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Construction of diffusion processes penetrating fractals

-An application of the theory of Besov spaces-
Takashi Kum:agaif
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1 Introduction

Assume that there are countable number of disordered media {K;}¥, (1< M <
o0) on R¥. Can we construct a diffusion process which moves the whole space,
whose behaviour is like Brownian motion on K for each media and like Brownian
motion on RY outside? If we can, how does the diffusion behave asymptotically?
In this paper, we will treat this problem when K;’s are fractals.

Since late 80’s, there have been many works for diffusion processes and
Laplace operators on fractals (see [1], [9], [11] e.t.c.).’ Recent works ([6], [7],
[10]) reveal that domains of the corresponding quadratic forms (Dirichlet forms)
are Besov spaces and that theories of Besov spaces could be applied to this field.
Our work shows that trace theory of Besov spaces is applicable to the question
posed.

The initial work on diffusion processes penetrating fractals was by Lindstrgm

[14] and has been followed up by more general constructions in [7], [10]. These
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papers have been primarily interested in demonstrating the existence of a process
which behaves like a diffusion on a fractal within a subset of Euclidean space, yet
standard Brownian motion outside. Our work will extend this construction to
incorporate many different fractals which may be embedded in some Euclidean
space (Figure 2), but also may tile the space (Figure 1). We will call spaces of
either type fractal fields.

A key example that we would like the reader to bear in mind throughout the
paper is the gasket tiling in R?. Consider a triangular lattice on R? where each
edge is of length 1. We will fill each triangle with a version of the Sierpinski
gasket in a periodic way. More precisely, let SG(I) be the family of 2-dimensional
Sierpinski gaskets from [3] with sidelength 1 constructed by contraction maps
with contraction factor 1/I. Now, take a set of triangles (we let L be the number
of triangles in the set) from the triangular lattice so that the union of them is
a connected closed set. In each triangle we place {SG(lk)}E., and denote the
union of these fractals by K,. Without loss of generality, we can assume that
one of the vertices of K is (0,0). We take i, € N so that KN (K + (i5,0)) # 0
and Int Ko NInt (Ky + (i,,0)) = 0. We also take iy € N in the same way by
taking (0,1,) instead of (i;,0). Then, G = U mez(Ko + (liz, miy)) is the space
we will consider. Figure 1 indicates the case when K is a parallelogram filled
with SG(2) and SG(4).

This paper will treat the general construction problem. We incorporate the
trace theory of Besov spaces, for the embedding into a Euclidean space, with
an idea originally due to 'Kusuoka; [12] which shows holw.to extend a Lipschitz
function from the boundary of a fractal to the interior while controlling its

energy. This will allow us to build up a Dirichlet form and establish some
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properties, such as a Nash inequality. In the forthcoming paper [5], we will
further discuss on heat kernel estimates and the large deviations of our diffusion
process. In the paper, we will demonstrate the shape of the shortest paths
through our fractal fields and observe that it is fractals with small dy, which take
the longest to cross (in the short time limit) and this allows us to determine the
shortest paths in a recursive manner, first fixing them through the slow parts

and filling in the details for the faster paths.

2 Fractal fields and their Dirichlet forms

In this section we will introduce fractal fields, the framework within which we
will work. Our aim is to construct local regular Dirichlet forms on these spaces.
Let {K;}}, C R? (1 < M < o) be a family of (bounded or unbounded) nested
fractals whose definition will be given in Appendix. When K; is unbounded, we
denote by K; the corresponding bounded nested fractal (when K; is bounded,
K; = K;) and denote by {\Ilg-i) }ies; the family of contractions which determine
K (Si={1,2,- ,N:}). Let Vs be the set of essential fixed points for K;.

For each closed set A, let Cov (A) be the set of points covered by A,
i.e., decomposing R?\ A into connected components {D;}%.,, and denoting by
{D;}jev(a) the unbounded components, Cov (4) = R? \ UjevayD;. We note
that if the set A has holes, these may be contained in Cov(A). We assume the
following for the location of {K;};.

Assumption 2.1 1) Foreach 1<i#j< M,
Int (Cov (K;)) N Int (Cov (K;)) = 0,

where Int (K) is the interior of K.
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2) For each compact set C C R?,
H{i: CNK; # 0} < oo.

