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TIME LOCAL WELL-POSEDNESS OF THE COUPLED SYSTEM
OF NONLINEAR WAVE EQUATIONS
WITH DIFFERENT PROPAGATION SPEEDS

RAEKFRFBEEEFER &) HKER (Kotaro Tsugawa)
Mathematical Institute, Tohoku University.

1. INTRODUCTION AND MAIN RESULTS

In the present paper, we treat the coupled system of nonlinear wave equations with
different propagation speeds: ’

(1.1) (0 —A)f =F(f,0f,9,09), =z€R"teR,

(1.2) (0 — s*A)g = G(f, of,g,09), z e R teR,
(1.3) f@,0)= fole),  8f(z,0)=fiz), zEcR",
(1.4) 9(z,0) = go(z),  0:9(z,0) = g1(z), =z €R",

where 0 = 0,,(1 < j < n) or 0; and s is a propagation speed of (1.2) with s > 1.
The time local well-posedness of this system with s = 1 has been studied by many
authors. It is known that Strichartz’s estimate does not work well to prove the time
local well-posedness of this system with initial data having low regularity in low spatial
dimensions. However, when s > 1, we prove the time local well-posedness of this system
for some nonlinear terms with initial data having lower regularity by taking advantage
of the discrepancy of the propagation speeds. Let D = \/—A. We consider the following
four cases as the nonlinear terms.

(Case 0) Assume that F' and G are any of the following functions Fy; and Gy;, j = 1,2,
respectively.

Fon=fg, Foa=4g,
Go=fg, Gox=f>
(Case 1) Assume that F' and G are any of the following functions Fy; and Gj;,
7 =1,2,3, respectively.
Fi, = fDg, Fi, = gDf, Fi3 =gDg,
Gu = fDg, G2 = gDf, Gis = fDf.

(Case 2) Assume that F' and G are any of the following functions Fy; and Gyj, j = 1,2,
respectively.

Fy = D(fg), Fy = D(gz),
G2 = D(fg), Ga2 = D(f?).
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(Case 3) Assume that F' and G are any of the following functions F3; and G3;, 5 = 1, 2,
respectively.

F5 = (Df).(Dg), F3o = (D9)27
Ga = (Df)(Dg),  Gaz=(Df)%. .

In Cases 1, 2 and 3, we can replace the nonlocal operator D by the usual derivatives 0,
or O;;. It does not matter in our argument below at all. This system has some physical
examples. The time local well-posedness for Klein-Gordon-Zakharov can essentially be
reduced to that of (1.1)—(1.4) with F = Fi3 and G = G2 (see [14]). The time local
well-posedness for the coupled system of complex scalar field and Maxwell equations can
essentially be reduced to that of (1.1)-(1.4) with F' = Fy; + F12 and G = G113 (see [18]).
Our aim is to prove the time local well-posedness of (1.1)—(1.4) with initial data having
low regularity. Before we proceed to our problem, we briefly recall the known results. We
have the following proposition by the standard energy method, the Strichartz estimate
and the Sobolev embedding.

Proposition 1.1 (known results). Assume that s > 0. The Cauchy problem for (1.1)-
(1.4) is time locally well-posed with initial data (fo, f1), (90, 91) € H* @ H*"! satisfying
the assumptions in the following table.

n>5 n=4 [n=3| n=2 n=1
(Case 0) a>Mm—4)/2{a>1/4{a>0] a>0 | a>0
(Cases1and 2) [a>(n—-1)/2]a>3/2]|a>1]a>3/4|a>1/2
(Case 3) a>Mn+1)/2la>5/2]a>2|a>7/4]a>3/2

Proposition 1.1 holds without the difference of the speeds. It does not matter whether
s =1 or s # 1. Ponce and Sideris proved Proposition 1.1 for n = 3 and Case 3 in [16].
We can prove the other results in Cases 1 and 2 and Case 3. The essence of the proof is
to estimate D~'F and D~'G with some norms. Lindblad and Sogge proved Proposition
1.1 for n > 3 and Case 0 in [13]. In Proposition 1.1, the lower bounds of a for n < 2
in Cases 1 and 2 and Case 3 are larger than (n — 1)/2 and (n + 1)/2, respectively. One
reason is that the Strichartz estimate does not work well in low spatial dimensions. The
following lemma is the Strichartz estimate. For more precise results, see [3], [5] and [13].

Lemma 1.1. Letn > 2, 2 < p,q < oo satisfying 0 < 2/p < min{l,(n —1)(1/2 - 1/q)}
and (n,p,q) # (3,2,00). If u satisfy

(02 — A)u =0, u(z,0) =up, OGpu(z,0) =1,
then we have |

(1.5) ”u”LP([O,T];Bg.z(]R")) < C(“”O"Hr(mn) + ”U'l“H'-l(]Rﬂ))’

where r =n(1/2—1/q) — 1/p. The same results hold with the Besov norm B,f.,),2 replaced
by the LI norm, under the additional assumption that g < oo.

The allowed region for the parameters is best pictured in the plane of the variables
(1/p,1/q). For n > 4, the allowed region is a quadrangle ABCD with vertices A =
(0,1/2), B = (1/2,(n — 3)/2(n — 1)), C = (1/2,0), D = (0,0). For n = 3, it reduces
to the triangle ACD and for n = 2 to the smaller triangle AC'D where C' = (1/4,0).
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See Figures 1, 2 and 3. The limiting case ¢ = 2 occurs only for n > 4. The boundary is
allowed except for the point C' for n = 3. For the L norm version of the estimate, the
segment C'D is excluded by the condition ¢ < oo. In addition, the LZ norm version of the
estimate at the point C for n = 3 is known to be false ([8]). We have r = (n — 1)/2 and
r = 3/4 for the single points C and C’, respectively. These values of r correspond to the
lower bound of a in Cases 1 and 2 in Proposition 1.1. However, because the segment CD
is excluded in the Sobolev version of the estimates, we need more derivative. Therefore,
we have a > (n—1)/2 and @ > 3/4 in Cases 1 and 2 for n > 3 and n = 2, respectively.
We note that there is a gap of 1/4 derivative between the lower bound of a for Cases 1
and 2 and (n — 1)/2, when n = 2. We do not have the Strichartz estimate for n = 1.
We use the following Sobolev embedding to prove Proposition 1.1 for n = 1,

ullze < Cllullar, > n/2.

Therefore, there is a gap of 1/2 derivative between the lower bound of a for Cases 1 and
2 in Proposition 1.1 and (n —1)/2, when n = 1. On the other hand, if we assume s =1,
Lindblad’s counter examples [11] and [12] suggest that, for n = 3, Case 0 may be time
locally ill-posed with a = 0, Cases 1 and 2 may be time locally ill-posed with a = 1, Case
3 may be time locally ill-posed with a = 2. However, Ozawa, Tsutaya and Tsutsumi
proved the time local well-posedness for n = 3 with F' = Fi3, G = G132 and s > 1 by
taking advantage of difference of propagation speeds. By combining this result and the
energy conservation law, they showed the time global well-posedness of Klein-Gordon-
Zakharov equations for small initial data (see [14]). By the same argument, the author
[18] showed the time local well posedness for n = 3 with F = F}; or Fis , G = Gi3
and s > 1. By combining this result and the energy conservation law, the author also
showed the time global well-posedness of the coupled system of complex scalar field and
Maxwell equations (see [18]). For more precise results for time local well-posedness for
n = 3, see [15]. These results suggest that the difference of the propagation speeds may
be helpful to prove the time local well-posedness with initial data having low regularity.
We shall study this problem for n = 1 and 2. The following theorem shows that the
discrepancy of propagation speeds recovers the deficiency of 1/4 and 1/2 derivative for
n = 2 and n = 1, respectively, which reveals the dispersive effect hidden in the Strichartz
estimate.

