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1. Introduction
Let @ C R™ (n > 2) be a domain bounded by two parallel planes, i.e.,
Q‘= {z=(2,z,) eR* |2’ €eR*}, 0<z,<1}.
The motion of the nonstationary Stokes flow in €2 is formulated by the following initial
boundary value problem of the Stokes equation:

u,—Au+Vp=0, V-u=0 in (0,00) x Q,
(1.1) Ulz,=0=0, ul;,=1=0,
u(0, z) = a(z) in Q,
where u = u(t,z) = (w(t,z), - ,u,(t,z)) and p = p(t,z) denote the unknown velocity
vector and the unknown pressure at point (¢,z) € [0, 00) x , respectively, while a = a(z) =
(a1(z), -+ ,an(x)) denotes a given initial velocity at point z € 2. In order to prove that
the nonstationary problem (1.1) generates an analytic semigroup in

POQ)={uelPQ)*|V-u=0, v-ulspg =0},
where v is the unit outer normal to 92, we consider the corresponding resolvent problem:

{ A=Au+Vp=f V-u=0 inQ,

1.2
(12) ul;,—0=0, ul;,-; =0,
where the resolvent parameter ) is contained in the union of the sector

Te={zeC\{0}||argz| < —¢}, 0<e<g
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and the sufficiently small neighborhood of zero. :

So many results of the mathematical analysis for the imcompressible viscous ﬂuld
in the whole space and in the exterior domain have been obtained. The cases where
domains with noncompact boundaries have been studied in recent years as well. However,
the special attention has given to problems in domains having cylindrical and conical
outlets to infinity, and the case where the domain is bounded by two parallel planes has
been less studied. Nazarov and Pileckas [6] proved the weak solvability of the Stokes and
Navier-Stokes problems in the “layer-like” domain in weighted L2-framework. Moreover,
in [7] they obtained weighted a priori estimates and the asymptotic representation of the
solution to the Stokes problem. On the other hand, we analysis the resolvent problem (1.2)
by employing the Farwig and Sohr’s idea [2] based on the Fourier multiplier theorem (cf.
[4]) and the Agmon-Douglis-Nirenberg lemma (cf. [1]). Although A = 0 does not generally
belong to the resolvent set of the Stokes operator on an unbounded domain, using the
boundedness of 2 with respect to z, we can prove that A = 0 is also in the resolvent
set. This is one of the outstanding features of our result. Qur main result is the following
theorem.

Theorem 1.1.* Let 1 <p < oo and 0 < € < 7/2. Then there ezrists o > 0 such that for
any A € Z.U{z€C ||z < a} and any £ € LP(Q)" there ezists a unique u € W2(Q)"
which together with some p € WI(Q) solve (1.2); p is unique up to an additive constant.
Moreover, there holds the following resolvent estimate:

1
(1.3)  llullze@ + Az Vullze@) + [ullwze) + I Vpllze@) < ConellfllLei)-

Here, WI}(Q) {7 e L}, (Q) | 3Im; € CF(Q) s.t. V(7 — 7)o@y — 0}

Now, applying the Helmholtz projection P : LP(Q)" — L2() to (1.2), we see that
(1.2) is equivalent to (A + A)u = f for u € D(A). Here, A denotes the Stokes operator
defined by A = —PA with domain D(A) = {u € W2(Q)" N LE(Q) | ulspn = 0}. Since by
(1.3) there holds [|(A + A)~ Y| zz@)) < Cpm,elA™", the Stokes operator on §2 generates an
analytic semigroup {e~*4};>0, and by employing the Sobolev’s embedding and interpolation
argument we obtain the following theorem.

Theorem 1.2. The Stokes operator on Q with Dirichlet zero boundary condition generates
an analytic semigroup {e *4};>¢ in L2(Q) and there holds the following LP — L9 estimate:

.1_)_£

(1.4) |V¥e~*4a]| Lq(q) < C'p,q,ke_‘s""’tt_%(’%_q 2||allzr)y, 1<p<Lg<oo

for any a € L2(Q2). Here, k > 0 is an integer.

2. Analysis of the case where A € £, and |A\| > )y >0

*This theorem is already announced in my master’s thesis of Graduate School of Science
and Engineering, Waseda University under Professor Yoshihiro Shibata’s instruction.
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In this section, we shall construct the solutions to (1.2) in the case where the resolvent
parameter ) belongs to X, and satisfies |A| > Ag. Here, A is a fixed positive number.

2.1. Construction of solutions in the whole space and their LP-estimates

First, we introduce the notion of an even and odd extension of a given function f : 2 — R.

Definition 2.1. Let f: Q — R be a function. Then the even extension f¢ is defined by

1=-@(2—z,))f(2',2—2,) zn>1,
(@) =3 f(@,za) 0<z, <1,
(p(_xﬂ)f(zl) _xn) T, < O,

where ¢ € C*(R) is a cut-off function such that ¢(z,) = 1 for z, < 1/3 and ¢(z,) = 0
for z,, > 2/3. And the odd even extension f° is defined by

—1-p(2-z,))f(z',2—2z,) zon>1,
fo(z) = f(xl, xn) 0<z, <1,
—(p(—il'n)f(.'l!’, —xn) I, < 0.

Now, let us put F = (f¢,--- , f¢_,, f2) and consider the following problem:
(2.1) A-AU+VP=F, V-U=0 inR".

Applying the Fourier transform, we can obtain the representaions of the solutions to (2.1):

22) U = 71 [POEHO.- i gflz_l(e),f::(s))] @),
(23 B(o) =5 |3 (e + lf—,';f:(a] (@),

where P(£) = (Pik(€))1<;kn Pik(€) = i — &€k /I€[*. To estimate U and @, we apply the
following proposition, which is called Fourier multiplier theorem (cf. [4]).

Proposition 2.1. Let 1 < p < oo and letk : R*\ {0} — C be a C™-function which satisfies
the multiplier condition

|62k(6)| < Cal€] ™™, Va, |a| <n, VE€R™\ {0}

with some constant C,. Then there ezists a constant C, independent of Cy such that

|7 kceya(o)

LP(R™) <G (maxca) l|ull Lomn), Yu € LP(R").

lal<n
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Since it is easy to see that

Pir(§) ||t :
°‘ < Cre——, Vie X, VEeR*\ {0}, j,k=1,---,n,
EXTIeR] = C P+ e CeRN{O},

Ejl = C°|€|—|a|7 Vf € Rn\{o}» j=LL---,mn

for any multi-index a, applying the Fourier multiplier theorem we obtain the estimate
1
(24) AUl zo@ny + [AIZ|VU | oq@n) + | V?Ul|oq@ny + [V@| o (@r) < Cpmsellfllocey

for any A € X.. Here, the constant C, . depends only on p, n and €.

Remark 2.1. If we use the zero extension instead of F, we can construct U and &
satisfying (2.1) and the estimate (2.4). But by the following reasons we adopt F as an
extension of f. From (2.2), the n-th component of U(¢’,0) is represented as

* 612 *° —iTnbn FOf ¢!
«,W/ S m )

€i&n o —iznén fe(g!
Z/m ()‘+ |€|2)|€[2/ fj (€:$n)d$nd£n-

Calculating the integrals with respect to &, by the residue theorem, the terms which do
not appear A~! are canceled by the definition of the extension and we obtain

0.(€1,0
=T [P pa) € an) A -

2

A A?
~ —Azp, _ ‘% _—Bx, _ —A(2—z,) ‘2 —B(2-z,)
+/\/§ f,,({ y Zn) [Ae B e Ae + B e ] dz,

On(€,0) = [

2 —DZ — — A2
Z e Bon _ pe—A(2—zn) e BC@-=n)| 4o
B ¢ € + B T

i = [3 £ —Az —~Bz, —-A(2—z —B(2—z
+5 2 /13(1 — @(@a)) (€, 2n) g6 — eI 4 gie7ACTE) — gie~BEmm)] 4g,
=173
i n—1 .1 y —Az —Bzr —A(2—z,) —B(2-2zn)
‘)‘“E/z fi(€,zn) [fje n—geT T e ~ —¢e "]d:v,,
j=1"3

where A = [¢/|, B = /A +|¢'|%. Since the range of integrations are 1/3 < z, < 2/3 or
2/3 < z, < 1, it is easy to see that the insides of |- - - | satisfy the assumption of Proposition
2.1. Hence taking the LP-norm over R*! to the both sides and applying the Minkowski’s
inequality and the Holder’s inequality, we obtain the following estimate:

(2.5) 10, 0)lzomn-1) < Cpmepol Al Ifllzo@), A€ Zey [Al = Do
Employing the same argument we also obtain the following estimate:

(2.6) NUn(, DlLe@n-1) < Comerol Al Ifllr@y, A€ Ee, Al 2 o



164

If we use the zero extension, we can only obtain ||Us(:,a)|lzewn-1) < C||fl|zr(n), where
a = 0,1. This is the reason why we adopt F as an extension of f in (2.1). Moreover, we
can prove the following estimate similarly:

(2.7) < Gonenollfllie@), AE€Ze, |Al 2 Ao, a=0,1.

