1$. Then the pseudodifferential operator $p(X, D_x)$ is L^1 bounded for $1 \leq p \leq \infty$.

Proof. By Lemma 1, we may assume that the support of the symbol $p(x,\xi)$ is contained in $\{(x,\xi): |\xi-a(x)| \geq 2\}$. Now we take a smooth nonnegative function f(t) such that the support of f(t) is contained in the interval $[\frac{1}{2},1]$ and

$$\int_0^\infty \frac{f(t)}{t} dt = 1$$

Then since the support of the symbol $p(x,\xi)$ is contained in $\{(x,\xi): |\xi-a(x)| \geq 2\}$, we have

$$p(X, D_x)u(x) = \frac{1}{(2\pi)^n} \int_0^1 \frac{1}{t} dt \int \int e^{i(x-y)\xi} p(x,\xi) f(t|\xi|) u(y) dy d\xi$$

$$= \frac{1}{(2\pi)^n} \int_0^1 \frac{1}{t^{n+1}} dt \int \int e^{i\frac{(x-y)}{t}\xi} e^{i(x-y)a(x)} p(x, \frac{\xi}{t} + a(x)) f(|\xi|) u(y) d\xi dy$$

$$= \frac{1}{(2\pi)^n} \int_0^1 \frac{1}{t} dt \int e^{itza(x)} K_t(x,z) u(x-tz) dz$$

where

$$K_t(x,z) = \frac{1}{(2\pi)^n} \int e^{iz\xi} p(x,\frac{\xi}{t} + a(x)) f(|\xi|) d\xi$$

If we put $\tilde{p}(x,\xi) = p(x,\frac{\xi}{t} + a(x))$, then it is easy to see that

$$|\tilde{p}^{(\alpha)}(x,\xi)| \le C_{\alpha} \langle \xi \rangle^{-|\alpha|} \omega(\langle \xi \rangle^{-1})$$

for $|\alpha| \leq n+1$. Since the equality

$$z^{\alpha}K_{t}(x,z) = \frac{i^{|\alpha|}}{(2\pi)^{n}} \sum_{\alpha' \leq \alpha} \frac{1}{t^{|\alpha'|}} \binom{\alpha}{\alpha'} \int e^{iz\xi} \tilde{p}^{(\alpha')}(x,\frac{\xi}{t}) \partial_{\xi}^{\alpha-\alpha'} f(|\xi|) d\xi$$

holds for $|\alpha| \leq n+1$, we have

$$|z^{\alpha}K_{t}(x,z)| \leq \frac{1}{(2\pi)^{n}} \sum_{\alpha' \leq \alpha} \frac{1}{t^{|\alpha'|}} {\alpha \choose \alpha'} \int |\tilde{p}^{(\alpha)}(x,\frac{\xi}{t}) \partial_{\xi}^{\alpha-\alpha'} f(|\xi|) |d\xi|$$

$$\leq C \sum_{\alpha' \leq \alpha} \frac{1}{t^{|\alpha'|}} {\alpha \choose \alpha'} \int_{1/2 \leq |\xi| \leq 1} \left| \frac{\xi}{t} \right|^{|\alpha'|} \omega(\left| \frac{\xi}{t} \right|^{-1}) d\xi$$

$$\leq C \omega(t)$$

for $|\alpha| \leq n+1$. Therefore we have

(5)
$$|K_t(x,z)| \le C\langle \xi \rangle^{-n-1} \omega(t)$$

By the inequality (5) and the equality

$$p(X, D_x)u(x) = \frac{1}{(2\pi)^n} \int_0^1 \frac{1}{t} dt \int e^{itza(x)} K_t(x, z) u(x - tz) dz$$

we can see that the operator $p(X, D_x)$ is L^1 bounded and L^{∞} bounded. That is inequalities

$$||p(X, D_x)u||_{L^1(\mathbb{R}^n)} \leq C||u||_{L^1(\mathbb{R}^n)} ||p(X, D_x)u||_{L^{\infty}(\mathbb{R}^n)} \leq C||u||_{L^{\infty}(\mathbb{R}^n)}$$

holds. So by the Riesz-Thorin interpolation theorem we have the L^p boundedness for $1 \le p \le \infty$.

When $2 \le p$, we can show a little more general result than Theorem 4, by using the Plancherel Theorem.