Theorem 1.2. Let s > 1. Then, the Cauchy problem for (1.1)~(1.4) is time locally
well-posed with initial data (fo, f1), (90, 91) € H* ® H*' satisfying the assumptions in
the following table.

[ n=2 [n=1
(Case 1) [a>1/2
(Case 2) [a>1/2]a >0
(Case 3) [a>3/2|a>1

For the limiting cases @ = (n — 1)/2 in Case 1 and Case 2 and a = (n +1)/2 in Case
3, the following theorem holds.

Theorem 1.3. Let s > 1. Then, the Cauchy problem for (1.1)-(1.4) is time locally
well-posed with initial data (fo, f1),(90,91) € H* @ H*™' satisfying the assumptions in
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the following table.

| [ n=2 ' n=1
(Case 1) F = F110’I'F12, G = G12, a Z 1/2
(C&SG 2) F=F21,G=G22,0,21/2 F=F21,G=G21,a20
(Case 3) F=F31,G=G32,a23/2 F=F31,G=G31,a21

Moreover, we have the counter examples of the estimates which we use to prove the
time local well-posedness for other nonlinear terms for the limiting cases (see Proposition
3.2). However, we have no results for n = 2, a = 1/2 and F = Fyy or F = F3,. In
Theorems 1.2 and 1.3, we did not mention the results in Case 0 for n < 2 and in Case 1
for n = 1, because there is another difficulty to bring down the lower bounds of a. For
example, in the case F' = Fy;, we can cancel the derivative as follows:

D™'Fy = D7'D(fg) = fg.
However, in the case F' = F};, we can not cancel it. We have
D™'Fyy = D(fDg) ~ D™/*(fD*?g) + D™(D*"/f D'/*g)

by the Leibniz rule. Therefore, it seems to be difficult to prove the time local well-
posedness for a < 1/2 in Case 1. For a reason similar to this, it seems to be difficult to
prove the time local well-posedness for a < 0 in Case 0. Indeed, we have no results for
a < 0 in Case 0 in Proposition 1.1, even in low spatial dimensions. However, we have
the following theorem, which shows that the discrepancy of propagation speeds recover
1/4 derivative for some nonlinear terms.

Theorem 1.4. Let s > 1. Assume that F # Fy2,G # Gy in Case 0 and F # Fi3,G #
G13 in Case 1. Then, the Cauchy problem for (1.1)—(1.4) is time locally well-posed with
initial data (fo, f1), (90, 91) € H® & H®! satisfying the assumptions in the following
table.

[ Tz w1
(Case 0) [a>-1/4]a > —-1/4
(Case 1) a>1/4

We prove Theorems 1.2, 1.3 and 1.4 by the Fourier restriction norm method, which
was developed by Bourgain [1] and [2] to study the nonlinear Schrédinger equation and
the KdV equation, and it was improved for the one dimensional case by Kenig, Ponce
and Vega [6] and [7]. The related method was developed by Klainerman and Machedon
[9] and [10] for the nonlinear wave equations. We use Fourier restriction norm X:,’lb with

b > 1/2 to prove Theorems 1.2 and 1.3. We use not only X:’,b but also slightly different
norm Y7 to prove Theorem 1.4, which is introduced by Ginibre, Tsutsumi and Velo to
study Zakharov system(see [4]). The essentially different part of our proof from them
is only the bilinear estimates. However, we state the outline of the Fourier restriction
norm method in Section 4 for completeness and the reader’s convenience. We mention
the bilinear estimates needed for the proof of Theorems 1.2 and 1.4 in Section 2 and the
bilinear estimates needed for the proof of Theorems 1.2 and counter examples in Section
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We conclude this section by giving some notations. For a function u(t, z), we denote
by (7, £) the Fourier transform in both z and ¢ variables of u. For a, b € R, s > 0 and

l = 4 or —, we define the spaces X “b and Y, as follows:

8,1 s
X2 = {u € S'®)|ullyes <00}, lullep = 1€ Phy(r, &)l
Yy = {ue S®)|lullyy, <o}, llullys, = IK€)* Pay(r, )l sz (1),

where Py(7,€) = (1 + |7 + sll¢]]),(€) = V1+[€[2. For T > 0, we denote the cut
function x(t), xr(t) € C§° as follows:

_J 1 for|t| L1,
x(t) = { 0 forlt] > 2.

xr(t) = x (¢/T).
For s > 0, we define W, 4(t) = e***, where w = v/1— A. We put

(f,9) = /R - f(t,z)g(t, x)dtdz.

2. BILINEAR ESTIMATES FOR THEOREMS 1.2 AND 1.4

In this section, we mention the estimates needed for the proof of Theorems 1.2 and
1.4. The following proposition is the estimate which we use to prove Theorem 1.2.

Proposition 2.1. Assume thata > (n—1)/2,b>1/4,4a+2b>2n—-1,2a+2b>n
ands>1or0<s<1. Let

E aj=a, maxa; <a, min a;>-a.
1<55<3 1<5<3
1<5<3

Then, we have

(2.1) (£, 9| < Ol gos ol ez Il g,

where j, k and | denote either of + or — sign and C is a positive constant.
The following proposition is the estimate which we use to prove Theorem 1.4.

Proposition 2.2. Assume that 1 < s or 0 < s < 1. Let as,a3,a2 +as > —1/2 and
a; > n/2. Then there erist € > 0 and C > 0 such that

(22) 1£9ll-ssn < CT NSl el gl gare
(23) gy < CT S g vallgll oo,

where j,k and | denote either of + or — sign and f and g are supported in a region
t| <T. ~

Before we prove Propositions 2.1 and 2.2, we mention preliminary lemmas.

Lemma 2.1. Leta>b>0,T >0 and P = P, or P,_. Assume that f is supported
in a region |t| < T. Then, there exists a positive constant C such that

(2.4) 1P Fllz2 < CT?| fll 2
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Proof. By Holder’s inequality, we have
(2.5) 1P~ Fllzz = I1P*xr fllez < IP~*llzalixz * fll jzoro--

For a > b > 0, we have ||P~¢|| Lé < C. By Young’s ineqliality, we have

(2.6) 157 * Fll j2vr0-2 < X7/l r-n ]| Fll 2

By calculating directly, we have

(2.7) Izl s < CT®. |

Collecting (2.5)—(2.7), we obtain (2.4). ‘ O

Lemma 2.2. Let0 < c<a+b—n, c <min(a,b) and let [,m € R*. Then, we have
(2.8) /cbw%@—m4mgcaﬂmﬁ-

where C' is a positive constant depending only on n.
Proof. If |z — | > |z — m| then we have
(@ =07z -m)™ < (z— )z —m)7o0*
and
(-—m)y<(z—-1l)+{(x—m) <2z -1).

Therefore, we have

(2.9)
/ (z—0)"z—m)dz < C{l—-m)~¢ | {xz—m) " dr < C({l —m)~".
|lz—1|>|z—m)| Rn
In the same manner, we have
(2.10) / (z— 1)~z —m)de < C{l —m)~*
le—1|<|z—m]| ‘
From (2.9) and (2.10), we conclude (2.8). ' a

Lemma 2.3. Leta > (n—1)/2,b > 1/4,2a+4b>n+1,2a+2b >n and s > 1 or
0 < s < 1. Then, we have

sup dndé < C

P2(7,€) /n./ (€ — &1)*(&) 2aP2b(7'—7'1,§ &1)PH(m1, &)

where 3,k and | denote either of + or — sign and C is a positive constant depending only
on a,b,s and n.

Proof. From Lemma 2.2, we have

sup P22(r, £) / P(r — )€ — &) P (m, &) dry
T R
<C’SupP1 ('r &)( 1+|7’+k|§ §1|+sl|§1|| ”C<C'IJ‘,”
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where ¢ < 2b,0 < c < 4b—1and Lz = 1+ | —jl¢| + k€ — & + ls|§1||, and we car
choose ¢ such that ¢ < 1 and 2a + ¢ > n. Therefore, we have only to prove

(2.11) 829(5)2“ . (€ — &)72&) gl &) deL < C.