Lp(mn—l)

2.2. Construction of v and 7 satisfying (2.8) and their LP-estimates

Since U may not satisfy the Dirichlet zero boundary condition, in this subsection we shall
consider the problem to revise the boundary condition. Settingu=U+vand p =+,
the problem (1.2) is reduced to the following problem for v and =

{ A=A)Wv+Vr=0, V-v=0 in Q,

vlz,.=0 = —Ulzn=0a v|1n=1 = _Ulz,.=1a

(2.8)

where A € Z,, |A| 2 Ao

In what follows, we construct the solutions to (2.8) and estimate them by employing
Farwig and Sohr’s method. To be more precise, applying the Fourier transform with respect
to z’, we transform (2.8) into boundary value problems of ordinary differential equations.
Then by applying the Fourier multiplier theorem and the Agmon-Douglis-Nirenberg lemma
to the representations of their solutions, we will obtain the LP-estimates of the solutions to
(2.8). Throughout this subsection, we use the notations A = |¢'|, B = /A + [¢'|2.

2.2.1. Construction of v, satisfying (2.8) and its LP-estimate

First of all, we shall eliminate the pressure 7. Since V - v = 0, applying the divergence to
the first equation of (2.8) we have

(2.9) ' An = 0.

Hence applying the Laplacian to the n-th component of the first equation of (2.8), we have
A(A—A)v, = 0. Applying the Fourier transform with respect to ', we obtain the ordinary
differential equation (82 — A?)(62 — B?)dn(), &', z,) = 0. By the boundary condition of
(2.8), two boundary conditions ¥ |z,=0 = ~Up|zn=0 and Bp|g,=1 = —Unlz,=1 are obtained.
Two more boundary conditions are obtained from the divergence free condition of v. Since
—1; is equal tolf],— on OF, by applying the Fourier transform with respect to =’ we have
Onln|z,=0 = ;‘;11 i{,fljlz,‘:(, and 0,0 |z,=1 = ;‘;11 z'{,-()',-lzn:l. Therefore, we construct v,
satisfying the following boundary value problem of the ordinary differential equation:

(02 — A%)(82 — B?)1a(A,€,2,) =0 0<z,<1, AEZ, |A2AX
(210) ﬁnlz..:O = .?l’ 0n|::,.=1 = 92,

6nﬁn|z..=0 = hl’ anﬁnlz..=l = h2,
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where g1 = ~Unlz,=0, §2 = —Unlan=t, 1 = 552} 60 lanm0 and by = 7371 i&0j 1201
We look for the solution to (2.10) in the form of 9,(\, &', T,) = a;e=4(3) 4 goe=4%» 4

aze”B1-2n) 4 qe~B*, By the boundary condition, (a1, as, a3, a,) satisfies
ay 7)) (e=4 1 e B 1
as g2 1 e4 1 e~ B
L =|%"], where L= ~ -
as| = | B AeA _A BeB _B

as hs A —Ae 4 B —BeB
Concerning the Lopatmskl matrlx L, we have the followmg proposmon
Proposition 2.2. Let A € C \ (o0, 0] and§' #0. Then det L # 0.

Proof. If we assume det L = 0 for some A € C\ (—o0,0] and £’ # 0, there ex1sts (a b, c, d) #
0 such that v(z,) = ae=4(~2n) 4 be~A4%n 4 ce=B(-2n) | de~B2n gatisfies

{ (82 — A%)(82 — B?)u(z,) = 0<z,<1,

v|$n=a = a‘nlen=a = 0 a = O, 1

Now we multiply the equation by v(z,) and integrate over the interval [0,1]. Integrating
by parts and taking account of the boundary condition, we have

O+ EPIER [ o) Pz + (26 P) [ |2 (20)

When Re A > 0, taking the real part of the both sides we see v = 0. On the other hand,
when Im A\ # 0, taking the imaginary part of the both sides we also see v = 0. This is
contradictory to (a,b,¢,d) #0. 0O

Hence if A € C\ (—o00,0] and &' # 0, then the solution to (2.10) is represented as
(2.11)

2
dzn dz, = 0.

6 2 (.’L‘n)

()‘ g/ z ) _ i {f/jle_A(l_z") n «Z/er_Az" n Izjae_B(l_z") n Lj4e‘B“" } gj
" det L det L det L det L
.1=1 - - ~
N Z L2+J e —A(l—z,) L2+j'2e—A:c,. L2+j,36_B(1—x") L2+j,46_Bz" .
ot det L det L det L det L I

The results of calculating the determinant of L and its cofactors are as follows:

det L = —(1— e 24)(1 — e 2B)(A2 + B?) + 2AB(1 + e724)(1 + e72B) — 8ABe “e B,
Ly, = (AB + B%)e 4 — 2ABe 2 4 (AB — B?)e 4e 2B,

Li; = AB — B? + (AB + B?)e 2B — 2ABe 4B,

L3 = —2ABe 4 + (A? + AB)e B + (AB — A?)e ?4e 7B,

Ly =AB — A2 4+ (A2 4+ AB)e 24 — 2ABe 4B,

Ly = AB — B + (AB + B?)e 2B — 24Be4¢™ B,

Ly = (AB + B%e 4 — 2ABe™? 4 (AB — B?)e%e™ 2,

Lys = AB — A% 4+ (A2 + AB)e A — 2ABe~4e™ 5B,

Ly = —2ABe 4 + (A2 4+ AB)e™8 + (AB — A%)e~24e7 B,



166

L3 = (A+ B)e 4 —2Be B — (A - B)e 4e2B,
i/32 =A-B- (A + B)e_2B + ZBC-AC—B,

L33 = —2Ae ™ + (A+ B)e B + (A — B)e~?4¢7 5,
L3s=—A+ B~ (A+ B)e 24 + 24e~4e5,

Ly =-A+ B+ (A+ B)e™?8 —2Be e B,

Ly =—(A+ B)e +2Be B 4 (A - B)e 4e28,
Lig=A—-B+(A+ B)e 24 — 24e e B,

L4y =2Ae 24— (A+ B)e B — (A— B)e?4e7B.

Now, we classify the problem into three cases according to the largeness of |A| and |¢/|
as mentioned below. We give the following two lemmas before it.

Lemma 2.1. The following estimates are valid.

(2.12) A+ = c(IN+1€1),  VAEE, V& eR™,
(2.13) Re/A+ (€2 > (M +1€]), VAeZ, V& R,

where ¢, = sin(e/2), ¢, = (1/2)"*sin(e/2).

Lemma 2.2. Let £ € R anda > 0 be constants. Then the following estimates are valid.
o2 1¢'e] < Carle'tt~*", Ve, V€' € R*1\ {0},
|8geH| < Co|€'|7¥1e7 8K, Va!, V&' e R*1\ {0}.

[Calssification]

Case 1. The case where )\ and ¢’ satisfy the following conditions; |[A| > a, || < Ta.
Here, a > 0 is arbitrary and r, > 0 is a sufficiently small constant depends only on o and
€.

If we put

(A, B) = ¢*(A)(1 — e72B)(A? + B?) + 4Be e 8 — B(1 + e74)(1 + e72B)
where
1
(2.14) g*(A) = /0 e 449 VkeR,

then det L = —2Al;(A, B). Now, we assume A < 1. The assumption A < 1 yields
g%(A) > e7?, and the assumption |A| > o and (2.13) yield |1 — e~28| > 2c’,a%e‘2°3°‘§. So
we have

, 1 8
> 2 -2 1 —2c¢a} _ ] - — .
I S
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Hence if we take |B| large enough such as 1/|B|? < 1/3 and 8/|B| < e“2c;a§e“2°'=°‘i/3,
then we obtain |[;(A, B)| > e‘2c’€a%e‘2c'="‘i |B|%. Hence if we put

4e2+2c 0l 1
Mo, = MAX (\/g, 26—.) , d:r,e = CJ‘L

cai e2+2cial’
then we obtain
(2.15) ll.(4, B)| > d, .|B|?, |Bl > fae, 0SAL1, AEZ, A >a.

Next, we consider the case where |B| < o,. We shall prove that there exists 0 < r,, <1
such that

(2.16) L(A,B)#0, 0<A<7,,, |B|<tlae, ReB>cal.