Theorem 5. Let a(x) and $\lambda(x,\xi)$ be the same as in Theorem 4. Let $\omega(t)$ be a nonnegative and nondecreasing function on $[0,\infty)$ such that

$$\int_0 \frac{\omega(t)}{t} dt < \infty$$

We assume that a symbol $p(x, \xi)$ satisfies

$$|p^{(\alpha)}(x,\xi)| \leq C_{\alpha}\lambda(x,\xi)^{-|\alpha|}\omega(\lambda(x,\xi)^{-1})$$

for any α with $|\alpha| \leq \kappa = [\frac{n}{2}] + 1$. Then the pseudodifferential operator $p(X, D_x)$ is L^p bounded for $2 \leq p \leq \infty$.

Proof. We first show the L^{∞} boundedness. We write the operator $p(X, D_x)$, as in the proof of Theorem 4, by

$$p(X,D_x)u(x) = \frac{1}{(2\pi)^n} \int_0^1 \frac{dt}{t} \int e^{itza(x)} K_t(x,z)u(x-tz)dz$$

where

$$K_t(x,z) = \frac{1}{(2\pi)^n} \int e^{iz\xi} p(x,\frac{\xi}{t} + a(x)) f(|\xi|) d\xi$$

Then writing $\kappa = \left[\frac{n}{2}\right] + 1$, we have

$$\int |K_t(x,z)|dz = \int \langle z \rangle^{-\kappa} \langle z \rangle^{\kappa} |K_t(x,z)|dz$$

$$\leq \left\{ \int \langle z \rangle^{-2\kappa} dz \right\}^{1/2} \left\{ \int \langle z \rangle^{2\kappa} |K_t(x,z)|^2 dz \right\}^{1/2}$$

$$\leq C \sum_{|\alpha| \leq \kappa} \left\{ \int |z^{\alpha} K_t(x,z)|^2 dz \right\}^{1/2}$$

Using the Plancherel equality, we have

$$\int |z^{\alpha}K_{t}(x,z)|^{2}dz = \int |\partial_{\xi}^{\alpha}\{\tilde{p}(x,\frac{\xi}{t})f(|\xi|)\}|^{2}d\xi$$

$$\leq C_{\alpha}\omega(t)$$

Hence we have

$$|p(X, D_x)u(x)| \le C||u||_{L^{\infty}(\mathbb{R}^n)}$$

In order to show L^2 boundedness of the operator $p(X, D_x)$, we use the same representation

$$p(X,D_x)u(x) = \frac{1}{(2\pi)^n} \int_0^1 \frac{dt}{t} \int e^{itza(x)} K_t(x,z)u(x-tz)dz$$

where

$$K_t(x,z) = \frac{1}{(2\pi)^n} \int e^{iz\xi} p(x,\frac{\xi}{t} + a(x)) f(|\xi|) d\xi$$

From this representation we have

$$||p(X, D_x)||_{L^2(\mathbb{R}^n)} \leq \frac{1}{(2\pi)^n} \int_0^1 \frac{dt}{t} \left\| \int e^{itza(\cdot)} K_t(\cdot, z) u(\cdot - tz) dz \right\|_{L^2(\mathbb{R}^n)}$$

Then we have

$$\left\| \int e^{itza(\cdot)} K_t(\cdot,z) u(\cdot - tz) dz \right\|^2 = \int \left| \int e^{itza(x)} K_t(x,z) u(x - tz) dz \right|^2 dx$$

$$\leq \int \left| \int |K_t(x,z) u(x - tz) |dz \right|^2 dx$$

By using the Schwarz inequality we have

$$\left|\int |K_t(x,z)u(x-tz)|dz
ight|^2 \leq \int \langle z
angle^{2\kappa}|K_t(x,z)|^2dz\int \langle z
angle^{-2\kappa}|u(x-tz)|^2dz$$

As above we can see

$$\begin{split} \int \langle z \rangle^{2\kappa} |K_t(x,z)|^2 dz & \leq \sum_{|\alpha| \leq \kappa} \int |z^{\alpha} K_t(x,z)|^2 dz \\ & = \sum_{|\alpha| \leq \kappa} \int |\partial_{\xi} \left\{ p(x, \frac{\xi}{t} + a(x)) f(|\xi|) \right\} |^2 d\xi \\ & < C\omega(t)^2 \end{split}$$

Therefore we get

$$\left\| \int e^{itza(\cdot)} K_t(\cdot,z) u(\cdot - tz) dz \right\|^2 \le C \int \int \langle z \rangle^{-2\kappa} |u(x - tz)|^2 dz dx$$

$$\le C \omega(t)^2 ||u||^2$$

Thus from the assumption of $\omega(t)$ we have the L^2 estimate

$$||p(X, D_x)u|| \le C||u||$$

Again by the Riesz-Thorin interpolation theorem we have the L^p boundedness for $2 \le p \le \infty$.

