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A generalization of the Lieb-Thirring inequality
and its applications

RAEK - B - H%¥ I8 —&& (Kazuya Tachizawa)
Mathematical Institute, Tohoku University

1 Introduction

In 1976 Lieb and Thirring proved the following theorem([9)]).

Theorem 1.1 Letn € N and v be a non-negative number such that

1
> — if =1,
¥y 5 1 n

~v>0 if n=2,
v>0 if n>3.

Suppose that V € L”/2+7(R") andV > 0. Let \; < Ay < --- be the negative eigenvalues
of the Schradinger operator —A — V. Then we have '

>IN < eny / VY g,
i R

Remark

(i) The Lieb-Thirring inequality holds for n = 1 and vy = 1/2 (Weidl[17]).

(ii) The Lieb-Thirring inequality does not hold forn = 1,7 < 1/2orn = 2,7y =0 ([9]).
The Lieb-Thirring inequality has important applications in the study of the stability

of matter or the estimate of the dimension of attractors of nonlinear equations.

In 1995 Egorov-Kondrat’ev provided a generalization of the Lieb-Thirring inequality([3]).

Theorem 1.2 Letn € N, ¢ > -g and vy be a non-negative number such that

v >q if n=1,
v>0 if n=2
v>0 if n>3.
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Suppose V > 0 and VIt 2|2 " dx < co. Let A\; < A2 < --- be the negative ergen-

Rﬂ
values of the Schrodinger operator —A — V. Then we have
Z Al < Cnmq/ VI |z|* 7" dz.
- R
1

Theorem 1.2 is a special case of Egorov-Kondrat’ev’s result in [3]. In fact Egorov and
Kondrat’ev proved a generalization of Theorem 1.2 for an elliptic operator of order 2m.
In this paper we give a generalization of Egorov-Kondrat’ev’s result for certain degen-
erate elliptic partial differential operator, for which the rate of degeneracy is regulated
by the weight w € Ag‘.

First we recall the definition of A,-weights. By a cube in R™ we mean a cube which
sides are parallel to coordinate axes. A locally integrable function w on R™ and w >

0 a.e. is an Ap-weight for some p € (1,00) if there exists a positive constant C' such that

1 1 ~1/(p-1) )p_l
lQl/Qw(x)dx(lQlwi(x) dz <C

for all cubes Q C R™. We say that w is an A;-weight if there exists a positive constant
C such that

]é_|./c;>w(y) dy < Cw(z) a.e.x € Q

for all cubes @ C R". We write A, for the class of A,-weights.
Next we consider an elliptic partial differential operator of order 2m. For m € IN
and f € C°(R™) let

Lof@) = Y (~1)"D" (aas(z)D*f()),

|a]=|8|=m
where

olel

D= —
(251
a:L‘l M ax%"’

for a = (o,...,an) € (NU{O})",

aos € H(R"), and a.3 = Gga.

In the above definition the space H["(R") denotes the set of all f € L7, (R") such that
Def e L} (R?) for all ja| < m. |
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a(f,9) = Y tap(x)DPf(2)Dg() dz

n
B |a)=8|1=m

for f,g € C°(R™) and || - || be the norm of L?(R™). ‘ ~

We have the following theorem.

Theorem 1.3 Let n > 2m,q > n/(2m) and v > 0. We assume that there exists a
w € Ay such that

1) (Lof N2 [ wie) 3 ID°f(@) ds

" |a|=m

for all f € C§°(R™). Suppose that u is a non-negative Zocally integrable function on R™

which satisfies uw™? € Ay and

1/q
(2) QP < ¢y / wdz (/ —u—dx)
Q Q Wi

for all cubes @ C R™, where c; is a positive constant not depending on Q. For a

non-negative measurable function V on R" we assume that

(3) / varr L gz < co.
n wd

Let H be the completion of CC(R™) with respect to the norm

11l = {a(£, £) + LFIIP}2.

Then we have the following.
(i) There exists a unique self-adjoint operator L in L?*(R™) with domain D C H such
that

(Lf.9)=alfo)- [ Vigds

n

forall f € D and g € H.
(11) The negative spectrum of L is discrete.