Since [l;(A, B) is the continuous function with respect to A and B, and the set { B €
C | ReB > ca?, |B| < o, } is compact, to prove (2.16) it is sufficient to prove

(2.17) 1(0,B) #0,  |B| < fiae, ReB > dat.
To prove (2.17), we consider the problem obtained by taking the limit A — 0 for (2.10):

282 — BPu(t)=0 0<t<1, |B|< ptae, ReB>cas,
(2.18) u(0) = g1, u(l) =g,
'U,’(O) = hl, U’(l) = h2v

The solution to (2.18) is written as u(t) = a;+ast+aze™ B+ a4e 7B~ with some constants
ai, ag, a3 and a4. By the boundary condition, (a;, as, as, a,) satisfies

a) g1 10 1 e B
as % 11 eB 1
— h —
Kl h|w P K=l 1 _B BesB
aa hy 01 —BeB B

By an argument similar to those in the proof of Proposition 2.2, we can prove the uniqueness
of the solution to (2.18) under the assumption Re B > cLa. Hence we see det K # 0. On
the other hand, calculating det K directly we see det K = —BI;(0, B). Since B # 0, we
obtain 1,(0, B) # 0, which complete the proof of (2.17). Therefore, by (2.15) and (2.16),

we obtain :

(2.19) l11(A, B)| > da (1 + |BJ?), €] € Tae, AEZ,, |A > a.
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In this case, we transform (2.11) into

2
N Liv+Ljz _4- _ —A(1—
/ — J J A(l-z,) Az, A(l-zy)
'Un(’\,€ )xn) .le{ detL € + detL(e € )

f’j3 —B(1-z,) I’ —Bz.. ~
detLE t et LS 9;

Lovjn+ Lovjo —A(1-zn) Loyja Az,
+Z{ detL © * 3L

L2+.13 —B(1-zn) f'2+J'4 —-Bz
—_— Tn i N n h
t 3t L ¢ t et L€ i

+

(2.20)
-A(l—z,,))

— €

We notice that e=4» —e~4(1==n) can be rewritten as e=4*" —e~4(1-%n) = ADy(A, r,,) where
Dy(A,z,) = (1 — 2z,) / ' e~ A6zn+(1-6)(1-zn)} g
0

Each coefficient of §; and h; is represented as follows:

Lu + E12 3 gl(A) - e—2Bgl(A) _ B_l(l +eA—2B_92 4B 2By e—Ae—ZB)
detL 20,(, £)B-2 ’

L12 __A —A(l— ) 1 - e—2B + B—1(2AC—AC_B - AB_I - AB—le—zB)
o — =) = Dy(A n)
dgtL(e ¢ ) 21,(\, €&)B~2 o(A, Zn)
Liz 24 —eB—e e B B-(Ae 24e~B — Ae~B)
detL 2,0\, £)B1 ’
Ly, . 2e e B_1—-¢24 4 B_l(A - A€—2A)

detL 2L (N €)B-1 !

Lyy+ Ly  g'(A)—g'(A)e?B —BY(1+e 4 -2 —2e4e B + 728 + e~ 4e25)
~detL ) A_~2B A 211(/\’16(1)3-23 A A 23) |
Ly , _4 —A(l-zn)y _ € €% —e™"+ B7(24e”" — Ae™" —e e

o — =) = A n)s

dgtL(e € ) 20, (N, &) B2 Do(4, z.)
Lyy 24 B—(1+AB')e -1+ AB™!

detL 21,(\, ¢')B-1 ’

Ly 24 —e B4 ABle 4B ¢ 2e~B _ AB"1e"B

detL 2L,(%, €)B1 !

Lsi+ Ly,  g'(A) +e2Bg'(A) +2eBg'(A) — B7}(1 + e — e72B — e4e72B)
detL (B s ’

L32 —-A —A(l— ) 1 - 26_ e_ + e_ + B_ Ae_ - A

T - ) = Dy(A n)s

YA © ) 21,2, &) B o(4,2n)
Lss _ —2e7Bg}(A) + B 1(2e™4 — e B — e %4e7B)

det L 2\ )BT ’

Ly —2¢9*(A)+ B7}(1—2e 4e B + e24)
detL 20, (A, €")B-1 ’

Lu+Lao _ g'(A)+2e8g'(A) +eBg'(A) + BT (e?2 -1 — e 4 e“e725)
detL 20, (X, &) B-1 ’
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L42

o —A(—zn)y _ € 4 =2e78 +e74e7?B 4 B1(Aem4 — Aem4e?B) '
det L( —Azn _ o—A(l )) = v 20, (A, €)B-1 Do(A, Z,),
Lig  2g%(A) — BY(1 — 2e~4e B 4 e724)
detL 26,(1,€)B ’
L 2¢°(A)+ B (e B +2e724e B — 2e74)
detL 2L (N &)BT -

where g' and g? are defined by (2.14). To estimate these coefficients we use the following
lemma.

Lemma 2.3. Let us assume that A € X, and & € R*! satisfy the assumption of Case 1,
and let k > 0 and a > 0. Then for any multi-index 3’ the following estimates are valid.
08 B7| < CoreAITZI€17#1, [0l e8| < Cpel€| W le 20K,

|02/ *(4)] < Carle'I T, 08 Do(A,z.)| < Col€'| ™), 0< T < 1.

By Lemma 2.2, Lemma 2.3, (2.19) and the Leibniz’s rule, we can easily see
(221)  [OELNE) ] S CrATIEIY,  AE T, N2, ]S Tar
for any multi-index 3. Therefore, by Lemma 2.2, Lemma 2.3, (2.21) and the Leibniz’s

rule, we obtain the following lemma.

Lemma 2.4. Let us assume that A € £, and ¢ € R"! satisfy the assumption of Case 1.
Then for any multi-index 3 each coefficient of §; and h; in (2.20) are estimated as follows:

If/' +E2 1@’ / I
% T,;— <CplleI, o8 mA{ < Cp eI,
’ L / IL ; +1-/ ; 1 ‘ U
< , |ﬂ 4 2+],1 2+45,2 < I3 -8
IL y -1 - —__ '
65d—§§”—§A < Cp A a?—{ Co NI

forj=1,2 and k = 3,4.

Case 2. The case where X and ¢ satisfy the following conditions; |¢'| > a, |¢'|2 < ¢.B2|Al.
Here, a > 0 is arbitrary and (3, < 1 is sufficiently small constant depends only on a.
If we put

BLE) = (1= 4)(1-e7) {1 + (4/ B} +2(4/ B)(1-+e7*4)(L+¢"2%)—8(4/B)e*e~®,

then det L = —B2l,(\, €’). The assumption of Case 2 and Lemma 2.1 yield 1 — ™24 >
1—e 22 |1—e 2| > 1—e~%* and |1+ (A/B)?| > 1—-32. So if we take 3, > 0 small enough
such as B, < 1/v/2, then the leading term of B? is estimated as |1 — e24||1 — e™25||1 +
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(A/B)?| > (1 — e %)(1 — e~%%*)/2 = D,. > 0. Hence we have |l3(),£')| > D, — 1
Therefore, if we take 3, > 0 small enough such as 8, < D, /32, then we obtain

D

3 AET, [z a [ <.

(2.22) l2(A, €1 2

Since there holds D, /32 < 1/v/2, the condition 8, < 1/+/2 is satisfied automatically.
Each coefficient of §; and h; in (2.11) is represented as follows:

L, (1-A/B)e4e™?® —(1+A/B)e™*+2(A/B)e B

detL — 1L(A, € ’
Ly, 1-A/B+2(A/B)e 4B —(1+ A/B)e?B
detL — L(AE) ’
Ly _ {A/B-(A/B)’}e*4e® 4 {(A/B)* + A/B}e™® — 2(A/B)e 4
detL L€ ’
La _ (A/B)?— A/B+2(A/B)e~*e~?B — {(A/B)? + A/B}e24
detL — (A €7 ’
Ly 1-A/B—(1+A/B)e?® +2(A/B)e “e®
detL L) ’
Loy . (1 - A/B)C_Ae_zB + 2(A/B)C_B -_— (1 + A/B)e“A
detL 1, &) ’
Ly A/B—(A/B)?-2(A/B)e~“e B + {A/B + (A/B)*}e~?4
detL 1L,(\, &) ’
L _ {(A/B)? — A/B}e~*4e B + 2(A/B)e 4 — {(A/B)? + A/B}e®
detL — 1L\, &) ’
Ly, (A/B—1)e4e 28 —(14+A/B)e ™ +2¢75
detL 1L,(\,&)B ’
Ly, 2 4eB—-(1+A/B)e?**+A/B-1
detL L(\€&)B ’
Ly _ (1-A/B)e *4eB 4+ 2(A/B)e™* — (1+ A/B)e™B
detL L\ &)B ’
Ly  1-A/B+2(A/B)e4e - (1+ A/B)e™24
detL L,(\&)B ’
Ly 1-A/B+2eB-e*)e?+(A/B—1)e?8
detL L(\€)B ’
Ly (1—-A/B)e4e 26 —2¢"B 4 (1+ A/B)e4
detL 1L,(\,&)B ’
L43 _ -1+ A/B - 2(A/B)€—A€_B + (1 + A/B)e‘“
detL 1,(\,&)B | ’
Ly (A/B—1)e*4e B —2(A/B)e* + (1+ A/B)e™B
detL (), ¢)B -

To estimate these coefficients we use the following lemma.
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Lemma 2.5. Let us assume that A € £, and &' € R™! satisfy the assumption of Case 2,
and let a > 0. Then for any multi-indez ' the following estimates are valid.

02'B7!| < CoreNHE1, |0FA/B| < el

07 B| < ConcBE171, [0feP| < Clpelg'| e E oK.

By Lemma 2.2, Lemma 2.5, (2.22) and the Leibniz’s rule we can easily see |
(223) B8RO <CHIEI,  AeZ, 112 a [EF < B
for any multi-index 3’. Therefore, by Lemma 2.2, Lemma 2.5, (2.23) and the Leibniz’s
rule, we obtain the following lemma.

Lemma 2.6. Let us assume that A € X, and &' € R™™! satisfy the assumption of Case 2.
Then for any multi-indez 3’ each coefficient of g; and h; in (2.11) are estimated as follows:

6‘6,
detL
forj=1,2 and k=1,2,3,4.