Define G = UM,K; and D = R?\ Cov(G), then G is a closed set by 2) of
Assumption 2.1. Clearly, D = Ujey(g)D;. We define G =GUD and call it a
fractal field generated by {K;}M,. See Figure 1 and Figure 2 for examples of
fractal fields. Note that we can define fractal fields on R" in the same way using
nested fractals on RY, but as our Assumption 2.2, which will be introduced later,
seldom holds for nested fractals on N > 3, we will restrict to N = 2.

Let 8,G be the topological boundary of G as a subset of R%. For 1 < i #
i< M,let

I';; = Cov (K;) N Cov (Kj), G = Uyrcizi<cmTij. (2.1)

Set G = 8.G U 9;G. Let p; be normalized Hausdorff measure on Kj, i.e.
,u,-(f(,-) =1, and set u = M, p;, i = m|p + p where m is the Lebesgue measure
on R?,

We next define a form on G. First, for each %, the local regular Dirichlet
form (Ex,, Fk,) on L?(K;, u;) is given as in Theorem A.2 and Theorem A.5.
We denote df(K;),ds(K;),dw(K:) the Hausdorff, spectral and walk dimension
respectively w.r.t. Euclidean metric. Let K C K; be a compact nested fractal
which is congruent to R; (thus, when K; is bounded, K = K;). For each I';; in
(2.1) where 1 < i # j < M and for w € % = (S;)N, let dr,; x(w) = min{n >
1:T;n eI, (K) =0} where {\Ilg-K) }jes;: is a family of a;-contractions which

determine K, and define

N(Fij, K) = -

1
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where v; is a Bernoulli measure on ¥; so that y;({w € %; : wy =1}) = 1/N; for

each | € S;. We adopt the convention that —log0 = co.

Assumption 2.2 For each 1 < i # j < M, the following holds where K and

I';j are as above,
2 2

LE) ~ Gw <

Remark 2.3 For the gasket tiling introduced in the Introduction (also indicated
in Figure 1), (2.2) always holds. Indeed, let K = SG(l) | > .2 and r - T;; be
the bottom line of K. As there are I™ n-cells which intersect with I, we see that
v(drg(w) >n) =1"/L™ where L =1(l + 1)/2. Thus, s(I', K) =1—logl/log L
and (2.2) is equivalent to

log(pL) — 2logl <1 logl
log L log L’

which is equivalent to p < 1. Note that p = P™(Tyy\ (2o} (X) < To(X))™! where
o € Vo, X is a Markov chain corresponding to (Esgqy)1, and Ta(X) is the
first hitting time of X to A. Note also that if we define X be a simple random
walk on Z, then | = P°(r_1;3(X) < inf{n > 1: X(n) = 0})~'. Then, by the
comparison of escape probabilities using the electrical network method (we use

so called cutting law), we can easily obtain p < [.

Assumption 2.1 and Assumption 2.2 will hold throughout the paper. We
define a bilinear form (£, D(£)) on L*(G, iz) as follows, |

g v

- 1 -

Ew,v) = Y Ek(ulk,,vlK:) + 5 > /D Vu(z)Vu(z)dr for all u,v € D(E),
pas i T : ,

JEU(G)
DE) = {ueCo(G):ulx, € Fx, Vi, ulp, € W (D;) VY j, E(u,u) < oo},

where D = Ujev ) D; is a decomposition of D into open connected components
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and Co(é) is a space of continuous functions on G with compact support. Then,

it is easy to check the following.

Lemma 2.4 1) (£, D(£)) is closable in L(G, i).

2) D(€) is an algebra.

8) For each j, z € K; and each U(zx) which is a neighborhood of z, there exists
f € Fk; N Co(K;) such that f(z) > 0 and Supp f C U(z) N K; where Supp f
denotes the support of f.

4) C°(D) C D(E).

- —=£q r 3% T . % Ny
Now, denote 7 = D(£) "~ so that (£, F) is the smallest extension of (£, D(£)),
where £q)(f, /) =E(f, ) + || fIZ2 z)- We then have the following.

Theorem 2.5 (£, F) is a local regular Dirichlet form on Lz(é, i).

By the general theory ([2]), there is a one to one correspondence between a local
regular Dirichlet form on L3(G, ) and a fi-symmetric diffusion process on G
except for some exceptional set of starting points. We will denote by {X;};0
the diffusion process corresponding to (&, F). Note that, as the original forms
on {K;}; and {D,}; are strong local, (£, F) is also strong local. |

For the proof of Theorem 2.5, the key part is to prove the following.