Remark 1. Theorems in this section we don't always assume that the vector function $a(x) = (a_1(x), \dots, a_n(x))$ satisfies the estimate

$$|\partial_x a_j(x)| \le C$$

In several theorems we can prove the theorem under only the measurability of a(x).

Remark 2. If the vector function a(x) is bounded, then the symbol class $S^m_{\rho,\delta,\lambda}$ coincide with the usual Hörmander class $S^m_{\rho,\delta}$. Hence using the similar method of usual class, the L^p boundedness in Theorem 4 can be shown(see for example, [6]). Even if a(x) is not bounded, we have

Proposition 2. Let a(x) and $\lambda(x,\xi)$ be the same as in Theorem 4. For any smooth function φ with compact support, we have

$$||\varphi(x)p(X,D_x)u||_{L^p(\mathbb{R}^n)} \leq C||u||_{L^p(\mathbb{R}^n)}$$

4. Conjecture

As we see in the previous sections we can expect that the following L^p boundedness theorem.

Conjecture 1. If the vector function $a(x) = (a_1(x), \dots, a_n(x))$ satisfies $|\partial^{\alpha} a_i(x)| < C_{\alpha}$

for any $\alpha \neq 0$. Then for 1 , the operator <math>p(X,D) in $S^0_{1,\delta,\lambda}$ is L^p bounded. That is,

$$S^0_{1,\delta,\lambda}\subset \mathcal{L}(L^p(\mathbb{R}^n))$$

holds.

As we stated in section 2 it is known that if the vector function a(x) satisfies the estimates in the above conjecture, the operators in $S_{1,\delta,\lambda}^0$ with $(\delta < 1)$ are L^2 bounded. So if we can show the weak type (1,1) estimates or boundedness from $L^{\infty}(\mathbb{R}^n)$ to BMO, then we can get the above conjecture, that is, L^p boundedness for 1 by using the interpolation theorems(see for example [8], [3]). The fundamental conjecture is

Conjecture 2. If the vector function $a(x)=(a_1(x),\cdots,a_n(x))$ satisfies $|\partial^{\alpha}a_i(x)|\leq C_{\alpha}$

for any $\alpha \neq 0$. Then the operator p(X,D) in $S_{1,\delta,\lambda}^0$ is bounded from $L^{\infty}(\mathbb{R}^n)$ to BMO, that is, there is a constant C such that

$$||p(X, D_x)u||_{BMO} \le C||u||_{L^{\infty}(\mathbb{R}^n)}$$

REFERENCES

- V.P.Calderón and R.Vaillancourt, A class of bounded pseudo-differential operators Proc. Nat. Acad. Sci. U.S.A., 69 (1972) 1185-1187
- [2] C. Fefferman, L^p-bounds for pseudo-differential operators Israel J. Math., 14 (1972) 413-417
- [3] C.Fefferman and E.Stein, H^p-spaces of several variables Acta Math., 129 (1972) 137-193
- [4] L.Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc., Symposium on Singular Integrals Amer.Math.Soc., 10 (1967) 138-183
- [5] H. Kumano-go, Pseudo-differential operators, MIT Press, Cambridge, Mass. and London, England, 1982
- [6] M.Nagase, On some classes of L^p -bounded pseudo-differential operators Osaka J. Math., 23 (1986) 425-440
- [7] M.Nagase and T.Umeda, On the essential selfadjointness of quantum Hamiltonians of relativistic particles in magnetic fields Sci. Rep., Col. Gen. Educ. Osaka Univ., 36 (1987)

L^p BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS

[8] E.M.Stein, Singular integrals and differentiability properties of functions Princeton Univ. Press, Princeton, N.J., 1970

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560, JAPAN (大阪大学理学研究科数学教室)

E-mail address: nagase@math.wani.osaka-u.ac.jp