Case 3. The case where A and £’ satisfy the following conditions; |A| < a|¢'|?, |¢'| > R,.
Here, a > 0 is arbitrary and R, > 1 is a sufficiently large constant depends only on a.
If we put

/ IL
< Cole| 7, {a”

< Ca A2 711
| < Oy N HE

1
Is(A\ &) = (1 - e?4)(1 — e72%) —4ABd(A, B)?, where d(A, B) = /0 e 104+1-0B} 4g,

then det L = —(A — B)2l3(),¢'). By (2.13) we see |e"2B| < e=%<K'l and |d(A, B)| < e~%'
for some constant d. > 0. And the assumption of Case 3 yields |B| < (1 + a)%|¢'|. So we
have |ls(\, €)| > 1 — 2| — g2l — =20+l _ 4(1 + @) |¢'|2e%€'|. Consequently, if
we take R, > 1 large enough, then we obtain

(224 bOEN23, A€, I <alP, €12 R

In this case, we transform (2.11) into

2
17"()\,6/,:1;“) = E{L_li—_{/_li —A(l-zn) i L (e-—B(l —Zn) _ —A(l—-’vn))

o | detL det L
LJ2 + LJ4 —Az, ZJ'4 —Bz, —Az, ~
(2.25) detL * RS A R £
' L2+J,1 + L2+J 3 _—-A(l—zn) L2+J’.3 —B(1-z,) —A(1-zy)
+Z{ detL T et ¢ )

Loyjo+ Lotja _pe | Lovja, 5 —Azay | 3
» ) Tn » Tn __ Tn h
det L dot L ° ) by
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We notice that e~ B%» —e~4%» gnd e~ B(1-2n) _ g—A(1=2s) cap be rewritten as e~ B%» — ¢~ A%n
(A—B)Dy(A, B, z,,) and e~B(1=2n) — ¢=4(1-2n) = (4 — B)D,(A, B, ,,), respectively, whe

1 1
Dy(A, B, z,) = xn/() e—{A+0(B—A)}znd0, Dy(A,B,z,) = (1 — xn)/ e~ {A+0(B-A)}(1-za) .
0

Each coefficient of §; and fz,- is represented as follows:

Ly+Lys _ (Ad(A,B) — eB)e~4e 2 + e~ + Bd(4, B)

detL I3(A,€') ’

Lis (-BO-20) _ gmA-an)y _ {4770 + A(A + B)d(A, B) — Ae”*}Dy(A, B, zv)
det L~ - l3(\ €) ’
L12 + L14 _ 1-— ABd(A, B)2 b (C—A - Bd(A, B))2

det L N l3(A, €) ’

Lua_(ybre _ g-tony _ (A= A(A+ B)d(A, B)e™ — Ae~4e 5} Dy (4, B, an)
det L° - l3(A,€') :
Ln+Lys  1-(e B+ Ad(A, B))?2 — ABd(A, B)?

detL (), &) ’

__Lﬂ(e-au-z,.) _ e—A(l—xn)) _ {A-2ABd(A, B)e 4 — Ae 24} Dy(A, B, )
det L° N l3(A, €) ’
Ly + Lyy e #eB(e B + Ad(A, B)) — e B + Bd(A, B)

det L N l3(\ &) ’

Loy, (e-Bon — e—Aom) — {Ae~%4¢~B + 2ABd(A, B) — Ae"B}D, (A, B, z,)
det L" O\ €) 4 )

L31 + L33 _ d(A, B)(l - e"“‘e’B)

detL l3(A,€) ’

_£33_(e—3(1—z,.) _ e—A(l—zn)) - _ {e—er—B + 2Ad(A? B) — e_B}D2(Aa B9xn)
det L\ I3, €) ’
L3y + L34 _ (A+ B)d(A, B)2

det L N l3(\ &) ’

L3, {1+ 2Ad(A, B)e 4 — e"?4}D,(A, B, z,,)

(e—Bz,. _ e—Az,.) —

qetL -~ 13(’\;61) ’
Ly + Ly _ (A + B)d(A, B)2

det L - l3(A\,€) ’
_Lﬁ(e—s(l—z..) _ A=z _ {1+ 2A4e"4d(A, B) — e"?4}D,(A, B, z,)
qetL ~ l3(A’ £’) ’
Ly + Lyy _ d(A, B)(1 - e‘Ae‘B)

det L - l3(\, &) ’

Ly (e=Bon — g~fom) = {e=?4e~B — 2Ad(A, B) — e B}D,(A, B, z,,)
det L ' la(,\, {’) ’

To estimate these coefficients we use the following lemma.

Lemma 2.7. Let us assume that A\ € I, and ¢’ € R™™! satisfy the assumption of Case
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and let a > 0. Then for any multi-indez (' the following estimates are valid.

o B| < Cple ', e < Cple e e,
OF d(A, B)| < Cpc|¢/|17e= %4, | |68 Ad(A, B)| < Cp ol
O Bd(A, B)| < Cp [¢'|77, -

0104 ADy(A, B, 3,)| < Cp o|¢/| 17 le % 'ken, £=0,1,2,

8t0% AD,(A, B, z,)| < Cpo|€|1Ble=$E10=2) g0 1,2

By Lemma 2.2, Lemma 2.7, (2.24) and the Leibniz’s rule, we can easily see
(226)  [8L(AE)| < CplEI,  AeS., IN<alEP, €] 2R,

for any multi-index §'. Therefore, by Lemma 2.2, Lemma 2.7, (2.26) and the Leibniz’s rule
we obtain the following lemma.

Lemma 2.8. Let us assume that A € X, and & € R™! satisfy the assumption of Case 3.
Then for any multi-indez o' each coefficient of §; and h; in (2.25) are estimated as follows:

o Lo+ Lipa| o oot o Likra(A = B)| _ —le]
¢ detL S Cor €17, ¢ det L S Carel€17

' Lovik + Lovjksa /—-1-lo’ ' Lyyjp+a(A = B) S
o ) ) < Cy 1-|a/| o J» < , 1H—1—|a’|
¢ det L S Cael] ’ ¢ det L < Gl

forj=1,2andk=1,2.

Now, for the given Ag > 0 and 0 < € < 7/2, we take r > 0 obtained with a = )¢ in Case
1. Let B,/2 > 0 be a number obtained with & = r/2 in Case 2 and we put 8 = ¢.32 /2, and let
R > 1 be a number obtained with o = 2/ in Case 3. Moreover, let ¢y, p,, ¥ € CP(R" 1)
be cut-off functions such that

no [ 1 IEI<T/2, n_[1 <R, o[ 1 E1<1/V2,
O ={o 13 w@={g Gk, vo={g i

Now, we classify the problem into the following two cases (I) and (II) by largeness of |\A[:
(I) The case where |\| > 2R?/8, A€ X,

Using the cut-off functions ¢; and v, we represent v,, as

U = Fg' [01(€)0a (N, €, 2a)] + F5! [(1 — o1 (€)) (g’/\/M) B, g’,x,,)}
7 [0 - @) (1= (£//BIN) ) a0 €, 20)]

= v} + v + ol
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and we estimate each term.

(1) The estimate of v}

Since [£'| < r on supp¢;, we see that A and ¢ satisfy the assumption of Case 1. By
employing the Farwig and Sohr’s method [2] based on the Fourier multiplier theorem and
the Agmon-Douglis-Niremberg lemma, and by (2.4), (2.5) and (2.6), we obtain the following
lemmas.

Lemma 2.9. Let 1 < p < 0o. Let us assume that K : C x R*~! — C satisfies

05 KA, €)| < Carcle™), V€' € R™\ {0}

for any multi-index o’ and that A, &' satisfy the assumption of Case 1 on the support. If we

put
o) = Fa' KM €)emA0-m)g;), o2 = F K (X, €)Do(A, o)),
v = F KM, €)e B0-mg)], ol = FIK (A, €)e P g))

for j = 1,2, then there holds the following estimate
oS Loy + A1V o) + V20559 | o) < Cpmeollflocey
forj=12and¢=1,23,4.
Lemma 2.10. Let 1 < p < 0o. Let us assume that K : C x R*~! — C satisfies
|65 K\, €)| < CwelA 7217, v e R\ {0}

for any multi-indez a and that )\, €' satisfy the assumption of Case 1 on the support. If we

put A .
o) = FRUK (M €)eAl-=0hy], @9 = F7 K (X, €)Do(A, zn)hy),
o) = FUK (A €)e"BU-=np,), o8 = FU[K(A,€)eBenhy)

for j = 1,2, then there holds the following estimate
. 1 . .
IS 2oy + A2 19959 | oy + 192059 o) < CpmoeIfll oy
forj=12andf=1,23,4.

By Lemma 2.3, Lemma 2.4, Lemma 2.9 and Lemma 2.10, we obtain the estimate

1 |
(2.27) IAl[vE || Loy + A2Vl ey + I V20| Log@) < ComiennolifllLe(a)-

(2) The estimate of v.!