Proposition 2.6 1) For each z # y € G, there exists g € D(E) such that

9(x) # 9(y).
2) For any compact set L in G, there exists f € D(E) such that f |r=1.

Indeed, using this proposition, we can prove Thorem 2.5 as follows. It is easy to
~ ~ ~ _~£

see that (£, F) is a local Dirichlet form. Also, as F = D(€£) (1), it is clear that

D(€) is dense in F w.rt. € @y-norm. Thus, all we need for the regularity of the
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form is to show that D(E) is dense in Cy(K) w.r.t. || - ||o-norm. Now, as D(€)
is an algebra (Lemma 2.4 2)), we see that for each compact set L in G, D(€)|L
is dense in C(L) by using Proposition 2.6 and applying the Stone-Weierstrass
theorem. This establishes regularity and we have completed the proof.

For each B C R?, define 75 = inf{t > 0 : X, € B}. We cé.n then prove that

X, penetrates into each K;. To say more exactly, we have the following.

Proposition 2.7 Assume that m(G) = 0 where m is the Lebesgue measure on

R?. Then, for any nearly Borel set B with positive 1-capacity (w.r.t. £),
P*(15 < 20) > 0 for quasi-every z € R?. (2.3)

Especially, when B is either a subset of K; whose 1-capacity w.r.t. £k, is positive

or a subset of R? whose 1-capacity w.r.t. the Dirichlet integral is positive, then

(2.3) holds.

The proof is the same as Proposition 2.9 in [10].

In the same way as Theorem 2.11 in [10], we can prove a Nash type estimate
for the heat semigroup. Let Ptg (t > 0) be the semigroup corresponding to
(€,F). Then, the following holds (see [10] for the proof). |

Proposition 2.8 Assume further that there are only finite types in {K;}M,, i.e.
if we define that two K;’s which are similar are equivalent, there are only finite
number of equivalence classes in {K;}M,. Define d™® = min¥, d,(K;). Then,

there exists cz1 > 0 such that the following holds for all z,y € G,

& 1, Il te(0,1],
IPE l1ooo < { 1 for all t€ (0,1 (2.4)

cat=% "2, forall te [1,00).
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3 Proof of Proposition 2.6

In this section, we will give a proof of Proposition 2.6. The crucial part is to
show 1) for the case z Vy € 0,G and z V y € .G, where z Vy means z or y.
We adopt completely different methods for the two cases; we use self-similarity
and nesting property for the former case and for the latter case, we apply the
extension operator used in the trace theory of Besov spaces.

We will first prove 1) for the case z Vy € 9;G. Assumption 2.2 will be used
here. For each f € C(R?), let || fllLip = sup{lf(@) = fW)/le -yl : 2.y € R*}
and let Lip (R?) = {f € C(R?) : "f"Lip < o0}. We now give an important
lemma due essentially to Kusuoka ([12]).

Lemma 3.1 For each T;; in (2.1) where 1 < i# j < M and for each K C K;
which is congruent to K; and K NTy; # 0, let Hr, x : Lip (R?*) — C(K) be a

linear operator given by
Hr,kg(z) = E*[9(Xr, )],  forall z€ K, geLip(R®) (3.1

where {X.} is the Brownian motion on K and m, = inf{t > 0 : X; € T}
Then, Hr,; kg € Fk. Further, there exists cz2 = c22(K) > 0 such that

E(Hr,; k9, Hry;,k9) < c22{ /E_(PiLiaE' z)dr"’"K(w)V(dw)}||g||iip (3.2)
holds for any g € Lip (R?).

PROOF. In the following, we will abbreviate I';; to I and remove the sub-

scripts ¢ and K. For each g € C(K), define hp(- : g) : K — R as follows,

E™") g0 Wy, . (Xny, )] if dr(w)=m,
g(m(w)) if dr(w) = oo,

hr(m(w) : g) = { (3.3)

98



99

for each w € T (see the Appendix for the notation). It is easy to see that
hr(- : g) is a well-defined continuous map which is harmonic inside Yo, ...w, (K)
if dr(w) = m, and hr(- : g)|r = g|r. Moreover, noting that
Ea(g) =p" DY Eo(go¥y) forall ge C(Va),
weSn"

where we abbreviate £,(g, g) to £.(g), we can easily see that

Ealhe(-: g)lva) = [ prON - LOMEg (g, arionn))s € S}w(d),

‘ (3.4)
where we set [w,]; = w1 -+ -wiii---. Note also that there exists ¢; > 0 such that

¢7'Eo(u) < max{lu(z) — u()* : 7,y € Yo} < c1€o(u) (35)

for any u € C(V;). Using (3.4), (3.5) and the fact pLa~? > 1 (,which is shown
in (1], Proposition 6.30), we have for each g € C(K) that

Enlln( i 9l) < - { [ (PLa™)FO(d))

x sup{a™ - max{lg(e) - g()| : 7,y € Vehim 2 0,£ € S™Y.