We fix £ and define subsets Q; and €, in R as follows:
h={&L¢ Rn“€1| > alé|}, Q={4 € Rn||§1| < alél},
where a =4/|s —1|. If s > 1, then
| = 51€] + klE — &u| + Lsl&al| = sléa] = 1€ — &l — 1] = (s — 1)|&a| — 21¢].
If 0 < s <1, then
| = 3IEl + KIE — &+ Usléa]| > 1€ — & - sléa] — 1€] = (1 = s)|&| — 20¢].

Therefore, for &, € 2, we have

(2.12) Lika > Cl&),
where C is a positive constant depending only on s. Lemma 2.2 and (2.12) yield
(2.13) @ [ €- e d

<otey [ (e~ )iy de <.

For & € Q,, we have
1) |-+ He -+ il [SIE 16T + 2ellleosd ~ Bitsgc ]

| — 5l€] — kI€ — &] + Is|&]|

> c'Ti‘—l'us? — 1)l + 2z — sls)iel,

where = cosf and 6 is an angle between £ and §;. We first consider the case of n = 1.
We divide 2, into two parts as follows:

Qo = {& € W|(s+ D&l <]}, Q2= {& € Qf(s +1)]&] > €]}
For &, € €),, since
(2.15) |(* = D&l + 2(z = 5l)lgl| 22|(z - sis)I€l| = [(s* — 1)I&]]
>2|(s — 1)IEI| = |(s = D]
>|(s = 1)iEl| = Clél,

we have
Liky > C&).
Therefore, in the same manner as (2.13), we obtain

(2.16) €y /Q (€ — £)72(6) L%, dEy < C.

For & € Qj, from (2.14), we have



where r; = 2(z — jls)/(s® — 1). Since £ =1 or —1, we have

Iry + x| = |(s® — 1) {2z — 2jls + (s* — 1)z}
<|(8* = 1) (s + 1)z — 2jls}| > C > 0.

Since n = 1, we have [¢ — & | = |[¢|] — z|&,||. Therefore, from Lemma 2.2, we obtain

(2.17) @ | (€—&)7&) 5, d6

Q22

<c /n (I€] = zl&al) (6] + ralél) = dé < C.

From (2.13),(2.16) and (2.17), we conclude (2.11) for n = 1.
We next consider the case of n = 2. We divide 2, into four parts as follows:

(218) O = {& € Q||(s* - Dl&al +2(z — Ls)ié]| > enfel},

(219) Q= {& € Q|(* - Digs| +2@ - ls)lgl| <alél, 1+ <z <1-g),
(

(

2.20) Qg3 = {gl € Mf|(s* — DI&| +2(z — jls)lé]| < &1fé], 1 —e1 <z < 1},

221) Qu= {& € Wo||(s* — V)|&1] + 2(z — jls) ||| < eaf], -1 <z < -1 +€1},
where €; = min{|s — 1|/2, |s — 1|>/4}. For £, € Qy, from (2.14), we have

Ij)kJ > C(£1>'

Therefore, in the same manner as (2.13), we have

(222) O [ (€- e @)z de <
For &, € €9, since
€ = &* =[¢” - 20¢)lé) + |&f?

=z*|¢|* = 2(¢]|&1z + & + (1 — 2?)[¢)?

=(zl¢] = &])* + (1 — )| > ené]?,
there exists a positive constant C satisfying
(2.23) € — &l > Clel.
From (2.14) and ¢ < 1, we have

l1-€ 1
(2.24) / Lo(l—z)?(1+2)?dz < C / 1 I, dz

1+€;

! 2 |€1| . —c -1 l1—c
<c [ (al{( ~ D +2a - 1)) do < Ol 6

69
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Therefore, from (2.23) and (2.24), we obtain

(225 (& / (€ — &) () L5, de,

alf| pl- 61 '
<o [T [ " ppaeayia -0 e el del < 0

1+€1
<c / (e digy| < C.
0 .

For & € 3, we put 7, = 2(z — jls)/(s?* — 1). Then, we have

2(|jls =1 = |z —1|) _ 2|s—1| —2¢ 1
2.2 > > =
(2.26) Iral 2 |s2 — 1] = |s? =1 s+1°
|2z — 2jls + s — 1| _ |s* — 2jls+ 1] — 2|z — 1]
2.27 1| > ' >
(2:27) A T 7= 1]
5= 1P _ Js—1)

= 2s2-1 2ls+1|
(2.28) (€ —&) = (I&l - €D,
(2.29) (€ — &) = C(&)-
From (2.20), we have

16l
3]

€

+r1| 2 i T
Therefore, we have
il 5y 6 S e—glsl—a  As=1-2-al-a
e = |2 -1 = [$2-1 7 |s* — 1

> 2|ls — 1| — 3¢ > 1

- fst=1] T 2ls+1|
From (2.14) and (2.30), we have
(2.31) Iiks > C(|&a] +m[¢])
Collecting (2.26)—(2.31), from Lemma 2.2, we obtain
(2.32) €% | ({E-&) (&) g, d6

Q23
1 )
= C/ / (1] = €D+ el + ralel) ~° diéaldz < C.

For &; € (p4, in the same manner as for §; € {2y3 we have

(2.33) (€)* (€ - §1>—Za<§1)—?al‘cz dé < C

Q24
Collectmg (2.13),(2.22),(2.25),(2.32) and (2.33), we obtain (2.11) for n = 2.

(2.30)

Now, we prove Propositions 2.1 and 2.2.
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Proof of Proposition 2.1. Without loss of generality, we can assume f, g and h>0. We
first prove

(2:34 4,901 < Ol ez lgl sy ol
By Schwarz’s inequality and Lemma 2.3, we have

)Py (7, O{4E) PR (1, €)G %rg ()Pl (n, O H} s
< [ 0 P 6 P (1, €) g (€ P OH(E v B
<O [ 6% 11 Brdrdt < CIGus M Py, < UGN NI,

Substituting (£)*P?,(,€)g for G and (&P (, &) for H, we obtain

(2.35) 1(€)* P2 (r, )ghllz . < CI(E* Pl )32 (€)* Phu(r, Oz,
by the duality argument, which is equivalent to (2.34). We next prove (2.1). We have
(£, gh)| =|{w™ ™" f,w™ "3 (gh))|
ST, (W) (W B TR + (W T f, (W g) (W™ T R)),
from (2.34), which is bounded by
Ol oo lal g Al o
O

Proof of Proposition 2.2. Without loss of generality, we can assume a, a3 < 0 f g and
h > 0. We easily see that (2.2) is equlvalent to

(2.36) | - J(T,g,Tl,fl)f(T - 7'1,5 —&1)9(m, &) dTld&”Lz’e < CT‘||]T||L3,£||'§[|L3’$,

where J = P, /%(r, )P/ (r —m, € = &) P (11, €)(€) ™ (€ — &) (&)™, and (2.3)
is equivalent to

(2.37) II/ (1,6,71,6) f(r — 70, € = &)3(m1, &) dridéa aeyy < CT( fllz2, Hglle

where J' = PLi(r,€) Py’ (1 = m, € — ) P (n, £)(€) ™ (€ — &)™ (&)
we fix 7 and £ and divide the region of integration into four parts as follows:

= {(m,&) e R™||&al < o]},
Q2 {(7'1, 1) € Rn““fl] > alé], P j(1,€) > maX{Psk(T -m,§— &), P11(7'1,§1)}}
{(7'1,51) € Rn+1||§ | > alé], Pop(T — 11,€ — &) > max{P,;(1,§), Pu(’m&)}}
= {(71,51 Rn+1|l§1| > a|§|,P1,l(7'1,fl)Z m&X{Ps,k(T -m,&— El)apl,j(T, f)}},

where o > max{2/|s — 1|, 2}.
FOI' (7'1,61) S Ql;