Since r/2 < |¢/| and |¢'|? < B|A| on supp (1 — cp1)¢(-/\/5|7|), we see that A and £’ satisfy
the assumption of Case 2. By the Farwig and Sohr’s method [2], and by (2.4), (2.5) and
(2.6), we obtain the following lemmas.
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Lemma 2.11. Let 1 < p < 0o. Let us assume that K : C x R*! — C satisfies
08 K(0,&)| < Cuel€']7®1, V€ € R™\ {0}

for any multi-index o and that )\, €' satisfy the assumption of Case 2 on the support. If we

put o
o) = F KA €)eA0mgy), o) = FIK(, &)e g,
oD = F KA\ €)e POmg), o) = FIUK(,€)eP=g)

for j = 1,2, then there holds the following estimate
Ao | oy + N2 V0D oy + 19205 l1s(@) < Cpmeollfllie)
forj=1,2 and £ =1,2,3,4.
Lemma 2.12. Let 1 < p < co. Let us assume that K : C x R*! — C satisfies
05K\ €)| < Cud NHE™!, Ve € R\ {0)

for any multi-index o' and that )\, €' satisfy the assumption of Case 2 on the support. If we

put A X
v = F KN €)e A0hy), o) = FIUK (A, €)e = hy],
v = F KA, €)e BU=hy], o) = FIHK(A, €)eBonhy)

for j = 1,2, then there holds the following estimate
. 1 , .
Mo |y + IAZ VO o) + V205 || o) < Cpepollfileqe

forj=1,2 and ¢=1,2,3,4.

Since |A|? is equivalent to |¢’| on the support of 8 ¥(¢'/\/BIAl) where |o/| > 1, there
holds

5% (€/VBIN)| < Calel™, ¥¢ eR™1\ {0},

Therefore, by Lemma 2.6, Lemma 2.11 and Lemma 2.12, we obtain the estimate

1
(2.28) IMllon ey + IMZ VR o) + 1V205 o) < Comeollfllzec)-

(3) The estimate of vi/

Since |¢'|> > B|A|/2 on supp (1 — ¢;)(1 — w(/m)), by the assumption |A| > 2R?/3 we
have |£|2 > R. So we see that A and ¢’ satisfy the assumption of Case 3. By the Farwig
and Sohr’s method [2] and by (2.4), (2.5) and (2.6), we obtain the following lemmas.

Lemma 2.13. Let 1 < p < co. Let us assume that K : C x R*~! — C satisfies

08 K\ €)] < Carl€|™1, V€ € R*\ {0}
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for any multi-indez o' and that A\, &' satisfy the assumption of Case 8 on the support. If we
put

o) = FUK (X, §)e~4072)g;), o9 = F K (A, €)D2(A, B, )35,
o) = FG KM, €)e~ =g, vitd) = Fo 'IK (A, €)Dy(A, B, 20)d;]

for j = 1,2, then there holds the following estimate
MO 2oy + M V2l o) + 192689 o) < Cpmentallfllzocey
forj=12andl=1,23,4.
Lemma 2.14. Let 1 < p < co. Let us assume that K : C x R*~! — C satisfies
|08 K(A,&)| < Carel€|7' 711, v€' e R*\ {0}

for any multi-index o’ and that )\, &’ satisfy the assumption of Case 3 on the support. If we
put

o) = FRUK (M E)e 40-=0hy), o) = FUK(M, €')Dy(A.B, za)h),
v@) = FIUK (N €)e 4= hy), vt = F K (A, €)Dy(A, B, z,)h;]

for j = 1,2, then there holds the following estimate
oS oy + INFIVOED o) + 19205 o) < Cpmenrollfllzoa
forj=12andl=1,2,3,4.
Since |A|? is equivalent to |¢| on the support of 6?,'1/)(5' / \/BW) where |o/| > 1, there

holds
e (1= (e <cuter™, veermiio

Therefore, by Lemma 2.7, Lemma 2.8, Lemma 2.13 and Lemma 2.14, we obtain the estimate

1
(2.29) IAlvi | Loy + IAITIVOL || oy + IV 0 | e < CpmieollfllLeca)-

(II) The case where )\ < |A\| < 2R?/B3, A€ I,
Using the cut-off functions ¢; and ¢, we represent v, as
Un = fc_'l [p1(€)0a(A, €, 20)] + -7:571 [(1 = 01(€))p2(E )0 (N, €, 70)]
+F (1= @1(€))(1 = ¢2(€))on(A, €, z0)]

= vlV 4+ oY + oY,
and we estimate each term.

(1) The estimate of v.”



177

Since |€'| < r on supp ¢;, we see that A and ¢’ satisfy the assumption of Case 1. In this
case, repeating a same argument to those in (1) of (I) we can obtain the estimate

1 )
(2.30) IA[orY 2oy + A2 (IVORY [l Loy + (IV20LY [lLe@) < Comienno lIfll oy

(2) The estimate of v

Since 7/2 < |¢'| < R+1 on supp (1—¢; )2, the coefficients of §; and of ilj are C*°-functions
on the compact set. Hence applying the Fourier multiplier theorem and by (2.4), we obtain
the estimate | t

1
(2.31) IA[oY | ey + IAZIIVOY ey + V202 [lLe@) < Comepollfll o)

(3) The estimate of v¥!

Since €| > R on supp (1 — ¢1)(1 — ¢3), we see that |A| < (2/8)R? < (2/8)|€'|>. Hence we
see that A and ¢’ satisfy the assumption of Case 3. In this case, repeating a same argument
to those in (3) of (I) we can obtain the estimate

(232) MY em@ + M2 IV o) + 1970 @) < Cpmeppolfiloge)-
Consequently, by (2.27), (2.28), (2.29), (2.30), (2.31) and (2.32), we obtain the estimate
1
(2.33) IMllvallze@ + Mz Voallzo@) + [V?0nllo@) < CpnerolfllLoy
where A € X, |A| = Ao

2.2.2. Construction of the pressure m satisfying (2.8) and its L? estimate

By (2.9) and the n-th component of the equation of (2.8), we construct the pressure m
satisfying
Ar =0 in €,
{ OnT|gp=a = _(’\ - A)'Unlzn=a a=0,1,
where A € ,, |A| > Ao. Applying the Fourier transform with respect to z’, we obtain the
following boundary value problem of the differential equation:

{ (03 — A%)#A(N, &, 2a) =0 0<z, <1,

(234) an'frl:l:n:a = (6,,21 - Bz)ﬁnlz,,:a a=0,1

Solving (2.34) and taking account of the representation of 0, (2.11), we obtain the repre-
sentation of the pressure

A 2 E e-—A(l—:tn) E e—A:cn
~ / __n 71 _ 32 ~
235 H &) = A;{ det L det L }g’
( . ) _ﬁ i "L2+j,le—A(1 n) _ E2+j’26 Az,
A det L det L !
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We classify the problem into the following two cases (I) and (II) by largeness of |A|. Let r,
B and R be numbers which are used in estimating v,.

(I) The case where |\| > 2R?/8, A€ I,
Using the cut-off functions ¢; and 1, we represent 7 as
m = F o0z + Pt (1 oa(€)w (€7/yBIN) 70, €', 20)|
754 (= (@) (1= (¢/yBIN) ) 70, €' 20)]
= al 4 7l 4 7111

and we estimate each term.

(1) The estimate of n/
In this term, A and £’ satisfy the assumption of Case 1. Concerning each coefficient of
gj, hj in (2.35), by Lemma 2.2, Lemma 2.3, (2.21) and the Leibniz’s rule, we obtain the

following lemma.

Lemma 2.15 Let us assume that A\ € I, and £’ € R"™! satisfy the assumption of Case 1.
Then for any multi-indez o/ the following estimates are valid.

aa; < Ca’,elAl_%Igl_l_lall

¢ de t L
forj=12andk=1,2.
By Lemma 2.2 and Lemma 2.15, applying Proposition 2.1 and (2.7) we obtain

e|§ |-1 Ia’I 'aa' L2+J,

.. ~

—-A(1-z,) L. —Az,
j1€ _ Lj2€ A
VFe! [A‘Pl(g){ det L det L }J]

for j = 1,2. And by Lemma 2.2 and Lemma 2.15, applying Proposition 2.1 and (2.4) we
obtain

< Cp,n,e)‘o ”f“L’(Q)
Lr(@)

Loiiie~A=2za) [, . e—AZn) .

er e [%‘Pl ) { B A } h”]
for j = 1,2. Here, we have used the boundedness of the trace operator: ||Uk(:,a)||Lrrn-1) <
Cpnl|Uk lw3(mn)- Hence we obtain the estimate ||Va!|| o) < CponerollfllLo(a)-
(2) The estimate of 7!’
In this term, A and ¢ satisfy the assumption of Case 2. By Lemma 2.6, Lemma 2.11 and
Lemma 2.12, we obtain the estimate ||Va!!| o) < Cpne o llflle()-
(3) The estimate of 7!/
In this term, A and £’ satisfy the assumption of Case 3. Concerning each coefficient of g;,
h; in (2.35), by the equatily \/(4 — B) = —(A + B), Lemma 2.2, Lemma 2.7, (2.26) and
the Leibniz’s rule, we obtain the following lemma.

< Cp,n,;«\o ||l L)
Lr(Q1)
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Lemma 2.16 Let us assume that A € £, and & € R*"! satisfy the assumption of Case 3.
Then for any multi-indez o' the following estimates are valid.

I—A— -Z’Jk
¢ Adet L
forj=1,2 and k= 1,2.