On the other hand, from Assumption 2.2, we see that A = [5,(pLa~2)r @y (dw) <
0o. We thus obtain

Ehe- + g),he(-: ) < 1 A~ {diam K lglR
for each g € Lip(R?). As
£(Hr kg, Hr xg) = inf{€(u,u) : v € F, ulr = g} for all g € Lip(R?),
we obtain the desired facts. | | i

Using this, we now show 1) of Proposition 2.6 for the case zVy € 8;G \ 0.G.



Proposition 3.2 For each © # y € G where ¢ € 8,G \ 8.G, there exists f €
D(E) such that f(z) =1, f(y) = 0.

PROOF. For z € 9;G \ 0.G, denote {K}icr(z) the set of all K; such that
z € K;. For each K; i € I(z), take m; € N such that a{"‘f’_l <e™< a;™ and
define N,,(z) as a union of the m;-complexes which contain z for each i € I(z).
Also, define N} () as a union of the m;-complexes which intersect with N,,(z).
We take m suitably large so that N1 (2) NG C User Ki, (Uier@ Vi) N (N () \
Npn(z)) = 0 and y ¢ NX(z). Then, it is enough to prove that there exists
g € D(€) such that

9|Nm@ =1, Supp g C N} (). (3.6)

We will now construct g € D(£) which satisfies (3.6). Set g|n,,z) = 1 and take
an arbitrary connected component of I';; N (N}, (z) \ N (z)), 4,7 € I(x) which we
denote I'. Denote ag € Ny(),a; ¢ Nm(z) end vertices of I'. Take f € Lip(R?)
so that f(ao) = 1, f(a1) = 0. Then, by Lemma 3.1, we can construct continuous
functions Hr k,f and Hr k,f on the m;-complexes of each sides of I' such that
Hr.x, flr = f|r and £y (Hr,k, f) < oo for | =1, j. We do the same procedure for
each connected components of I';; N (N (z) \ Nm(z)), 4,7 € I(z). Then, using
the m-harmonic extension (A.2) for the rest of N} (z) \ N (z), we can easily
extend {Hr,k, f}r K, (I € I(x)) m-harmonically and construct g which satisfies
(3.6). By the construction, we see that g € D(). 1

We next consider the case z Vy € 8.G. As we mentioned, we will apply
the extension operator used in the theory of Besov spaces (see [8] for details
of the theory). For this purpose, we will briefly explain the construction of an

extension operator. It is a slight modification of the operator which extends a
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function in the Lipschitz (Besov) space on K; to a function in a Besov space on
RY (N = 2 for our case, but we can argue for all N € N).

We begin by setting up the Whitney decomposition of the complement of
K;, which has the following properties. It consists of a collection of closed cubes
{Qy) }jeN, with mutually disjoint interiors and sides parallel to the axes so that
RY \K; =U; ;-i). We assume that the sidelength of the cubes is of the form
2=M M € Z. Denote the center of Qgi) by :v;-i), its diameter by lJ(-i) and its
sidelength by sy). Then sgi) = l;-i) /v/n € {27 : M € Z}. (In the following, we
may omit the superscript ) when there is no confusion.) This decomposition

has the following properties,
I <dQ K) <4, QiNQe#0=1;/4<1<4l; (3.7)

Let 0 < € < 1/4 and put @ = (1 + €)Q;. Note that by the above properties
of {Q;};, each point in RY \ K; is contained in at most No(n) (which depends
only on the Euclidean dimension) cubes @} and, Q; N Qx # 0 if and only if
Q;NQx # 0. To this decomposition, we associate a partition of unity, consisting
of nonnegative functions {¢;};en such that cp,-|(Q;)c =0, X pj(x) = 1 for all
z € RV \ K;, and

|D*0;(x)| < Ak(l;)™™ for all z € RY,j € N,k € (NU {0})", (3.8)

for some constant A > 0 depending only on k. Here, for k = (ky,- -, ky), we
set D* = %---%and k| = k1 + - kn.