(€ —&) < CK), (&1) < C(8).
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Therefore, we have

(2.38) J < CE)y 2P (1, 6) P M (r — 1, € — &) P (1, &),
(2.39) J < ()™ V2P M, €) P A (1 — m, € — &) P (m, &)

From Proposition 2.1 and (2.38), we have

~

(2.40) | o J(1,6,71,&) f(r — 1,€ — &)9(m1, &) dT1d§1||L3'E
1
<C||(&)= 2P} 2P F v P iz,
<P Fllez I PLTl 2,

From (2.39), Proposition 2.1 and Schwarz’s inequality, we have

(2.41) ”/s; J’(T,f,ﬁ,fl)f(T—Tnf"51)5(7'1,51) d"'ld§1||Lg(L;)
1
-1/2- —a -1/2 -1/2F -1/2~
<CI\ P Il (€)Y P} 2 (P Far P} 12,
<C|\P;£ fllzz 1Pz -

For (11,&1) € Q, we have

(2°42) Pl,j(T, 5) 21/3(P1,j(7‘, 5) + Pa,k(T - 7'1,5 - El) + P1,1(71,€1)
>C(-jl| + ksl€ — & + U&l)
>C&) > C¢ - &)-

Therefore, we have

(2.43) J < C(é’)_‘"P,T,:/?(T -7, — €I)P1—:11/2(Tl,£1),
(2.44) J < C(&) ™ P, )P (1 — 1, € - &) P (1, &),

From (2.43) and Young’s inequality, we have

~

(2.45) || J(T,f,Tl,fl)f(T_T1,§—El)g(fl,ﬁl)d”'ld&"zﬁ
Q2 e
<CI(&) { P f e Py"* G}z,
<CIE) ™™ a1 Pop”* F #re P Gllioay
—-1/2 7 —1/2~
<CIPL" flpaays) 1Pl sy aee

<CIPFlza IPFlez
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From (2.44) and Young’s inequality, we have
(2.46) | /Q J'(7, &, lefl)f(T - 1,6 — 51):‘7(7'1,El)‘d"'ldfl“Lg(L})
2
<CIN&) ™ PL; " { P F #re P} 2wy
SC”@)_‘”P—l 2“L2(L”)”P:k1 5 *r.€ Pu g”L°°(L
SC”P;kl Zf”L"’(L )”Pl_ll 2gl|L2(L
¢

<CIPEFllez NP5l

where 2 <p < oo, p™'+¢'=1and r =2¢/(g+1) > 1.
In the same manner as (2.42), for (1, &) € 3, we have

(2.47) Pop(r — 1,6 = &) >C{&) > C{E - &).
Therefore, we have

(2.48) J < CE) P (m, )P (m, &),

(2.49) J < G P (1, 6P (m, &).

From (2.48) and Young’s inequality, we have

(2.50) | / J(Taf,’fl,ﬁl)f(”' —11,§ —£1)9(n, &) dTldglllLfls

<CI(&) ™ P { F *re P15} 1z,
<C||{&)~ alp—l 2”L2(L”)”f *r.¢ P1_11 g“L°°(L
<Ol fllzz 1P “llzacer)

<O fllzz 1Pl 2 .

where 2 < p < o0, p™' + ¢! =1/2 and r = 2¢/(g + 2) > 1. From (2.49) and Young’s
inequality, we have

(2.51) | / J’(T, g, 7’1,51)]7(7' —711,§ = &1)g9(m, &) dTldflnLg(L;)

<CI{&)~"P; {f *rg P }lle(Ll)
<C|{&)~ P '1“L2 L”)”f* £ szl ~”L°°(L")
<Cllfllzz NP "G caes

<CIfllzz 1Pz,

where 1 <p<2,p'+¢'=1andr=2¢/(¢+2) > 1.
In the same manner as (2.50), we have

(2.52) | /Q J(7;, €7, fl)f("' —11,§ — &)g(n, &) dTldflan,é

<CIIP iz 2,
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In the same manner as (2.51), we have

~

(2.53) | A J'(1,6,1,&) f(1 — 11, — &)g(m1,&1) dTld§1||L§(L;)

<CIP Tl 52z

From Lemma 2.1, (2.40), (2.45), (2.50) and (2.52) we obtain (2.36). From Lemma 2.1,
(2.41), (2.46), (2.51) and (2.53) we obtain (2.37). O

3. BILNEAR ESTIMATES FOR THEOREM 1.3 AND COUNTER EXAMPLES

. In this section, we mention the estimates which we use to prove Theorem 1.3 and
counter examples. If we use the Fourier restriction norm method, we need the following
estimates (3.1), (3.2) and (3.3) to prove the results for the Cases 2,3 with n = 2, for the
Case 1 with n = 2, for the Cases 2,3 with n = 1, respectively:

(3.1) “fgllxl/2_,—b’ < C”fllxl/'«’,b”g”Xl/zb,
81,2 89,k 83,
(32) |Ifg|lx-1{2,—b’ < C||f||x—1/2.o||g||X1/2,b,
81.4J ag,k 53'[
3.3 . <C , 5,
49 IFsllxgzy < Oz, ol

for some b, b’ satisfying b>1/2> b and b+ ¥ < 1.
Proposition 3.1. Let s >1,b>1/2>V, b+ b <1 and let b,V be sufficiently close to

1/2.
i) Ifn =2 and (s1,82,83) = (1,1,s) or (s,1,1), then (3.1) holds for any j, k,l = +
or —. :
ii) Ifn =2 and (s1,52,83) = (1,1,s) or (1,s,1) or (s,1,s), then (3.2) holds for any
5k, l=+ or —.
iii) Ifn =1 and (s1,82,83) = (1,1,s) or (s,s,1), then (3.3) holds for any j,k,l = +
or —.

Remark 3.1. The results for n = 1 follow from Lemma 3.1 below, which was proved by
Tao.

Proposition 3.2. Let s > 1, ¥ <1/2 and (5,k,1) = (+,+,4+) or (—,—,—).
i) Ifn=2 and (s, 82,83) = (s,8,1), then (3.1) fails for any b € R.
ii) If n =2 and (sy, 82, 83) = (s,8,1) or (1,s,s) or (s,1,1), then (3.2) fails for any
beR.
iii) Ifn=1 and (s1, s2,83) = (1,s,8) or (s,1,1), then (3.3) fails for any b € R.

Remark 3.2. From the result for (3.2) with n = 2 and (s1, s2, 83) = (s, 1, s) in Proposition
3.1, (3.1) with n = 2 and (s, S2, s3) = (1, 8, 8) holds for b’ > 1/2. However, for b’ < 1/2,
we do not know whether (3.1) with n = 2 and (sy, 2, 83) = (1, 8, 5) holds or not.

We mention preliminary lemmas before we prove Proposition 3.1. The following
lemma was proved by Tao [17].
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Lemma 3.1. Let s > 1, b>1/2 and a = (n — 1)/2. Then, we have
(3.4) I£gllzz, < CllFllxaellgllxos,

where j and k denote either of + or — sign and C is a positive constant.

Proof. The inequality (3.4) is equivalent to ,
(35) | / P &) F(n, 6)46) PR — 1, € — ©)G(r — 1, € — &)dndils
<CIIFIZ IGIZ: -

By Schwarz’s inequality, the left hand side of (3.5) is bounded by

172 ( [ 1F PG € - eFdnda) I,

<sup PIIFFIGI, < supTPIF s IGIE

where

I= [ P e)) P~ - )dndss

Therefore, we have only to prove sup, I < C. From Lemma 2.2, we have

I<C Rn(l + |7 + k€ — & + sgléal) (&) T2 dE.