(111) There exists a positive constant ¢ such that

| 1Y gty %
(4) > Il Sc/nV — dz,

i R

where {\;} is the set of all negative eigenvalues of L and c does not depend on V.
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Hemark

(i) Let Lo = —A,m = 1,w = 1, and u = |z|**~". Then we have the Egorov-Kondrat’ev

theorem for n > 3.

(ii) If u =1 and ¢ = n/(2m), then (2) is trivial by the Holder inequality.

Next we consider the lower dimensional cases. First we recall the definition of dyadic
cubes. For j € Z and k € Z™ the cube

Q={(21,...,2n) : ki <Pz <k;+1, i=1,...,n}

is called a dyadic cube. Let Q be the set of all dyadic cubes in R™. For each Q € Q
there is a unique Q' € Q such that Q@ C Q' and the side-length of Q' is the double of
that of Q. We call @’ the parent of Q) in this paper.

We have the following theorem.

Theorem 1.4 Let n < 2m,q > n/(2m),y > 0 and ¢+ > 1. We assume that there

exists a w € Ay such that

(5) (Lof 1) 2 [ wi@) 3 D (@) de

" laj=m

for all f € C§°(R™). We assume that

(6) /wdx§22m/wda:
! Q

for all dyadic cubes Q and its parent Q. Suppose that u is a non-negative locally

integrable function on R"™ which satisfies uw™? € Aqy, and

1/q
(7) |QI2m/n+1 S Cl/ wdzx (/ -u_dx)
Q Qw?

for all cubes Q@ C R", where c; s a positive constant not depending on Q). For a

non-negatie measurable function V on R™ we assume that

(8) / verr L gz < oo
n wq?
Let H be the completion of C5°(R™) with respect to the norm

1£llw = {alf, £) + IFIP}2
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Then we have the following.
(i) There ezists a unique self-adjoint operator L in L*(R™) with domain D C H such
that |

(Lf,g)=al(f,9)— | VSgdz

Rn
for all f € D and g € 'H.
(i1) The negative spectrum of L is discrete.

(7ii) There exists a positive constant ¢ such that

() SIMP < / yar Y gy

n wq
i

where {\;} 1s the set of all negative eigenvalues of L and c does not depend on V.
Remark

(i) Let Ly = —A,m = 1,w = 1, and u = |z|*¢~". Then we have the Egorov-Kondrat’ev

theorem for n = 1 or 2.

(ii) Since w € As, there exists a positive constant ¢ such that

/wd:cgc/wda:
/ Q

for all dyadic cubes @ and its parent @’ (c.f. Prop.3.1 (iv) in Section 3). Hence

the condition (6) is satisfied if m is sufficiently large.

In the proofs of Theorems 1.3 and 1.4 we use Meyer’s wavelet basis.

2 Wavelets

First we recall the definition of Meyer’s wavelet basis. Let § be a function which

satisfies the following condition.
e 0 is an even function in C§*(R).
o 0<0(¢) <1andsuppf C [—4n/3,4w/3] .

o (&) =1forall £ € [-2n/3,21/3] .
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o 9(6)2+0(2r—¢€)*=1forall{ €0,27] .
We define a function ¢ € L?*(R) by
D) = {6(¢/2)" - 6(€)"} /%72,

For integers j, k we set 1; x(z) = 29/%¢(27z — k). Then it turns out that {¥);x};kez is
an orthonormal basis of L2(R)([10]) which we call Meyer’s wavelet basis.

We define n-dimensional Meyer’s wavelet basis as follows. Let ¢ be a function in
L?(R) such that ¢(z) = 6(). Set E = {0,1}"\ {0} and

Pz) = p(z),  ¥'(z) =9(2).
Fore = (e1,... ,én) € E and 2 = (21,... ,Zs) € R" we define
¥ (z) = ¥ (z1) - - P (Zn).
Let A={(c,j,k) : e€E, j€Z, k€ Z"}. For A= (¢,5,k) € A,z € R", set
Pa(z) = 2Y/295(2z — k).

Then {¥x}rea is Meyer's wavelet basis of L*(R™).