We now define the extension operator &,. Set m; = u(B(z;,6l;))~!. Note
that when [; = \/n27 for v € N, then m; < ¢;2"%. Now, for f € L%(K, us),
define

Euf@) = X wi@m; [ fOdu(t) foralls eRV\K;,  (39)

ity l[6~a;11<64;
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where dp > 0 and

I50 = {] eN: Sj < 6260}. (310)

We note that for the usual extension operator, ] = {j € N : s; < 1} is used
instead of I5,. The concrete value 6 is not important; it is enough to choose
sufficiently large number ap so that u:({t : ||t — ;|| < aol;} N K;) is bounded
away from 0. Take f € Cy(K;). For each fixed z € RN \ K;, there are only finite
number of ¢; where p;(z) # 0 so that &, f is well defined and in C*(R" \'K).
Further, by (3.7) and by the definition of I5,, &5, f(z) = 0 if x € Q;,8; > c3(do)
for some c3(dp) which depends on c¢; and &,. We will take c; (which depends
only on the dimension of the Euclidean space) small enough so that Supp &, f
is in the dp-neighborhood of K;. We thus see that &,f € CP(RN \ K;) for
f € Cy(K;), where C°(RY \ K;) is a space of infinitely differentiable bounded
supported functions on RY \ K;. In this case, &, f is uniformly continuous on
RV \ K; and lim,_,,esk; &of () = f(x0), which can be proved in the same way
as in [10] p78, p80. Thus, by defining &5, f(z) = f(z) for z € Kj, it holds that
&, f € Co(RY) for each f € Co(K:). It can be also proved by the general trace
theory (or for this case as in [10] p79) that [,). |V (&5f)(z)[?dz < oo. Noting
that Supp &, f is in the do-neighborhood of K;, we obtain that &,f € D(€) for
each f € Co(K;).

Using &;,, we now show 1) of Proposition 2.6 for the case z Vy € 8.G \ 9,G.

Proposition 3.3 For each z # y € G where z € 8.G \ 8;G, there exists f €
D() such that flz)=1,f(y) =0.

PROOF. As z € 8.G \ 8;G, there is unique K; such that z € K;. Denote
B(z,r) aball in R? centered at z and radius r. We take r, o > 0 small enough so
that U(z,r+08)NG C K; and y ¢ U(z,r+4do). Using Lemma 2.4 3), we see that
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there exists f € Fg, N Co(K;) such that f(z) = 1 and Supp f C U(z,r) N K.
Now using the above extension operator, &,f € D(E), (¢5,f)|k, = f and Supp
fCU(z,r+ o). Thus &, f(z) =1, &,f(y) = 0 and the proof is completed. §

End of the proof of Proposition 2.6

We first complete the proof of 1). When z Vy € G \ G, 1) is clear using
Lemma 2.4 3) and 4). When z and y are both in dG, there are three cases: a)
tVyedG\0G,b)zVy e d.G\ G, c) z,y € 3;GN .G. For the case a)
and b), 1) is proved in Proposition 3.2 and Proposition 3.3 respectively. For the
case c), denote {K;}icr(z) the set of all K; such that z € K;. In the same way as
Proposition 3.2 (using Lemma 3.1 repeatedly), we can construct f € Cy(G) such
that f|x, € Fk, for all i € I(z), Supp f C Uier)K: \ {y} and fly() = 1 for
some small neighbourhood of z. Now we prepare the Whitney decomposition
{Q;} of (Vier)Ki)¢, the associated partition of unity {y;} and define &, f in the
same way as (3.9) using this {Q;}, {¢;} and g = Ticr() pi- For y € Uier) Ki,
we set &,f(y) = f(y). Then, by taking d, small, we can prove &, f € D(£) in
the same way as before so that &, f is the desired function.