Introducing polar coordinates £ = rw, we have
(3.6) I< C/ /(1 + |j7 + jk|€ — Tw| + 3T|)_2bdrdSu;.
|w|=1JR :

Because —2b < —1 and

wp d(jr + jk|§ — rw| + s7) S5

L
‘r,f,w dT

the right hand side of (3.6) is bounded. ' a

Lemma 3.2. Lets > 1 and (81,82,83) = (1, l,s) or (s,1,s). In the region {(7,€,1,&) €
R x R? x R x R?||¢ — & | > 4s(¢|/(s — 1)}, we have

(3'7) ma'X{PSl,j(Ta f)’ Psz,k(T - Tla€ - gl)a Psg,l(71,§1)} 2 C(§ - §1>7

(3.8) C'{61) > (€~ &) 2 C"{&),

where j,k and | denote either of + or — sign and C, C' and C" are positive constants
depending only on s. '

Remark 3.3. In the region {(7,£,7,&) € R x R? x R x R?|[¢] > 4s|€ — &|/(s — 1)},
inequalities (3.7) and (3.8) also hold for (si, s2,s3) = (1,1,s) with the roles of £ and
£ — & exchanged. ‘
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Proof. From |&| > |§ = &| = [€] > |€ — &| — (s — 1)|€ — &|/4s, we have
C'(&) = (€ - &)-
From |§ — & 2 |&] — [€] 2 [&] — (s — 1)[§ — &1]/4s, we have
(- &) >C"(&).
From the triangle inequality, we have
max{P,, ;(7,€), Po k(T — 11,€ — &), Pega(11,&1)}
>1/3{P,, j(7,€) + Popp (7 — 11,€ — &) + Poga(11,&1)}
>C(s151€| — s2kl|€ — &i| — ssllésl)-
From |€ — &;| > 4s[¢|/(s — 1), if (s1,82,83) = (1,1, s), then we have -
|s151€] — s2kl€ — &a| = sallél| 2sléa] — |€ — & - [¢]
>3l — & — slé| — 1€ — & — [¢]
2((s—1)—(s—1)(s+1)/4s)|¢ — &|
>Cl€ - &,
if (s1, 82, 83) = (s, 1, 8), then we have
|5151€] — s2k|€ — &1| — sslléa || 2sléi| — slé| — 1€ — &
>s|€ — & — sl¢| — sl¢] = 1€ = &
2((s—1)—(s—1)/2)|€ - &|
>Cl€ - &
Therefore, we have (3.7). O

The following lemma is a variant of the Strichartz estimate for the acoustic wave
equation. For the proof of Lemma 3.3, see [2], [4] and (6].

Lemma 3.3. Let s > 0,2 < qg< oo, r=4q/(q—2) and a = 3/4 — 3/2q. Then, for
b> 1/2, we have

1Fllzrizemayy < Clifllxees
where j denotes either of + or — sign.
Now we prove Proposition 3.1.
Proof of Proposition 3.1. i)We first prove (3.1) with n = 2 and (s, 82,83) = (s,1,1).
The inequality (3.1) is equivalent to

(39) “P;;’(Ta £)<£)1/2/ " Pl_,lg(T — T, § - €1)(€ - §1>_1/2F1(T - T1,§ - §1)

Rz
X Pl_,lb(Tla &)(&)72G(my, &) drdey ||§,3'€
<CIFIE; IG1E;,

Without loss of generality, we can assume F > 0 and G > 0. We divide (1,€) € R® into
two parts as follows:

Av={(r, &)|Im + sjléll > elél}, A2 ={(m, €)|Im + siléll < elé]},



7

where € > 0 and ¢ is sufficiently small to be determined later.
a)For (1,€) € A;, we have

P (r )€ < O™ < Olg— &) + Cley ™.

Therefore, we have

(3.10)  ||1PF(r, &))" f PRr =1, €= &) — &) V2 F(T — 1, € — &)

R2+1
x Py (1, )() ™2 G, &1)dndlfaca,

<CIPR(E) ™ F g PIP(€) G2z + ClIPLIE) ™2 F #re PO ™G
From Holder’s inequality, Plancherel’s theorem and Lemma, 3.3, we have
(3.11) 1P (€)™ F wrg PIE) TGl
SCIF2 (PRRE) I )3 1 Frd (P ()G
<G|l IGIZ;
In the same manner, we have
(3.12) |PLAE) ™2 F o P0G < CIFIZ, |G,

Collecting (3.10)—(3.12), we have

(3.13) 1P (7, €)€)"* /R L PR —n g - a)(E- &) PR(r -6 - &)

x PP(1,&)(6) TG (m, &)dndé|3aa,)
<CIIF|: |G .

b)For (7,£) € Az, we devide (71,£;) € R3 into three parts as follows:
0 = {(Tl,fl)“’r — 71+ k|§ =&l > €]},
Qy = {(m1,&)||Im + Ul > €lé]},
Qs = {(m1, &) | max{|r — 71 + k|¢ — &|l, |7 + U]} < €elé]}.
For (11,&) € €1, we have

PR(r—m,E-&)(OV* < C.
Therefore, we have

(3.14) I1P;} (r, €) (&) / PR(r—m,& = &)(€ — &) VAF(r — 1y, £ — &)

931

x P, &0)(€) G (m, &)dndalFa ey
<CI(E = &)™ 2F #rg P1{E) V3G, -
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From Hélder’s inequality, Plancherel’s theorem and the Sobolev embedding, we have
(3.15) 1€ = &) 72 F #rg P2E)V2GIIZ,
SCHW—WF“%?(L;)||~7'-'Z§1(P3sz<€>_1/25)||ig°(Lg)
<CIFf IGIE,,
From (3.14) and (3.15), we have

(3.16) ”P.;f'(”', £)<€)1/2/ Pf:;f("' - 1,6 = &)(€ - §1>_1/2ﬁ(7 -71,§— &)

1)}

X Pl_,zb("'l’El)<51>_1/25(T1, 51)d7'1d§1||%2(,42)
<CIIFil} |Gl
In the same manner, we have
(3.17) 1P} (r, €)(6)"2 /Q P(r — 1,6 — &)(6 — &) VAF(r — 1,6 — &)
2
x Prp(m, £0(6) 72 G (m, &)dnidéi 2o a,)
<CIIF|2 G, .
We put

I(r,6) = P, 7Y (1,€)(€) /Q P21 — 1, & — &)(€ — &) P (1, &) (&) TN dndé,.

3
If we have

(3.18) sup I(1,§) < C,
(T6)€A2
then, by Schwarz’s inequality, we have
(3.19) 1P (7,€)(€) /2 /Q PR(r—m, = &) —&) VP F(r -, 6 - &)
3

X Pl—,lb(Tli fl)(&)—l/éé('rhfl)dﬁd&“%z(m)
~ ~ 1/2
<c|\1'? ( /3 |F(11,&)2|G(T — 7, & — g,)|2d71d§1) "iie
R .
<CIIFf? #rg 1GP2y,
<CIIF|2; IGI2s .