3 Weighted inequalities

First we recall some properties of A,-weights which will be used in the following

sections. Let M be the Hardy-Littlewood maximal operator, that is,

M()a) = sup = / £l dy,

e @l

where the supremum is taken over all cubes @ which contain z.
Proposition 3.1

(i) Let 1 < p < 0o and w be a non-negative locally integrable function on R". Then
M is bounded on LP(w) if and only if w € Ap.

(i) Let 1 < p < oo and w € Ay,. Then there exists a q € (1,p) such that w € Ag.
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(ili) Let 0 <7 <1 and f be a locally integrable function on R™ such that M(f)(z) <
oo a.e.. Then (M(f))" € A;.

(iv) Let 1 <p < oo and w € Ap. Then there exists a positive constant ¢ such that

/ wdzgc/wda:
2Q Q

for all cubes Q € R", whére 2Q) denotes the double of Q.

The proofs of these facts are in [6, Chapter IV] or [15, Chapter V]. Property (iv) is
called the doubling property of A,-weights.
Next we state some weighted inequalities. For & > 0 and f € C°(R™) we define via

inverse Fourier transform
(=2)*2f(z) = F(|€]* F)(=)-
For X\ = (g,7,k) € A, set
Q) ={(z1,...,zn) : ki <Pz, <k +1,i=1,...,n}.

Proposition 3.2 Let a > 0 and w € A;. Then there exist positive constants ¢; and cs
such that
1

 Ava/2 g2 —2a/n 2_ -
@ (AP < QI gy [ wes

<a [ (-8 fPuwds
R"
for all f € C(R™).

This proposition is proved in [16, Prop. 2.2] for the ¢-transform of Frazier-Jawerth.
We can prove Proposition 3.2 by Proposition 2.2 in [16] by similar arguments in [5,
p.72]. In our case we need the boundedness property of an almost orthogonal matrix
on weighted spaces. This property is proved by the vector valued weighted inequality

for maximal operators in [1] and similar arguments in [4, p.54].

4 Outline of the proof of Theorem 1.3

We shall prove Theorem 1.3 for the case v = 0. The general case is proved by this
special case. The detail of the proof is in [16]. By (ii) of Proposition 3.1 there exists a
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constant s such that 1 < s < g and uw™ € A,,. Let v(z) = (M(V*)(z))Y°. By the

properties of the maximal operator we have V(z) < v(z) a.e.. By (i) of Proposition 3.1

s\q/s q
/ (S}-)qudz= &Zq—)——udxgcl/ (g) udxr < oo.
Rﬂ Rn n

Furthermore v is an A;-weight by (iii) of Proposition 3.1.

we get

Now we fix a § > 0 and set
I={)leA: / v(z)dz > 6|Q()\)|‘2’"/"/ w(z) dz}.
QM) Q)
Lemma 4.1 7T is a finite set.

For f € C§°(R") we have

1
2 2 2
/Ifl de5/|f| vdz <y _|(f, )l ————IQ(A)lmevdx,

A€A
where we used Proposition 3.2 and the fact v € A; C A2. The last quantity is bounded
by

, 1 2 1
e2 ) |(f, )] QM| /vadx MR [4]eY] /Q(A)vd:c

e AT
K , 9 6 ’ 2 )\ —2m/’n;
<o }Aa](f WI? + 2 ;l(f VIRRNIIT 555 Jowy

< K| fI + cs6 / (~A)™2f (2)Pu(z) da,

wdx

where

1
K = max —— vdzx
xez |Q(A)| Q)

and we used Proposition 3.2.

Now we use the following lemma([16, Lemma 3.2]).

Lemma 4.2 Letm € N and w € A;. Then there exists a positive constant ¢ > 0 such

that

| lartrotuea<e [ (3 10°@) () ds

" |al=m

for all f € C§°(R").
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By Lemma 4.2 and the condition (1) we have

[ 1Pvis < eKIff+ e / (3 1D (@) hu(z) do
R" R* 3l |

< K| £l3 + cad(Lof, f)-
We choose § such that ¢4 < 1. Then we have
a(f, f) - - VIf? dz > —cK||£II3
for all f € C°(R"). Hence

b(f,9) = alfg) - /R Vigda

is a lower semi-bounded quadratic form on H.
We can show that b(f, g) is a closed form on H. Since b(f, g) is a closed and lower
semi-bounded quadratic form on H, there exists a unique self-adjoint operator L in

L?(R") with domain D C ‘H such that
(Lf,g) =alf,g) - i Vfgdz

for all f € D and g € H([11, Theorem VIII.15]).