We next prove 2). For each compact set L C G, define I, = {i : LNK; # 0}.
Note that §I;, < oo, which is due to Assumption 2.1 2). As each K; is closed,
we can take §)(L) > 0 so that the set of the index of K; which intersects with
{y : d(L,y) < §4(L)} is equal to I, where d is the Euclidean metric. Now, by
the similar way as the proof of 1), there exists f € D(£) so that f|zng = 1.
Now, set M = L\ User,{z € L : f(z) > 1/2}. Then there exists g € C?(R") so
that g|ys = 1 and the support of g isin {z € G : d(L,z) < (L)} \ G. Clearly
g € D(). Define h = 2f + g € D(E). Then, h|y > 1. Thus, k= (hVO) A1l
(which is in D(€) by the Markovian property of F) is the desired function. g
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4 Another framework -d-sets floating on R"-

When we relax Assumption 2.1 and assume Assumption 4.1 instead, then we
can construct local regular Dirichlet forms under a wider class of {K;}},; using
the same technique we have introduced. In this section, we will briefly discuss
it.

Let K; ¢ RN (1 £ i < M; M could be infinite as before) be a closed con-
nected d;-set for some 0 < d; < n. That is, there exists a Borel measure pu;

whose support is K; such that
ca1r® < pi(B(z,7)) < caar® forall z € K, r < cys. (4.1)

Here B(z,r) is a ball of radius r (centered at z) w.r.t. the Euclidean norm and
Ca1,Ca2,Ca.3 are positive constants which may depend on K;. We assume the

following about the location of {K;}},.

Assumption 4.1 There exists & > 0 such that
d(Ki, Uj;e.'Kj) > do fOT all 7 € N,
where d is the Euclidean distance.

Now, take a set of connected components of RY \ UM, K;, say {D;};, so that
G = (UM, K;) U (U;D;) is a connected closed set. This G is the space we will
consider. Set D = U;D; and define p = m|p + X2, pi. By Assumption 4.1,

is a well-defined Borel measure.

Examples 4.2 K is a nested fractal or a Sierpinski carpet, D is a compliment
of the convez hull of K1 and K;,D; = 0 for all j > 2. This example is treated in
[10]. Especially, when K, is the Sierpinski gasket, it is treated also in [7], [14].
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We next give an assumption of the process on each K;.

Assumption 4.3 For each i € N, there is a regular Dirichlet form (Ek,, Fk,)
on L%(K;,du;) such that

d®
fK.' - LZP(%)Z) OO)(K;) (42)

for some d > 2 where the Lipschitz space Lip(d®/2,2,00)(K;) is a set of
f € L?(K;,du;) such that

v(dD)+d;) — () Pdu .
S o [ @~ f0)Pds(@dn) <0 (43)

for some a > 1,¢0 > 0.

Remark 4.4 In [10], it is proved that domains of Dirichlet forms which cor-
respond to Brownian motions on nested fractals and Sierpinski carpets satisfy

Assumption 4.5.
For each D;, we define a Dirichlet integral
1
£,(w,) = 5 [ 1Vu(z)Pds,
where Vu is a distribution function of w on D;.
We now define a bilinear form (£, D(€)) on L3(G, dy) as follows, -

M
E(u,v) = D Ex,(ulki,vlk;) + Y &p,;(ulp,,v|p,;) for all u,v € D(E),

=1 j

DE) = {ueCy(G): ulk, € Fk, Vi, ulp, € W(D;) V j, £ (u,u) < 00}.

Then, it is easy to check Lemma 2.4 in this framework, too. Denote F =
'—~g ~ ~ ~ ~
D(€) “ so that (€,F) is the smallest extension of (£,D(£)). By the similar

argument as in the proof of Theorem 2.5, especially that of Proposition 3.3, we

have the following.



Theorem 4.5 (€, F) is a local reqular Dirichlet form on L%(G, du).

A Appendix

In this appendix, we will briefly summarize nested fractals and Brownian motion
on them introduced by Lindstrgm ([13]). See [1],[9], [11] e.t.c. for details.

Let S = {1,2,---,L} (L < o) and let {¥;};cs be similitude maps on RV i.e.,
Vi(z) = a~ Wz + B, z € RY for some unitary maps U;, @ > 1,5, € RY. We
assume the open set condition for {V;}:eg, i.e., there is a non-empty, bounded
open set V such that {¥;(V)}ies are disjoint and U;esW:(V) C V. As {V¥i}ies
is a family of contraction maps, there exists a unique non-void compact set K
such that K = Uies\Il,'(IA{ ). Before giving the definition of nested fractals, we
give some definition and notation. Let F' be a set of fixed points of ¥;’s, 2 € S
(thus §F = L). z € F is called an essential fixed point if there exist ¢,j (i # j)
and y € F such that ¥;(z) = ¥,(y). Let V; be a set of essential fixed points. Set
Va = Uzevp Uiy, ines Viyi, () where W, ;. =¥, 0---0F; and V, = Up>oVi;
then K = c(V,). For iy,---,i, € S, we call ¥;,..; (Vo) n-cell and ¥;,..; (K) n-
complex. For z,y € RN(z # y), set Hyy = {z € RN : |z — 2| = |z — y|} and
let Uy : RY — RN be a symmetric transformation with fespect to Hy. Now,
K is called a (compact) nested fractal if the following holds in addition to the
above conditions:

1) K is connected, {Vp > 2.