Collecting (3.13), (3.16), (3.17) and (3.19), we conclude (3.9). Therefore, we have only
to prove (3.18). Let Cy > max{s,2/(s — 1)}. Assume |& | > Cy|£|. Then, we have

(3200 [slé) - ke - &l — lal] > slel - |16 — &l - J&al| > (s~ Del.
Assume |&;| < Cy'|€|. Then, we have

(3.21) |s3l€l = kl€ — &l = U&l| > slé] = |€ — &l = l&] > (s — 1 - 2C5 )¢l
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For (1,€) € Ay and (1, &) € €23, we have

|s71€] = klE — &l = U&l| < |7+ silél} + |7 — o+ Kl§ — &l| + [ + U] < 3elé],

which contradicts to (3.20) and (3.21) for sufficiently small ¢ > 0. Therefore, we have
Cy €] < |&| < Col€| for (1,€) € Ag and (71,£;) € 3. By the symmetry between &; and
¢ — & variables, we also have Cy'|¢] < |€ — &| < Co|€| for (7', ) € Ay and (r1,&1) € Q3.
From Lemma 2.2, we have

/R P(r — m,€ — &) Py (r, )dry < Clr + Kl — &) + 1|y

Therefore, we have

(3.22) sup I(7,§)
(T1£)€A2

<C sup /
|T+s5l€ll<elé] J Oy tl€]<]€1|<Colé]

2n
s [ (—3lE] + klE — &) + e~ dléads.
Cy 1|§|<|§1|<Col€| :

EGRZ |s’'—s|<e

(&) 7HT + kIE — & + U&a]) €

For Cy'[€] < |&1] < Colé], we have

1iEl — 1 2 _ g~ ‘2
| — s'51€] + k¢ — & + &l = ||(SJI§:§| |§kl||2—€lfl+l€ll§llllll

l — 1)|€] + 2(cos§ — ]ls')!&H

Because |cos@ — jls'| > s =1 > s —1— € > 0 for sufficiently small ¢ > 0, (3.22) is
bounded. '

ii)We next prove (3.2) for n = 2 and (s, s2,83) = (1,1, ) or (s,1,s). The inequality
(3.2) is equivalent to

(323)  IP(mE@T /R o Panlr == &) = &)V F(T - 11,6 - &)
x P b (m, £)(&) VG (n, é‘l)dTldgl”ii,g
<CIIFlz NGz,

Without loss of generality, we can assume F > 0and G > 0. We divide R2*! into four
parts as follows: '

0 = {(n, &)[I€ ~ &l < 4slél/(s = D},

Qo = {(11,&) € Q| P, 5(7,8) > max{Pu, k(1 — 71,€ — &1), Py a(11,£1)}},
Qyy = {(71, &) € Q| Poy (7 — 71, = &) > max{ Py, ;(7,€), Paga(11, 1)},
Qo = {(11,&) € Q2| Pogu(m1, &) > max{ Py, ;(7,8), Poy(T — 11,€ — &1)}},



where Q, = {(n,&)[1€ — & > 4s)€]/(s — 1)}. For (11,&) € Qy, we have (£)~V
&1)Y/2 < C. Therefore, from Lemma 3.1, we have
(3.24) 1B (r, ) (€)™ /ﬂ Poi(r = 1,6 = &)(€ - &) /*F(r — 71,6 — €)
1
X Ps;?l(’rla£1)<§1>—1/25(’1'1,§1)dT1d§1“§13,€
SCONPG(PIRF #0g PO TC)IE, < CIFIE: G2

81,

From Lemma 3.2, we have

PU(r, )€ - &)X &) 2 <C) ™, (m,&) € O

Therefore, from Holder’s inequality and Young’s inequality, we have

B2 0O [ Pokir =6 - 6 - )Fr —n,6 -6
X P;f}(ﬁ,&)(&)_l/zé(‘rhEl)d”'ldfl”ig,e
SCOIE) (P #rg PR )2,
SOOI | (PradeF e PLi(m, )™ O sorn
SCIPL Wy gaorss) | Pi(€) ™ Gl

82, 33,[ L2/4(L30/17)
-b 2 o2 —b =¥ A2
<ONPAN . o Pl P46 Gl

<CIFilEy P36 G2y o,

From Lemma 3.3, for ¥ > 9/20, we have

1P ™ Cllays gaonry < CUIFHPLAE ™ T2 g, < CIGIE, -
Therefore, we have
(3.25) IIHIf,'(T, §)<§>—1/2/‘; Pa;?k(T -1, =& )(€ - 51)1/21?'(7' -1, — &)
21

X P,;?I(Tn &) (51)‘1/26(7‘1, & )dndé; ”ig.e
<CIFI, IGI2; .

From Lemma 3.2, we have

Pok(T=m 6 =) - @VHE) 2 < CE)™,  (m &) € O

80
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Therefore, from Holder’s inequality and Young’s inequality, we have

|P5 (r,€)(€) / P (r — 0,6 - &)(€ - &) /PF(T - m,6 - &)

Q22

x Pryy(mi, €0)(60)™2Glm, &1)dndéullzs
<CIPE) T (F #rg PLAEC)Ia

81,J 33,1
<CIPLHE) N %s N(F #re P G)s,
<CIFIZ IO Iy

From Lemma 3.3, we have
IIPSZZ(E)_'@IIE/; < CIFHPIWE) "Gz, <CIGILz,-

Therefore, we have

(3.26) 1P (r, €)(€)/? / Plh(r—m,E— &) - &)V F(r — 1,6 - &)

Q22
X Ps;f’,(ﬁ,51)(51)_1/20(71,§1)d71d€1||ig'£
< O|F I, |GI2,
From Lemma 3.2, we have

PS—;Z(Tlagl)(f - &))< Ol - &), (11,61) € Qs

Therefore, we have

|1P% (T, £)(€) 2 / P (T —m,E— &) - &)V F(r — 1,6 - &)

Qo3

x Ph(m, &)(&)72G(n, &)dndélgs
<C||PY(E) AP — &) F 47 G2 -

311j

In the same manner as (3.26), we have

(3.27) |1 P2 (r, €)(€) /2 / Ph(r—m,E— &) - &)V F(r —m,6 - &)

Q23
X Ps_;;?l(Tl’ 61)<£l>_1/2G(7'1,gl)dTldgluiz’e
< CIIF|E: IGIZ,

Collecting (3.24), (3.25), (3.26) and (3.27), we conclude (3.23).
iii)We next prove (3.1) with n = 2 and (s1, S2,s3) = (1,1, s) The inequality (3.1) is
equivalent to

(328)  IR(me)© /R o Pan(r = - 6)(E - &) (r -, - &)

x Ph(r, 0)(60) ™V2C (n, &)dndéall3s
<CIFIE, 11,
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Without loss of generality, we can assume F >0and G > 0. We divide R%*! into fo
parts as follows:

0 = {(m, &)|I€] < 4sl€ = &l/(s - 1)}, .

Qo1 = {(71,&1) € Q| Py 5(7,€) > max{Po, k(7 — 71,€ = &1), Poga(71,€1)}},

Q= {(n,&) € Q2|Psz,k(T —71,€ — &) > max{P,, j(7,€), Py u(11,6)}},

(s = {(7'1’51) € Q2|Pss,l(7'1’§1) > max{P,, ;(7,€), Po k(T — 11,€ — &1)}},
where Qy = {(m,&)|[¢] > 4s/(s — 1)|€ — &[}. For (m,&1) € U, we have (¢
€)"Y2(¢)Y/? < C. Therefore, from Lemma 3.1, we have

(3.29) |1 P;5 (, €)(€)M? /Q PR (r—m,E— &) - &) V(T — 1,6 - &)

1

x P (s, (€ "/2G (s, )drdallls
<OIPS(PAF #rg BHO T O), < CIFIE IGIE:

51)j
From Lemma 3.2 and Remark 3.3, we have
Py P <c@)™,  (r,&) € Qu.

Therefore, from Hélder’s inequality and Young’s inequality, we have

1P €)(€) /Q Poi(r = 1,6 = &)(€ — &) VPF(T = 1, — &)
X Ps_afl('rl’€1)<€1)_1/26(Tl,€1)dﬁd§1”if_'e
<C|P% (€)™ F #rg P, (5)_"'5”23,6,

83,l

<C||P4(&)/*F Ilig/; 1Ped€) " IZs Iléllig,e-
From Lemma 3.3, we have
1P (€) /2 F ”ig/; < CI\F PO FYEs, < CIF IZ2 -

82,k

Therefore, we have

(3.30) 125 (T, €)(6)~/* /Q P (T — 1,6 — &)(€ — &) V*F(T — 11,6 - &)

x Pob(r,6)(6)2C(m, )dndeills
< ClIFIIZ: Gz -

From Lemma 3.2 and Remark 3.3, we have

Ps;?k(T - 71,§— €1)(€>1/2(§1)_1/2 < C{&)7, (11,61) € Qoa.