We shall estimate the number of negative eigenvalues of L. Let
F={feD: (f,¥r)=0for all A€ I}
Then the similar arguments as before lead to the estimate
[110v s <cd(tar.s) (FeP).
Hence we get
(Lf,f) >0 (fekF).

Therefore by Theorem 12 in [8, Chap.1] the negative spectrum of L is discrete. Fur-

thermore we have
N < codim F' = {7,

where N is the number of negative eigenvalues of L.
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We shall estimate §Z. The following arguments are similar to those in [13, p.201].
Let

B={QeQ: /Qv(x)d:rz6|Q|_2m/"/o'w(x)dx}.

Let B be the set of all Q € B which satisfy the following condition: there exists a half
size dyadic sub-cube Q C Q such that Q does not contain any dyadic cubes in B.

Then we have the following lemma.
Lemma 4.3 §B < 24B.

Lemma 4.3 is proved in Rochberg and Taibleson’s paper([14, Lemma 1]). Let Q € B
and Q be a dyadic cube which satisfies the condition in the definition of B. Then we

1< C5/Q (%)qudx.

For each Q € B we choose a  as above. Then these {Q} are disjoint. Therefore we

get

get

1B = #{Q} SZCs/Q(%)qudx
Q
Scsfn (%)q‘udx SCs/n (}:—)qud:v.

NSﬁI=(2"—1)ﬁB$C7/ (Y—)qudz.

w

Hence we conclude

Therefore we proved Theorem 1.3 for the case v = 0.

5 Outline of the proof of Theorem 1.4

By (ii) of Proposition 3.1 there exists a constant s such that 1 < s < ¢+~ and
ww™? € A(giyys- Let v(z) = (M(V*)(z))"/°. Then we have V(z) < v(z) a.e.. By (i) of

Proposition 3.1 we get

/ v L dr = M(Vs)(qh)/,’i dz < 01/ verr L gz < 0.
n wiq R" w? m wi

Furthermore v is an A;-weight by (iii) of Proposition 3.1. By Proposition 3.2 and

Lemma 4.2 we have the following lemmata.
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Lemma 5.1 There exists a positive constant o such that

@ S RWI(f w)F  [ wdz< [ (3 1D/ Phwda

= QNI Joo el

for all f € C°(R™).

Lemma 5.2 There ezists a positive constant 3 such that
fPvde < pY ()P [ wde
/ ,\EZA Q ()\)l Q)

for all f € C(R™).
Now we set

T-per:8 [ ov@)ds> aIQ(A)I'm/"/ w(z) dz}.

QM) QM)

Then the following lemma holds.

Lemma 5.3 There exists a ¢ > 0 such that
¥
ez QM| QM) n wa
For f € C§°(R™) we have
1 .
fvaes [1Pods <8y 107 w0P [ v
/ 2N iG0 fo

where we used Lemma 5.2. The last quantity is bounded by

1
d ’ d
PL G fy 8 L i [,
K 9 2 A —2m/n__* 1 d
<B é;l(f,wx)l +a§;|(f’¢*)' QM QM) Q(A)w i
<1+ [ (X ID°/Phwds

|a|=m

—maxL/ vdz
xeZ |Q(N)] QM)

where

and we used Lemma 5.1.
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By the condition (5) we have

/R,. |fI*V dz < BK||fIIz + (Lof, f)-

Hence we have

olf,$) = [ Vifids = -pKIlfIE

for all f € C§°(R"). Therefore

b(f,9) = a(f, 9) - / Vigds

n

is a lower semi-bounded quadratic form on H. We can show that b(f,g) is a closed
form on H. Since b(f,g) is a closed and lower semi-bounded quadratic form on H,

there exists a unique self-adjoint operator L in L?(R") with domain D C H such that

(Lf,9) = alf,g) - / Vigds

n

for all f € D and g € H([11, Theorem VIIIL.15)).
We set

M= inf (L,
' fevl,ufn=1( £4)

and

/\k= (Lf1f)

sup inf
P1,--- u¢k—1€L2 feD'"f"=11f-L¢lt WPr—1

for k € N,k > 2. There are two cases.