By Lemma 2.13, Lemma 2.14 and Lemma 2.16, we obtain the estimate ||Va!/||15q) <
Comeollfll o).
(II) The case where Ay < |A\| < 2R?/B3, A€ &,

12| < Co 711

< Cor €7,

Using the cut-off functions ¢; and ¢,, we represent m as

# = Fa' lor(€)r(N €, za)]l + Fot [(1 = 1(€))pa(€) (A, €, )]
+F (1= @a(€))(1 — 0a(€))R(N, €, z0)]
=alV4+a¥ 4%,

and we estimate each term.

(1) The estimate of 7!V

Repeating a same argument to those in (1) of (I), we can obtain the estimate || V7'V ||o(q) <
ComeollfllLr(@)-

(2) The estimate of 7V

In this term, the coefficients of §; and of ilj are C*°-functions on the compact set. Hence
applying the Fourier multiplier theorem and by (2.4), we obtain the estimate || V7" | s(q) <
ComeollfllLe()-

(3) The estimate of 77

Repeating a same argument to those in (3) of (I), we can obtain the estimate || VaV/|| o) <

Cp,n,e,/\o ”ﬂll‘p(n) ‘

Consequently, 7 satisfies the desired estimate
(2.36) ||V7r“Lp(n) <, ,n,e,,\ollfHLp(Q).
When n > 3, we see 7 € WI}(Q) On the other hand, 7 does not belong to L? (€2) when
n = 2. But by a different construction of 7, we can also obtain the same result in this case.
2.2.3. Construction of vy (k=1,---,n — 1) satisfying (2.8) and its LP-estimate

By the k-th component of the first equation of (2.8) and the boundary condition of (2.8),
we construct vy satisfying

(2.37) { A=Ay +0r=0 inQ,

'Ukl:zn:a - _Uklx,.=a a= 0) 1’
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where A € X, |A| > Ao. First, we construct V; satisfying (A—A)V;, = —8,mg in R™, where 7
denotes the zero extension of m. Applying the Fourier transform, we have (A + |£]2)Vi(€) =
—i&,7o(€). Hence we obtain the representation of Vj:

Vile) = -7 | 12 0(6)| (o).

Applying Proposition 2.1 and (2.36) we obtain the estimate
(2.38) AIVells@n) + A2 Vil o@e) + IV Villes@n) < Cpmellflloca-
Now, setting vx = Vi + wy, the problem (2.37) is reduced to the following problem for wy:

{ (A=A)w =0 in Q,
wklz,.:O = _Uklzn=a - ‘,I:Iz,‘:a a= 0, 1.

Applying the Fourier transform with respect to z’, we obtain the following boundary value

problem of the ordinary differential equation:

(2.39) { (63 = B)ik(A, €', 2a) = 0<z,<1,

wklz,.—a = —'Uklzn—a ‘/klzn—a a= 0’ 1.

The solution to (2.39) is represented as

e—an 6—8(2—3n) e—B(l—zn) C_B(H-z")
- A EI T ) —_ — g + - g
'wk( 1SHdn 1 — e—2B 1 —e2B 1 1 —e2B 1—e2B 2

where §, = —ffklzﬁo - Vklznzo and §o = —Uk|z,,=1 - Vklznzl. The assumption A € X,
[A] > Ao and (2.13) yield
' euaB —1e’| -;a|,\|i n—-1

for any multi-index o/ and a > 0. Now, we shall prove the following lemma.
Lemma 2.17 Let 1 < p < oo and let us put

—B (a+zn) ]

(1 H —B(b—z,,)
? =7t [ |

(2».7) -
...fel [1—6"239]
where a > 0 and b > 1 are constants, and j = 1,2. Then there holds the following estimate
£,j 1 tj ¢,j
Alwi lls@ + AR IV o) + V20 o) < Cpmenollflocey

forj=1,2andf=1,2.
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Proof. By (2.40), applying Proposition 2.1 we have
. e—B(a+:cn) .
¢ |1—=e2B 9;

forj=1,2. Integrating‘ the p-th power of the both sides over the interval [0, 1], we obtain

< Cpmenol e M@= g o
LP(R™-1)

|A

p || g1 [€7BEF=) ’ P ol pgiia
AP |F ||| S ComenPIgilgesy [ e F P onda,
e L?(Q) Cp a
2 n,e,\ _1
< p’c,’e’ OI)‘P 2”91'”’},;:(]117:—1)
€
20}1 p p—1 1 ag
< Zomern (1105l wil—f
pcg ( J ( +)) &Bn LP(R:)

Hence by (2.4) and (2.38), we obtain |A|||w{™]] < Cpnenllfll Lr(@). The estimates of the
first and second derivative are proved by the Farwig and Sohr’s method [2]. The estimate
of w,(f” ) (7 = 1,2) is obtained similarly by a suitable change of variable. [

The above lemma yields |||[wi| o)+ A2 [ Vgl o) +HI VWil o) < ComesollfllLo@)-

Concequently, v, belongs to Wz? (Q) and satisfies the desired estimate

1
(2.41) Akl ey + IAZ | Vvkll oy + IVl o) < Comepollfll o)

3. Analysis of the case where )\ is close to zero

When A = 0, because of the singularity of [¢/|~! at ¢ = 0, the solution U constructed in
the previous section does not belong to L?(R"), and VU does not belong to L?(R™), either.
So in this section, we analysis the following problem with a different approach:

0 in©,

(3.1) { —Au+Vp=f, V-.u

ul$n=0 =0, uIa:,.:l =0.

Throughout this section, we use the notation A = |¢|, and let ¢y € C°(R™™!) be a cut-
off function such that @o(¢’) = 1 for |¢| < 1 and ¢o(¢') = 0 for [¢'| > 2, and we put

Yoo = 1 — (pp.
3.1. Construction of v and q satisfying (3.2) and their LP-estimates
In this subsection, disregarding the boundary condition we shall construct v and q satisfying

(3.2) _Av+Vq=f V.-v=0 inQ.
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Since C°(2) is a dense subset of LP(2), we can assume
(3.3) f(«',0) =f(z',1)=0

without loss of generality. First, we shall construct v, satisfying (3.2). Since V -v = 0,
applying the divergence to the first equation of (3.2) we have

(3.4) Aq=V-f.

So, applying the Laplacian to the n-th component of the first equation of (3.2) we have
A%, = —A'f, + V' - 8,f where A' =02 +---+8,_,, V' = (8/0z,,--- ,0/0zn_1), and
f =(f1, -, fa—1). Hence applying the Fourier transform with respect to z’, we obtain the
following ordinary differential equation of the fourth order:

(35) (6723 - A2)2ﬁn(£’a IL‘n) = Azfn(f’,xn) + ZE’ * aﬂé(glv xn), 0< Ty < 1.

Solving this equation by the variation of constants and taking account of (3.3), we obtain

N A Zn 1 o1 . _ N ,
0u(§a) = 5 [ [ BeXenm00 B0, — 02 (€' t)dmdor
Zn rl 1 -~
(36) -g [ [ (1 = g)eent-20-20-0) (g, _ 42, (¢!, t)dnddt
0

. Zp 1 -~ A
+%4 /0 /0 e~ Alen—00-20)( _ )28 . f(¢ t)dfdt,

where & = ¢'/|¢'|. Since this representaion does not have an inverse power of A, each
coefficient of f, and of f satisfies the assumption of the Fourier multiplier theorem on
supp o. So, applying the Fourier multiplier theorem with respect to ¢’ we obtain

lo I\ A 1
8% g [o(€)in( 2l gy < Comer [ IEC, Ol mo-1ydt < Cpmar B0

for any o/. Therefore, integrating the p-th power of the both sides over the interval [0, 1]
we obtain

(37) ”a:’lfgl [‘PO(&I)ﬁn(&,: z")]”Lﬂ(ﬂ) < Cp,n,a’”ﬂlld’(ﬂ)r va,-
Similarly, 8,9, and 829, are represented as
an'ﬁn(f’, .’Bn) = %Amn(zn - t)(eA(Zn_t) - C—A(zn_t))fn(f,, t)dt
L V1 At F . f(gl
5 [7 1+ Ao — )} A= 08 - B(€ )t

-i /o 7 {1- Az, — t)} e 4@ 0G . B( t)dt,
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A [o .
GRin(€',7) = 5 / (e=A4en=t) _ eAGn—0YF (1)
| O —A(zn—t) §
¥ / [z, — t) - 24} € fat)dt
1 " 42 A(zn—t) §
+3 / {A2(z0 — 1) + 24} 4D f (1)dt
o[ A(za—t) &1 . B
+3 /0 [A%(2, — t) + 24} 408 - B(8)ds
A2 — ) — —Alea—t)F ,
) {A%(zn —t) — 24} e & - f(t)dt.

