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We consider the uniqueness of viscosity solutions of a certain discontin-
uous partial differential equation (PDE for short) under the homogeneous
Dirichlet boundary condition. This discontinuous PDE is derived from vari-
ational problems containning a certain LP norm. We also show that the
unique solution coincides with the distance function from the boundary.

1. Introduction

At first, we consider the following variational problem: Minimize the functional
1
G(w, Dw) := 5||Dw[|” - / fwdz
Q

subject to w € Wy?(R), where Q C R™ is a bounded domain with smooth bound-
ary 89, f € C(Q) is positive in 2 and || - || denotes various L?(€2, R*) norms which
are equivalent to the standard one. Moreover, we derive the limit PDE which the
limit function of minimizers, as p — oo, satisfies.

In order to deal with the perfectly plastic tortion model, T. Bhattacharya -
E. DiBenedetto - J. Manfredi [1] and B. Kawohl[6] considered the limit function
of minimizers, as p — oo, of the following variational problem: Minimize the
functional Gy(w, Dw) subject to w € W,(f2), where

Gz (w, Dw) := l/(|D'w|2)”d2: — / fwdz. (1.1),
PJa Q
Then, they showed that
lim uy(z) = dy(z) = inf [z~ yly

uniformly z € (2, where we denote by | - |, the Euclidean norm.
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On the other hand, initiated by Aronsson’s works, R. Jensen in [5] characterized
absolute minimal Lipschitz extensions as unique viscosity solutions of

—Apw 1= — E Wy Wy We,z; = 0 in Q

under the Dirichelet boundary condition. To show the uniqueness of this equation,
Jensen introduced the following PDE:

min{|Dw|; — €, —-Asw} =0 in Q, (1.2)

which the limit function of minimizers of (1.1), with f = € (¢ > 0) satisfies, and
obtained the uniqueness result for solutions of (1.2) under the Dirichlet boundary
condition.

In the previous work with S. Koike [3] we considered variational problems which
contain several L?(2, R®) norms equivalent to the standard one. As a typical
case, we considered the following variational problem: Minimize the functional
G,(w, Dw) subject to w € W;?(Q), where

G,(w, Dw) = % /,, (IDwl,)Pdz — /ﬂ fwdz. (1.3),

Here and later, for £ = (&, ...,£,) and a € [1,00), we define the norm |[{|, of R®
by

€la = ( > |e,-|°)%.

i=1,...,n

Then, we showed that the limit function of minimizers of (1.3),, as p — oo, satisfies
the limit PDE:

min{|Dw|e — 1, Foo(Dw, D*>w)} =0 in Q (1.4)

in the viscosity sense, where, for all £ = (£, ...,&,) € R® and X = (X;;) € S™, we
define Fi, (€, X), |€|co and I[¢] in the following way:

Ful(6,X) ==Y Xu, |€loo:=_max [&]

iclle] ie{l,..n} .

and  I[{]:={i € {1,...,n}; [l = &I} -

Here, S™ denotes the set of n x n symmetric matrices equipped with the standard
order. More precisely, we obtain
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Theorem 1.1 (Theorem 3.1 in [3]). Let u, € W'P(Q) be the minimizer of
variational problem (1.3),. Then, there ezists a subsequence {up, }jen and a func-
tion u € Wh°(Q) such that u,;, — u uniformly in Q as p; — oo and u satisfies
(1.4) in the viscosity sense.

Now, we recall the definition of viscosity solutions.
Definition. For a given F : R* x S = R, we call u € C(Q2) a viscosity superso-
lution (resp., subsolution) of

F(Dw,D*w)=0 in (1.5)
if |
F'(6,X) >0 (resp.,Fu(€,X) < 0)

for all z € Q and (¢, X) € J>u(z) (resp., (£, X) € J>Tu(z)), where F, and F*
are lower and upper semicontinuous envelopes of F', respectively, and

wy) 2> u(@)+ (€Y —2)
.]2’_11,(:13) = (é’X) € R" X Sn; +%<X(y - .’L‘),y - JI) ' ’
7+0(|x —yl2) as y -z

, uy) < wz)+{Ey—2z)
J¥hu(z) = (£,X) € R x 5™ +1{X(y — ),y — ) :
+o(lz—yl3) as y—z

and J>*u(z) is the graph closure of J>*u(z), i.e.,

3z™ € Q and I(¢™, X™) € J>Fu(z™)
J**u(z) =4 (¢,X)€ R* x S™; such that Al;rggo(zm,u(xm),qm,X'")
| = (z,u(z), ¢, X)

We call u € C(R) a viscosity solution of (1.5) if it is a viscosity supersolution and
a viscosity subsolution of (1.5). N )

Remark. We note that if F*(£,X) > 0 (resp., Fi(§,X) < 0) for all z € Q and
(¢, X) € J* u(z) (resp., (£,X) € J> u(z)), then u is a viscosity supersolution
(resp., subsolution) of (1.5).