(i) A1 < A2 <--- are eigenvalues of L.

(ii) A\ < --+ < Ak, are eigenvalues of L. Furthermore we have Agy41 = Mgtz = - -

which value is the infimum of the essential spectrum of L.
The following lemma holds.

Lemma 5.4 For A > 0 we set

Ta={r €A : alQO)| -2/ /Q W= ARl /Q  vde<—4)

Then I, is a finite set.



Let {4 }2, be the non-decreasing rearrangement of

—1-2m/n dr — A -1 o
{aIQ(A)I /Q | wdz = 1RO /Q m”d”}m

Then

pr < pg < -
and

o pe =0
When

e = afQU e [

QM)

wdz — BN / vds,

QM)

we set P = ¥). Then we have

A > inf (L, )

fGDl“fuzlff'Lwlv 1wk—1

(o]

> inf N2 11s
T DI L s S I %) hs

zﬂlk sup Z|f¢3| >u'ka

FeD N fll=1,f Ly, k1 =

where we used the fact px < 0.

Since
li =0
kirlgo Kk ’

the negative spectrum of L is discrete. By these inequalities we have

Y < Z |k

k, <0

)\ -1 dr — A -1-2m/n d )7
z;(mcz( I [, vde = ateer e [ e

<> (sl / Wvdx)”

A€l

u u
< c/ vIt—dz < c/ VIt — dr,
n w9 n wi

where we used Lemma, 5.3.

127
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6 The Sobolev-Lieb-Thirring inequality

As an application of Theorem 1.1 Lieb and Thirring proved the following inequality.

Theorem 6.1 Supposen € N, ¢; € H'(R") (i = 1,...,N), and that {$:}iL, is an
orthonormal family in L2(R™). Then we have

/ 1+2/"d$ < %Z/ |Vl 2dz,

where

Z |pi(z

This inequality has important applications such as the stability of matter or the
estimates of the dimension of attractors of nonlinear equations.

A generalization of the Sobolev-Lieb-Thirring inequality is known([7]).

Theorem 6.2 Let n,m € N and ¢; € H*(R") (i = 1,...,N). Suppose that {$:} N,

is an orthonormal family in L2(R™). Then we have
N
/ p1+2m/nd$ < CZ/ Z |Da¢i|2d$,
R i=1 la|=m

where

N
= Z |6s()|%.

By Theorem 1.3 we have the following generalization of Theorem 6.2.

Theorem 6.3 Let m,n € N, and n > 2m. Let w be a weight in A2 N Hi (R") such
that w™™/™ € A, /(am). Suppose that {¢:}L, is an orthonormal family in L*(R™) such
that

Z/ { Z | D% ()| }w(a:) dz < oo.
=1 |aj=m
Then we have

N
/np(x)1+2m/nw(:c) dxr < cZ/n { Z |D°‘¢,~($)|2} w(z) dz,

|le|=m
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N
p@) = |¢i(z)]?
: =1
and c is a positive constant which does not depend on {¢;}Y ;.
Example of weights Let a be a number satisfying m — n/2 < a < 2m. Then
w(z) = Ja]°
is an example of weights which satisfy the conditions of Theorem 6.3.
We have a similar theorem in low dimensional cases.

Theorem 6.4 Let m,n € N, and n < 2m. Let w be a weight in Ay N H (R™) such

that w="/(2m) ¢ A1+n/(2m) and
/ wdr < 22'"/ wdzx
! ) Q

for all dyadic cubes Q, Q" such that Q' is the parent of Q. Suppose that {p:}Y, is an
orthonormal family in L2(R™) such that |

Z_/Rn Z | D¢y ()| w(x) dx < oo.

|a)|=m

Then we have

where
| N
p(z) =) o)
i=1
and c is o positive constant which does not depend on {¢;} .

The proofs of these theorems will appear elsewhere.
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