Therefore, from Holder’s inequality and Young’s inequality, we have

(3.31) [ s”(f £)(€)? / Plh(r—m,E—&)E—&) V2 F(r— 7,6 - &)

Q21

P;",(Tl,61)<£1)_1/25(7-1,61)d7'1d§1||23’5
<C||PY((6)72F %,¢ Ph(E )"’é)llig,g

51,
SCIP o agy 14€) ™2 F #rg PLAE) Gl s,
<C||(¢ >_1/2”%g(L$°)”ﬁ“%E’E”Ps_3?l<£>—bé”if_'/£5'
From Lemma 3.3, we have
|Poil€) %Gl ers < CIF P ()G Iy, < CIGIE,

Therefore, we have

(3.32) |1P;% (7, €)(€) T/ / Pl (- Tl,»s—a)(s—slrlﬂﬁ(r—n,g—sl)

33,1(71’51)@1)‘1/2(3'(7'1,51)617'1d";b1||ig’{3
< CIIFIE; IGI: .
From Lemma 3.2 and Remark 3.3, we have

Ps‘af’l(ﬁ’gl)@)l/?(g —&) P <CiE-&), (71,€1) € Cas.

Therefore, we have

1P (r, ) (6) 2 / Pt (r = € — (€ — £) V2B (r — 6 — 1)

Qa3

X Psa 1(7'1, 51) (§1>_1/2é(7'1, fl)dTld& ”ig’f
SCUPPLIE) ™ F #re (€)V2G)I73

31,7

In the same manner as (3.31)-(3.32), we have

(3.33) 1P (7, €)(€)M? / Pl (r—m,6 —&)(E~ §1>41/2ﬁ(r —m,E—&)

Qo3

X P b (m, §1)<§1)‘1/2C~;(7‘1, fﬂdﬁd&”%h
< I, G112 -
Collecting (3.29), (3.30), (3.32) and (3.33), we conclude (3.28).
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iv)Finally, we prove (3.1) with n = 2 and (s, 89, 83) = (1,1, 5). From (3.2) with n = 2

and (s1, s2,83) = (1,1, s), we have
Mw gl v < CHfIIXl/szIglle/zb-
From (3.2) with n = 2 and (sy, 32, 33) (1,s,1), we have
1)l y-sv < Cllglgsaall fl o
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Therefore, we have
1790 2 = Wl g
< Cll(wf)gllxlllsz,-w + C”f(‘”g)||xll’/jz.—b'
< Cllfllazolglles.
a

We next prove the Proposition 3.2. More precisely, the following three lemmas hold.

Lemma 3.4. Assumen =1, s > 0 and ¥’ < 1/2. Let b be arbitrary real numbers.
Then, the following inequality fails.

(3.34) (£, gh)| < Clifllxosllgll xoslhll gou
where j =k =1=+ or —.

Remark 3.4. From this lemma, we have the results for (3.3) with n = 1 and (s, 82, 83) =
(1,s,8) or (s,1,1) in Proposition 3.2.

Lemma 3.5. Assumen=2,s>0 and¥ < 1/2. Let a and b be arbitrary real numbers.
Then, the following inequality fails.

(3.35) (f, g < CliflixasllgllxzesllBll xarzer,
where j=k=1=+ or —.

Remark 3.5. From this lemma, we have the results for (3.2) with n = 2 and (sy, 52, 83) =
(1,s,s) or (s,1,1) in Proposition 3.2.

Lemma 3.6. Assumen =2, s > 1. Let a and b be arbitrary real numbers. Then, the
following inequality fails.

(3.36) [{f, gk} < ClIfll xeellgllx-2sllhll 2720,
where j=k=1=+ or —.

Remark 3.6. From this lemma, we have the results for (3.1) with n = 2 and (s, 52, 83) =
(s,s,1) and for (3.2) with n = 2 and (s, 82, 83) = (s, 8,1) or (1,8, s) in Proposition 3.2.
Ozawa, Tsutaya and Tsutsumi [15] proved a counter example for n = 3 similar to Lemma
3.6.

Proof of Lemma 3.4. We only prove the case of j = k =1 = —. The proof for the +
sign case is the same as in the — sign case. Let NV be a natural number to be chosen

large enough later. We define f(7,€), g(,€) and E(’r, £) as follows:

Y _ 1 in @, ~ _ 1 in Qg, T _ Ifl_l in §23,
f(r,8) = { 0 otherwise, g(r.§) = { 0 otherwise, h(r,§) = { 0 otherwise,

where
& = {(r,&)|Ir - lell < 1, 2¥ <& < 2V},
Q= {(1,8)||7 — €] <2, 0< € <22V — 2N},
Qs = {(,6)|l7— |Ell < 1, 2V < € < 22V},
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For (7,¢) € @, and (11,&) € Q3, we have (7 — 7y, & —&1) € Q. Because
|r—n—le=&l| <|r— el +|n - | + [1€] — l&a] — 1€ = &) < 2,
0<¢—-¢& <22V -2V,

Therefore, we have by Plancherel’s theorem

630 Whowl= [ Fre)( [ 7 -n6 - ehn b)dnde)arde
(971 Q3

2N g+l 22N eleg|+1
= / (/ Ifll'—ldTld€1>de€ 2 CN23N
2 2

W Jlgl-1 N Jal-1
On the other hand, simple calculations yield

2N algl+1

(3.38)  [IflI%0s = (1+ |7 — |€])®drde < C23V,
by Jig

23N_

2N olgl+2
(3.39)  liglos = / / (14 |7 — |€]|)Pdrde < C23N,
b 0 lel-2

340) ey = [

N Jle-1

22N

(1+|r — sle|)? €] 2drde < C / €[~1dé < CN.

N

22N algl+1

If (3.34) is true, we must have by (3.37)—(3.40)
23NN < C23NN1/2,

where C is a positive constant independent of N. But this inequality fails as N — oo,
which is a contradiction to the validity of (3.34). a

Proof of Lemma 3.5. We only prove the case of j = k =l = —. The proof for the + sign
case is the same as in the — sign case. Let N be a natural number to be chosen large
enough later. For £ = (¢',¢") € R?, let 6 be an angle between £ and the ¢’ axis. Let C,

be sufficiently large positive number. We define f(r,¢), §(r, ¢) and h(r, ) as follows:

~ -a a : _ o .
Flr,6) = { |§(£ in {, §(r,€) = { lf(l) in £y, h(r,€) = { IEOI in Q3,

otherwise, otherwise, otherwise,
where
O ={(r,&)|lr —slell < 1, 22V < J¢g] < 22V, 272V < 9 < 0},
Dy ={(1,&)|I7 — slll < Co, 22V1 < |¢] < 2N+ |g| < 272N},
Qs = {(7,€)|I7 — sé| cosf] < 1, 2V < |¢] <22V, 0 < @ < 7).

We assume (7,¢) €  and (11,£;) € Q3. Then, because €] = & < |€ = &l < €] + |&],
we have

(3.41) 2V e — &) < 25N+
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for sufficiently large V. Let o be an angle between £ and ;. Because |a—6,| < |6] < 272N
and |&[?/|¢] < 1, we have

Ilfl — |&;| cos by — |€ — 51” S(lfl — |&1] cos 6,)? — |€ — & [?

€] - |§1|00591+|§ &|
|§‘1|2 sin? 8 + 2|¢||¢1|| cos & — cos 6, |

€]
SC(L+|&lla—6:1) <C.

Therefore, we have by the triangle inequality
(3.42) |7 =7 —sl§ - &|
SIT - s|§|| + IT] - s|§1|c0s01| + s_||§| — |é1| cos 0, — |€ —§1|l < Cp.