Since they do not have an inverse power of A, we obtain in the same manner as above
(38) (00 o [ool€)on(€ 2] gy S Comeliflisy, Vel £=1,2

Hence by (3.7) and (3.8), we obtain

(3.9) 17" [po(€)8a (€', 2]

LP(Q)

< Conllflle(e)-

w3(Q) —
When [¢'| > 1, extending the right-hand side of (3.5) we consider the following problem:
n—1 A
(arzt - |§,|2)2’i)n(£li xﬂ) = |£I|2f1‘:(€l,x‘n) + Z ifkanff(ﬁ’,.’rn), E’ E Rn—l’ x'n G R
k=1
Applying the Fourier transform with respect to z,, we obtain the representation of 0,:

EF a0 ek
O~ 2 g

n(§) = he (€),

where
hi(€) = / <P($n)fk(§ T,)(e7 + e )dx,,
+ [ (U= @) €' 2a) (e 4 =),

Here, ¢ is the cut-off function in Definition 2.1. Now, it is easy to prove

8 /
groptt=t) Tg]’f&) <Cap VB, 1B <4
for any multi-index a. Therefore, applying Proposition 2.1 we obtain
(3.10) |76 0o (€)n()]] 3 ey < Comlfllzzca-

Here, we hé.VB used “f:”l,p(]kn) < C”fn”LP(Q) and ”hk”LP(R") S C"fk”LP(Q). Hence if we
put v, = F5'[00(€)0 (€, Tn)] + F¢ ' [oo(€')0n(€)], then v, satisfies (3.5), and by (3.9) and
(3.10) we obtain the estimate

(3.11) l[onllwzie) < Conllfllzoge)-
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Next, we shall construct the pressure q satisfying (3.2). Applying the Fourier transforn
to (3.4) with respect to z/, we obtain the following ordinary differential equation:

(3.12) (63 - A2)a(£l,xn) =1 - f’(él’xn) + anfn(g’axn): 0<z, <Ll

Solving this equation by the variation of constants we have

8, z,) = / / —AQ-2)an-0gg (1. _ t)ig . P(t)dt
—Az, Az,.

At oAt
» J7 et e+ S [T e M0yt
~ ot _ Y —A(1-20)(zn—t)(0n _ Y
(€', a) = A /0 /0 e (20 — 1)d8 (z, — t)i€’ - P(t)dt
Ty r1 ~ N
—A(1-20)(zn—t) ol /
+/0 /0 e doig - £(t)dt + fu(&', )

Ae—Az" Azn

Tn ~ Ae Tn ~
At —At
5 /0 e fa(t)dt + 5 /0 e fa(t)dt.

€
+

Since they do not have an inverse power of A, we obtain in the same manner as above

(3.13) |76 eo(€)i(¢', 2n)]|

W,}(ﬂ) S CP;""f”Lp(Q)'

When [¢'| > 1, extending the right-hand side of (3.12) we consider the following problem:

n—1

(05 = E'1M)A(E , 2a) = 3 ik fi(€,2a) + B f2(€,2a), € €R™, z, €R.

k=1

By applying the Fourier transform with respect to z,,, we obtain the representation of q:

z{,,

§(6) = — 3 28 fee) e

2P ha(£),

where )
n(&) / (:L’,,)f,,(f' xn)(e_ix"& - iz"E")dxn
~ [~ @) (e, a)(e eI — eientn)

Since we can easily prove the estimate

¢ !
(3.14) eattelli<c, w2
for any multi-index o, applying the Fourier multiplier theorem we obtain
(3.15) . [ 76" e €)a)]] y gry < Comlilzrca)-
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Here, we have used || f¢||zo®n) < C|| fellLe) and ||hal| ey < C)l fallLr(). Hence if we put
0= Fa'lpo(€)d(€, za)] + F; oo (€')d(€)], then q satisfies (3.12) and by (3.13) and (3.15)

we obtain the estimate

(3.16) lallwz@) < Conlifllze(e)-

Finally, we shall construct v, (k = 1,--- ,n — 1) satisfying (3.2). Applying the Fourier
transform to the k-th component of the first equation of (3.2) with respect to ', we obtain
the following ordinary differential equation:

(3.17) —(8% — A)i(E,zn) = fill, 2) — i&A(E, Tn), 0< T, < 1.

Solving this equation by the variation of constants, we have

zy, rl N
(€' Tn) = / / e~ AU-Men=0gp (z,, — 1) (i64ii(t) - fu(2)) dt,
0 Jo
. Ll ; —A@n—t) | A(@a—t)
RAGESES- /0 (i) - ful®) (e + oA 0) dt,
N o oa z 1 fon g, 2 - — Az
Ox0u(€', 7n) = k(€. 7n) — ful€,2n) + 3 /0 (i€ () — fu(®)) (e — e~ 4=0=0) g,
Since they do not have an inverse power of A, we obtain in the same manner as above

(3.18) |7 lpo(€)oe(€, za)]|

Wg(n) S Cp,n“f”LP(Q)'
When [¢’| > 1, extending the right-hand side of (3.17) we consider the following problem:
—(02 — 1€'P)0k(€',2a) = fi(€,20) — 64 (€, 2n), € €R™, 2, €R.

By applying the Fourier transform with respect to z,, we obtain the representation of ¥y:

—ﬁfz@) + ﬁfiaae(s)-

By (3.14), applying the Fourier multiplier theorem we obtain

() =

(3.19) |17 e €)o(E)]]

Wg(Rﬂ) S Cp,n”f”LP(ﬂ)~

Here, we have used || fg||co@n) < C|l fellze@) and || F; ' [i€x6°(€)]l| @) < ClIfl|Le)- Hence
if we put v = Fg'[@o(€)0k(€, xn)] + F¢  oo(€)0k(€)], then vy satisfies (3.17), and by
(3.18) and (3.19) we obtain the estimate

(3.20) _ lokllwz) < Conlifllo(e)-

Consequently, we obtain the following proposition.



186

Proposition 3.1. Let 1 < p < co. For any f € LP(Q)", there exist v € W2(Q)" and
q € W, () satisfying (3.2), and there holds the following estimate:

(3.21) IVllwz@) + lallwy@) < Conllfllzeiy

3.2. Construction of w and 7 satisfying (3.22) and their L*-estimates

In (3.1), setting u = v+ w and p = q + , the problem (3.1) is reduced to the following
problem for w and 7:

(3.22) { -Aw+Vr=0, V-w=0 in Q,

W|zn=0 = _v|3n=0! wl$n=1 = —vlzn=1'

3.2.1. Construction of wy, satisfying (3.22) and its LP-estimate

First of all, we shall construct w, satisfying (3.22). By an argument similar to those in the
previous section, we construct w, satisfying

(02 — A%, (€, 2a) =0 0<z,<1,
(323) ﬁ’n'z,.:O = gl, wn|=n=1 = 92’
anlbnlz,.=0 = hl) anwnl:c..=1 = hg,

where gl = _'an|zn=0’ g2 = _i)ni-'tn:l’ i:"l = EJ-- z£.‘l'l).1|:trs=0 a'nd h2 En lzéjvjlzn—l We
look for the solution to (3.23) in the form of W, (¢, z,) = a;e A”"+a2xne"""+a e~ All==zn) 4
aszne~41-2n) By the boundary condition, (a;,as, as, a4) satisfies

a; a1 1 0 e 4 0
i -A -A
a| _ |9 | e e 1 1
L | = i"l , where L= _A ] Ae-A oA
a4 by —Ae™® (1-Ae?* A 1+A

Employing the same argument to Proposition 2.2, we see det L # 0 for £’ # 0. Hence if
¢ # 0, then the solution to (3.23) is represented as

(3.24)
Bn(€, 20) i { Lj e-4e szzne'“" Lijge~A0-=n)  Ljqzae Al-2n) } g;
’ =\ detL det L det L det L I

+ 22: { 245,16 42" L2+j.2$n€'Az" I~42+j,36_‘4(1_z") E2+j.4$n€_‘4(1"”") } >

= det L det L det L det L ’

G;(¢, xn)g,+§jH(§ Za)h,.

Mm

1

<.
Il
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The results of calculating the determinant of L and its cofactors L;; are as follows:

det [ = 4A4%-24 — (1 — e-24)?,

Ly =-1+(1-24+24%e?4, Lyp=-A+(A-24%e,
Liz3=(1424+2A%e 4 —e 34,  Liy=—(A+24%e 2 + Ae™4,
Ly=(1+Ae4-(1- A)e‘?'A, Ly = (A4 24%)e™4 — Ae™34,

Lys=—-1—A+(1—A)e 24, Lpg=A— (A—2A%e 24,
Ly = —2Ae724, Lyp=—1+2Ae A +e 24
E33 = 2A€_A, E34 = (1 — ZA)C_ — 6_3‘4,
Ly=—e*+e34 Lip=(1—2A)e 4 —e34,
Ly=1-e24, Laa = -1+ (1+24)e 24,

Using the cut-off functions ¢ and e, We represent wy as wn, = Fy ' [@o(€)bn (€', 2n)] +
Fe [poo (€ )0n (€', 2)] = wl + w, and we estimate each term. By a direct computation,
we see

(3.25) det L = —§A4 FO(A%) = 0(AY, A—0,

and Ljje~4en 4 éj2$ne_Ax" + f/jge:A(l"") + Ljsz,e 40-27) = O(A*) and Ly e 4% +
L2+j,2a:ne"”" + L2+j,3€_A(1_I") + L2+,-,4mne"‘(1""") = O(As) as A — 0 where j =12
Hence we see that for any £ € NU {0} and any multi-index o’ there holds

18‘ 2 0o(€)G4(¢, wn)\<0u|§| el ve' e R\ {0}, j=1,2,
1605 0o(€) H; (€', )| < Caral€| ™ """, Ve e R*1\ {0}, j=1,2.