2) ( Nesting ) If (¢4,---,i,) and (ji,- - -,Jjn) are distinct elements of S™, then

‘I’il...iﬂ (k) n ‘I’jl...j,, (K) - ‘I’,’l...,:" (Vb) N \le"'jn (Vo)
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3) ( Symmetry ) For z,y € W, (z # y), Uzy maps n-cells to n-cells, and it maps
any n-cell which contains elements in both sides of Hy, to itself for each n > 0.

From 2), we know that every nested fractal is a finitely ramiﬁéd fractal. It
is known that for each nested fractal, V should be vertices of a regular planar
polygon, a d-dimensional tetrahedron or a d-dimensional simplex (see [1], page
71). Set ¥ = SN and define a continuous surjective map 7 : X — K as n(w) =
liMyr 00 Way-wne (o) Where zo € Vo. Let 0 : ¥ — ¥ be the shift map, i.e.
ow = waws - - - for w = wywy -

The Hausdorff dimension of K is log L /loga (= dy). A Bernoulli méasure i
on K with the property fi(¥;,..., (K)) = L™ is a normalized Hausdorff measure.

We will next sumerize how to construct a Dirichlet form on K. Let {l;,---,1,} -

{lz —y|:z,y € Vo,z #y} (where l; < --- <l,). Set m;=f{y e Vo: |t —y| =
l;} (remark that m; is independent of z € V) and let P = {(p1,---,pr) :
1, pr > 0,50 mipi = 1}. Now, for f,g € (Vo) = {f : V. — R} and
(p1,--,pr) € P, set

Bn(f’g) = Z E O‘Ijll ~in iE) fo‘Ilir"in(y))
~in€S z,yEV0
X (9 0 Wiy () — 90 Wiy, (4)) iy
(where gz, = pi if |t —y| =L, 0 otherwise). Then, it is known that there
exists unique (pi1,---,pr) € P and unique p > 1 such that
p-inf{Bi1(g,9) : 9lv —'u} = By(v,v)  forall vel(Vy). (A
In the following we use this (py,- -, p,) to define the form. For f, gel (V ), set

En(f,9) = p"Ba(f, ).

Using (A.1) and the nesting property of K,

Ealff) S Enpi(f, f) forall fe (Vo)

107



(equality holds when f is harmonic on V,4; \ V). Define
F={fel(V)): lim &a(f,f) < o0}, &(f,g) = lim £n(f,g) forall f,g€ F.
Then, for each f € F, there exists unique P, f € F such that

E(Pnf, Pnf) = Em(flvns Flin), (A.2)

which is called a m-harmonic extension of f|v,,. In order to embed this closed

form to Lz(k , i), we prepare the following.

R(p,q) ' =inf{E(f,f): f e Vi, f(p) = 1,f(q) =0} forall pgeVi, p#q.

This R(p, q) is an effective resistance between p and q. We set R(p,p) = 0 for
each p€ V,.

Proposition A.1 1) R(-,-) is a metric on V,. It can be extended to a metric on
K, (which will be denoted by the same symbol R ) and it gives the same topology

on K as the one from Euclidean metric.
2) Forp # q € Vi, R(p,q) = sup{If(p) — f(QI/E(f, f) : f € F,f(0) # f(2)}-

Note that p > 1 is important for R(,-) to be a metric on K. In fact, we have a
stronger result on nested fractals. Defining d,, = logtx/loga (tx = pL), which
is called a walk dimension, we have R(p,q) < [p — q|*~% (| - | is a Euclidean
metric, f(z) < g(z) means f(z)/g(x) are bounded from above and below by
some positive constants). From 2), we have |f(p) — f(¢)|?> < R(p,q)E(f, f) for
f € F,p,q € V.. Therefore f € F can be extended continuously to K. By this,
we can regard F C C(K,R) C L(K, ji).

Theorem A.2 (£,F) is a local regular Dirichlet form on L2(K,p) with the

following property.