Let 3 be an angle between £ — & and the £’ axis. Obviously, for sufficiently large IV, we
have

(3.43) 18| < 272N+,

Collecting (3.41)—(3.43), we obtain £ — & € €. Therefore, we have by Plancherel’s
theorem

349 [(f,oh) |
= [ Fro)( [ a0 me - B, )ander) dra

- / 172 [ 16 - €urie tarde ) arag

25N s)é|+1 22N x  psl€1|cos By +1 :
/ / drdblé|dié] / / / &2 2drdf 6, |dle|
24N 2—2N Jsl¢|—-1 0 Js|€1|cosf;—1
>CN2BN,

On the other hand, simple calculations yield

sl¢|+1
(345) Il < / / o /| (1+ |7 — sl¢||)2drddle|die] < C2°V,

€l-1

25N

925N +1 —2N+1 5|£|+CO

(346) gl < / / / (1+ | — slel)Pdrdojg|dlé] < C22V,
2—-2N+1 ,Ifl_co

22N

8|€| cos 6+1 ,
Ll = e arasteie

8|€| cos6—1

(3.47) Mme<C/
22N

<c[ rescn.
If (3.35) is true, we must have by (3.44)-(3.47)
28NN < 028NN1/2’

where C is a positive constant independent of N. But this inequality fails as N — oo,
which is a contradiction to the validity of (3.35). O
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Proof of Lemma 3.6. We only prove the case of j = k = [ = —. The proof for the + sign
case is the same as in the — sign case. Let N be a natural number to be chosen large
enough later. For £ = (¢/,£") € R?, let 6 be an angle between £ and the &’ axis. Let Cy
be sufficiently large positive number. We put 6, = cos™1(1/s), 0 < 0, < 7/2. We define

F(r,€), §(r,€) and h(T €) as follows:

Fro={ " e, 7= {'5' D0 g - {‘5'1 in

otherwise, otherwise, otherwise,
where '
O ={(r,0)|lr —sléll < 1, 2V < |¢] < 2°V, 272N <9 < 0},
Qy = {(r, §)||T — sl€|| < Co, 2N < €] < 22N 1] < 2 2N+1Y,
Qs ={(7,8)|Im — slé|cosb] < 1, 2V < [¢] < 2°V, 16— 6,] < [¢] 7'}

In the same manner as (3.41)—(3.43), if (7,€) € Q; and (71,&) € €3, we obtain (7‘ -
11,& — &) € Q. Therefore, we have by Plancherel’s theorem

(3.48)
[(f, gh)|
f(T f)(/ (7'—7'1,5 fl)h(”'l,fl)dTld&)def
Q3
:/ €]~ / |§—§1|a|51|_1dﬁd€1>d7'd§
25N slg|+1 22N a6yt s|€1| cos01+1
/ / d’rd9|§|d|§|/ / / €117 dm1dB; |61 ]|, ]
24N 2—2N Jg)¢|-1 —l&1]~? |€1] cos 611
>CN2®V,
In the same manner as (3.45) and (3.46), we have
(3.49) 7B < C2V,
(3.50) ol o0 < C2.

For (7,£) € Q3, we have
|7 — |&]| < |7 — sl€| cos 6] + |s[¢| cos & — [¢]]
<1+ s|é||cos@ — cosbs| < C(1+s|¢||6 —6;]) <C.

Therefore, we have

(3.51) ||h||21/2 " <C’/

22N

03+|§1|‘ s]€| cos 6+1 éb’ . ) .

I (1-+ I = Il I draslglale
0;—|€1|71  Js|glcosO-1 - .

22N

<c / €] -1dé < CN.

If (3.36) is true, we must have by (3.48)-(3.51)
28NN < CzSNNl/? .
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where C is a positive constant independent of N. But this inequality fails as N — oo,
which is a contradiction to the validity of (3.36). O

4. THE OUTLINE OF THE PROOF

In this section, we mention the outline of the proof of Theorems 1.2, 1.4 and 1.3. For
more precise proof and the proof of Lemmas 4.1-4.3, see [4]. We first mention the proof
of Theorem 1.2. We put

fr = f £iw™16,f, g+ = g £ i(sw) 'G,g.
Then, (1.1)-(1.4) are rewritten as follows:
(4.1) (i0: F D) f+ = Fw™'F ¥ (D — w) fx,
(4.2) (i8: F sD)gx = F(sw)"'G F 8(D — w)gs,
(4.3) f£(0) = fr0, 9+(0) = ga0,

where
fro= foxw™lf, € H, g+o = foxi(sw)™' f1 € H®.

We try to solve (4.1)—(4.3) locally in time. For that purpose, we consider the following
integral equations associated with (4.1)-(4.3):

(4.4) X = N(X),
where
| §+
(4.5) X=1 4 |
g-
:/I‘V/Hg;?*—
(46)  NX)=x®) | W (t)g0s
Wa—(t)go—

(g e
+Wi_(t — ) {w ' F (') + (D —w) f_(¥ !

0 [ | g O ma) + (Do |
+W,-(t — ') {w™'G(¥) + (D — w)g-(t)}

and Wiy = F leFitsiltl £, T is a positive constant to be chosen small in the process of
the proof. We note that the solutions of (4.4)—(4.6) is a solution of (4.1)-(4.3) on the
time interval [—T, T']. We prove the existence of the solution of (4.4)—(4.6) by contraction
in the following set:

My ={IXl <8}, Xl = Wfillxge + 15 lxgs + lgslxsn + llg-lxes,

where b > 1/2, b is sufficiently near to 1/2 and ¢ is to be determined later. We use the
following lemma to estimate the first term on the right hand side of (4.6).
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Lemma 4.1. Let a,b € R and s > 0, then there exists a positive constant C satisfying
(47) IXOWei®)f o2 < Cllflle,
where j =+ or —.

We use the following lemma to estimate the second term on the right hand side of
(4.6). ‘

Lemma 4.2. Let b > 1/2, € > 0 and s > 0. Then, there exists a positive constant C
satisfying

t
(49 I (®) [ Wast =) fllxzs < OT g
where 0 < T <1 and j =+ or —.

Naturally, we have
(4.9) (D — w)f+||xf;i-1+f + (D - w)f—“x;‘;ﬁ—“‘
HI(D = w)g+ xas-14 + |(D = w)g-l xa-1+e < ClI X |1

From Proposition 2.1, we have
(410) o Fllygere S CIXIy I Gllypeosee < CIXI.

For example, in the case of n =2 and F = Fy;,ifa > 1/2and 2a —1/2 — € > b > 1/2,
then we obtain '

4,91 < Clfllge ol xozsollMlgsmn-se
from Proposition 2.1. Since (£¢) > |£|, we have
1,971 < Cl sl Dgll o Il g ses-see
By duality argument, we obtain
Hw_lFll”Xi.;—He S kzl “kagl”Xit‘;l,b—l-f-e S C; ”fk”Xf,’:”gl”X:’,b S C”X”%,[
In the same manner, we can prove the other cases. Collecting (4.7)—(4.10), we obtain
N (X))l < Co(Cr + T4(6 + 62)),

where Cp is determined from Lemmas 4.1, 4.2 and Proposition 2.1 and C; = || fyo||me +
| f=ollze+||g+0l| e + | g—o|| = Let & = 3CoC1, T < min{(9C,C;)~ 1, 1}. Then, we obtain
[N (X)||ar < 6.

In the same manner, we have Theorem 1.3 from Proposition 3.1. Next, we mention
the proof of Theorem 1.4. The different point from the proof of Theorem 1.2 is that

we apply Proposition 2.2 with b = 1/2 to prove inequality (4.10) Therefore, we use Y2,
norm and the following lemma as the substitute for Lemma 4.2.

Lemma 4.3. Let s > 0. Then, there exists a positive constant C satisfying

t .
IX(O) | Wast =) gzgrw < Ol + Ul

»J

where j =+ or —.



90

We substitute
(A
+1_—’w‘1x'2 "+ —w)f-_(t '
+x(t) / Wi (¢ — )X (E)arCle) + (D — w)ge ()} | %
+Wo_(t — ) {w™x(t)2rG(E') + (D — w)g-(t)}

for the second term on the right hand side of (4.6) to derive T* from Proposition 2.2.
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