Therefore, by Proposition 2.1 and Proposition 3.1 we obtain ||w}|lwz(e) < Cpallfllzr@). On
the other hand, to estimate w2 we rewrite (3.24) as

g = i { Lt pnen | Li2 o nen | List Lja _aq-zn)

= detL° detL™" det L
LJ4 —-A 24351 _ L2+‘2 _
—_ 1 -z, (1 127.,) Iy Azn s n A:l.'n
AL }g’+z{d t2° et
E2+j3 + E2+]4 —A(l-zn) _ L2+J —A(1- >
» y Tn 2(1 — n (1-zp) h..
detL de tL( Tn)e j

Since | det L| > ¢ with some positive constant ¢ on supp ¢, by Lemma 2.2 and the Leibniz’s
rule, we obtain the following lemma.

Lemma 3.1. For any multi-indez o, the following estimates are valid.

(Poo(g) ]1 —A:c,. S Ca' Iélle_lall "|€'|.’cn vgl € Rn—l \ {0},

(Poo(g )d tL —A::,. S Ca'lglle—lalle_%'f,lzn, VEI € Rn—l \ {0},
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OL0E 0o (€) ’;; ,f e 4070 < Cyfg/|I¥lem I N2, ve' e R\ {0},

d tL —A(l1-zn) < Cyle |l lo'lg --I£’|(1-xn) Ve e Rv1\ {0},
On0g peol€’ )(Lf;’,j Ao < o€l e v¢' e R*1\ {0},
RO Pool£) dzz’f Tne ™A% | < Ol 172 en, v¢' e R™1\ {0},
0808 () 283 Lt - at1-20| < I HEI0-m), v € R0\ {0},

L , ,
808 poo(€') ”“(1 — g,)eA0mm) | < Oy || 11 lgm1E10-2n) e € R1\ {0},

where j=1,2and £=0,1,2.
By the Farwig and Sohr’s method [2], we obtain the following lemma.

Lemma 3.2. Let1 < p < oo and f € W2(Q). Let K;,K; : R*! x (0,1) — C be
C™-functions satisfying

|0£08 K1 (€, 20)| < Curlg'|1 163K 1em, vé' € R\ {0},
Iaia?:,Kg(fi,mn)l < Ca:|£’|“|0'|e—§|f'|(1-zn)’ Ve € R"-! \ {0}

for any multi-indez o and £ =0, 1,2, respectively. If we put ug-“) = Fe ! [K (& zn) f(e, a)]
fora=0,1 and j = 1,2, then there holds the following estimates

16 o) + 1V4® o) < Conllfllwa@, V2P oy < Cpall fllwzcay

forj=1,2anda=0,1.
By Lemma 3.1, Lemma 3.2 and (3.21), we obtain [[w®[lwzq) < Cpnllfllze@). Conse-

quently, w, belongs to W2(Q2) and satisfies the desired estimate lwallwa@) < ConllfllLe)-
3.2.2. Construction of the pressure w satisfying (3.22) and its LP-estimate

By an argument similar to those in Section 2, we construct = satisfying

{ (02 — A)#(¢',2,) =0 0<z,<1,

(3'26) anﬂ'lz..=a = (6£ - A2)wn|a:n=a a= 0’ 1.

Taking account of the representation of @, (3.24), the solution to (3.26) is represented as

2 7. —-AQ1- :c,.) Tn 4 T, ., e—All=2Zn)
N L 26 L i4€ ( L2+ 26 L2+ 4€ ~
i o) =2 22 T roy Lo ] hs.
(€',2) 2J.=1 det L det L ’

i=1
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Using the cut-off functions @y and ¢, we represent 7 as w7 = Fg'[po(€)# (€', z,)) +
Fa [(poo(f’)ﬂ(f’ a;,,)] = 7% + 7, and we estimate each term. By a direct computation,
we see Ljpe 4% + L;e~A1=%n) — O(A?) as A — 0, where j = 1,2,3,4. Hence by (3.25)
and the above result, we see that each coefficient of §; and of h; behaves like A~! on
supp . Since each coefficient of fn and of f in (3.6) is the first order with respect to
A, employing an argument those in estimating w3 we obtain ||V7°||rq) < CpullfllLo)-
On the other hand, employing an argument similar to those in estimating w2, we obtain
IVr®|lLe@) < CpnllfllLeiq). Consequently, m belongs to WI}(Q) and satisfies the desired
estimate || V7| zr(q) < CpnllfllLe)-

3.2.3. Construction of wy (k=1,---,n — 1) satisfying (3.22) and its LP-estimate

By an argument similar to those in Section 2, we construct wy, satisfying

(3.27) “AutOmr=0  ing,
wkl:tn:a == _vkl-"-'n:a a= 0, ].
First, we construct w,(cl) satisfying Aw = Ok in §2. By the same argument in sub-

section 3.1, there exists a solution w{" € W2(Q) to this problem satisfying [|wiM lwz@) <

CpnllfllLri). Now, setting wi = wi +w'® and applying the Fourier transform with respect

to =/, we obtain the problem for w( ),

(3.28) { (02 - AN (¢, 2z) =0  0<z. <1,

d)klxn=a = —{)klxn=a - wk |$n=a a = 0, 1.

The solution to (3.28) is represented as

— Az, —A(2—z,) —A(l—z,) —A(l+zn)
A(2) gt [ e e . e e .
Wy, (f:wn)— (1 6—2‘4— 1—6_2A)gl+(1—8—2‘4 - 1—6_2‘4)92,

where §; = —0ks,=0 — W |s,m0 a0d Jo = —k|p,=1 — w{"|,,~1. Employing an argument
similar to those in estimating w,, we obtain ||w,(c2)llwg(g) < CpallfllLe(). Consequently, wy
belongs to W2(Q2) and satisfies the desired estimate |lwy|| w2(@) < Conllfll Lo ()

Combining the result obtained in this subsection with Proposition 3. 1 we obtain the
following proposition.

Proposition 3.2 Let 1 < p < oo. Then for any £ € LP(Q)" there exist solutions u €
W2(Q)" andp € WI}(Q) to (3.1). Moreover, there holds the following estimate:

lallwze) + 1VPlle@) < ConllfliLe()-

By employing the perturbation method, the above proposition yields the following theorem.
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Theorem 3.1 Let 1 < p < oo. Then there exists a positive constant o such that for any
I\l < o and any f € LP(Q)" there exist solutions u € W2(Q)" and p € W}(Q) to (1.2).
Moreover, there holds the following estimate:

lullwzea) + [IVpllLe@) < ConllfllLe)-

4. Application

As a simple application, we shall consider the LP-stability of the Couette flow and of the
Poiseuille flow. First, we consider the following initial boundary value problem of the
Navier-Stokes equation:

w—-Au+(u-Vu+Vp=0, V-u=0 in(0,00)x,
(4.1) u|z,=0 = k(1,0,...,0), ulz=1=0,
u(0, z) = a(z) in Q2.

The pair of functions v(z) = k(1 —z,,0,--- ,0), q(z) = qo (const.), which is called Couette
flow, is a solution to the corresponding stationary problem. Now, Setting u(t, z) = v(z) +
w(t,z) and p(t,z) = q(z) + 7(t,z) in (4.1), the problem on the stability is reduced to the
problem for w and

W, — AW + k(1 — 2,)0,W + w0, v+ (W V)W + Vr =0 in (0,00) x £,

V.-w=0 in (0,00) x Q,
(42) W'z,.:O =0, wlzn=1 =0,
w(0,z) = a(z) — v(z) = b(z) in Q.

To solve this problem we transform (4.2) into the integral equation:

t
(4.3) w(t,z) =eb— /o e t-94p {k(l - :l:,,)(%1 + wn% + (w- V)w} (s)ds
where P is the projection from L*(§2) onto L?(2). Taking into consideration the bounded-
ness of Q) with respect to z, and the exponential decay property of the analytic semigroup
{e7*4}:>0 obtained in Theorem 1.2, and employing the similar argument to [5] we can ob-
tain the unique time-global solution to (4.3) under an assumption on smallness of |k| and
|Ib||L~(q). To be more precise, there holds the following theorem.

Theorem 4.1. There is a sufficiently small number € > 0 such that if |k| + ||b||~@) < &,
then there exists a unique time global solution w(t,-) € BC([0, 00); L%(R2)) to (4.2), and for
any p > n there holds the estimate

1_n 1
e W(t)lln) + 7 B [W(t) oy + 2™ VWO lvy S C,  VE>0.



191

Similarly, the stability of the Poiseuille flow v(z) = k(zn(1—2,),0,---,0), q(z) = 2kz,
is reduced to the problem for w and =:

Wi — AW + Kz, (2n — 1)O1W + wo0, v+ (W V)W + Vo =0 in (0,00) X £,

V-w=0 in (0, 00) x Q,
(44) W'zn=0 = O; le,.:l = 0,
w(0,z) = a(z) — v(z) = b(x) in Q.

Solving the corresponding integral equation, we obtain the following theorem.

Theorem 4.2. There is a sufficiently small number € > 0 such that if |k| + ||b||L~@q) <,
then there ezists a unique time-global solution w(t,-) € BC([0, 00); L?(R?)) to (4.4), and for
any p > n there holds the estimate

w(t)ll1mim) + 11 B W(t)l|ioe) + e[ VW(D)lliney <, VE>O.
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