1) — f@)* < Rp,9)é(f,f)  forall feF,andpge K (A.3)
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E(f,9)=pY E(foligoW,) foral fgeF (A.4)

i€S
Further, for 8 > 0, g(ﬁ) admits a positive symmetric continuous reproducing

kernel.

By the general theory ([2]), there is a one to one correspondence between

a local regular Dirichlet form on Lz(k ,ft) and a fi-symmetric diffusion process

on K except some exceptional set of starting points. In this case, thanks to
(A.3), we can prove the Feller property of the process so that the one to one
correspondence holds without any ambiguity of the starting points. We will
denote {Xt}tzo the diffusion process corresponding to (£, F) . Roughly saying,
this process is constructed from the random walk X,, on V,, (whose transition
probability is given by (pi,---,p,)) by multiplying ¢t% to the time (,which is
Xn([t%t])) and taking n — oo. It is known that any self-similar Feller diffusion
process which is invariant under local symmetric transformations on K is a con-
stant time change of this process, so that we call this process Brownian motion
on K.

Define d; = 2logL/logtx which is called a spectral dimension and df =

dw/(dw — df) which is a walk dimension w.r.t. the resistance metric R(-,-).

Theorem A.3 Brownian motion on K has a jointly continuous transition den-

sity (heat kernel) p(z,y) t > 0,z,y € K. Further, there exist d. > 0 and

CA1,*,CA4 Such that
_ R(z,y)% e .
cA.lt da/2 exp(_cA.Z((—tyL)d"’_dc) S p(ta z, y)

: R.’L’, dB d
< castlep(—cay HELZ )

forall0<t<1landalz,yeK.
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Theorem A.4 (/10])

F = Lip(3, 2 00)(K), (A.5)

where the Lipschitz space Lip(dy/2,2,00)(K) is a set of f € L2(K, i) such that

sup oy [ [ |f(@) - f@)Pda@)da) <o (A6)
veNU{0} [lz—ylI<coay

for some ag > 1,¢9 > 0.

Note that it is easy to see that in (A.6), different values on the constants ¢, and
oy give equivalent spaces as long as the former is positive and the latter is greater
than 1. It is known that when d,,/2 ¢ Z, this Lipschitz space corresponds to (a
subspace of) the Besov space Bﬁf}’z(k ) (see [8] Chapter V Proposition 3 and [6]
Proposition 1).

Now assume without loss of generality that ¥,(zx) = a~'z. Then, an un-
bounded nested fractal K is constructed as K = U2 ,0"K. The local regular
Dirichlet form (€, F) on K, whose restriction to K is £, can be constructed on
L2(K, u) (where p is a Bernoulli measure on K so that u|; = fi) as follows. Set
Kas = o!K and define a; : I(K«>) — I(K) by o1f (z) = f(ez) = f o U7} (z)
for all z € K. Set Fx__ = o.F and Eg__(f,9) = p~'E(orf, ong) for all

fr9€ .72',-((‘). It is easy to see
Ekrs (f ket flRarss) < Ex (f.f) forall feFg . (A7)
Define
Dx = {f€Co(K): flgg, € Fro, VLEN, lim &g (flg s flrgs) < oo},
E(f,9) = Jim E¢ . (flky9lke,)  forall fog€Dx.
It is easy to show that (£, Dk) is closable in L?(K, u) by using (A.7). Denote

F = Dgk_ @ so that (£, F) is the smallest extension of (£,Dk). Then we can

define the resistance metric R(-,-) in the same way and we have the following.
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Theorem A.5 (€, F) is a local regular Dirichlet form on L%(K,u) which sat-
isfies (A.3) and the following scaling property,

E(f,9) =Ae(fo¥y,g0 W) fordll f,geF.

Further, for B > 0, €y admits a positive symmetric continuous reproducing

kernel.

We call the corresponding djffusioniprocess Brownié,n motion on K. Theorem
A.3 holds for the heat kernel on K for 0 < t < co. Similarly to Theorem A.4, we
have F = pr(%‘L,Z,oo)(K), where Lip(dy /2,2,00)(K) is a set of f € L2(K, )
such that

swpa@et) [ 1f@)~ fa)Pdu@)du) <00 (A8

veZ

for some ap > 1,¢c9 > 0.
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Figure 1: An example of the fractal field (gasket tiling)
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Figure 2: An example of the fractal field