Our interest is to obtain the uniqueness result for viscosity solutions of (1.4)
under the Dirichlet boundary condition. Moreover, we are interested in getting
the formula of the limit function. To establish the unequeness result, we will
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show the comparison principle between viscosity supersolutions and viscosity sub-
solutions. However, we notice that F,, has a serious discontinuity with respect
to § variables, which causes a difficulty to show the comparison principle. In-
deed, since there is a gap between F,. and FZ, even for a classical superso-
lution v and a classical subsolution u of (1.4), we cannot avoid the case when
Foou(Du(z°), D?u(z°)) < F%(Dv(z°), D*v(z%)) in general, when u — v attains a
local maximum at z° Thus, to our knowledge, we cannot apply the standard
argument to show the comparison principle. In the previous work [3], to overcome
this difficulty, we imposed the local concavity of viscosity supersolutions (or the
local convexity of viscosity subsolutions) for our comparison result. On the other

hand, we note that we obtained the formula for the limit function in [3], i.e.,
Jim up() = di(z) = yle%fn lz -yl (1.6)

uniformly z € Q when Q is convex. ,

Here, we show the uniqueness of solutions of (1.4) under the homogeneous Dirich-
let boundary condition without this concavity assumption and, moreover, prove
(1.6) for general Q. To this end, we compare viscosity supersolutions with the
expected solution d; and viscosity subsolutions with d,, respectively. In the next
section, we present some properties of d;, and using these properties, we show the
uniqueness result for viscosity solutions of (1.4) under the homogeneous Dirichlet
boundary condition.

In order to explain the reason why our equivalent norm in (1.3), could be an
exremal one, we consider the variational problem: For fixed a € [2, 00), minimize
the functional

Go(w, Dw) := %/{)(]th)”dx— /‘;f'wdx : (1.7),

subject to w € Wy*?(). Using the standard argument, we can derive the following
limit PDE which the limit function of minimizers satisfies in the viscosity sense:

min{|Du|q — 1, Fo(Du, D*u)} =0 in Q. (1.8)
Here, for all £ = (§y,...,€s) € R® and X = (X;;) € S", we define F,(¢, X) in the

following manner:

n

Fo(6,X) ==Y |&l°726:X16,1 %

i,j=1;’

Since F, is continuous in (¢, X), using the Jensen’s argument in [5], we can show
the comparison principle for viscosity solutions of (1.8). Moreover, we obtain the
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plgf}o Up(2) = dae () := ylé})fn |z = Ylo»

uniformly z € Q because it is easy to show that d,« is a viscosity solution of (1.8).
Here u, is the minimizer of (1.7), and o* is the Holder conjugate of a, i.e.,

—+ —=1
«a o*

By taking into account of this observation, our choice of the equivalent norm in
(1.3), can be interpreted as the case when a = co.

2. Uniqueness.

In this section, we consider the uniqueness result. To obtain the uniqueness
result, we present some results for the property of d;. Actually, we obtain following
properties.

Lemma 2.1. d; is a viscosity solution of
|Dw|eo —1 =0 in Q. (2.1)

Lemma 2.2. For all z° € Q and (§,X) € J>di(2°), if i € I¢], then X; < 0.
In particular,

Foou(§,X) > 0.

Remark. As a consequence of these properties, we can see that d; is a viscosity
solution of (1.4).

In the rest of this section, we show the comparison principle to obtain the
uniqueness result for viscosity solutions of (1.4). However, since Fi (£, X) contains
a serious discontinuity with respect to £ variables, to our knowledge, we cannot
apply the standard argument to prove the comparison principle for (1.4). To
overcome this difficulty, we separately compare viscosity supersolutions with d;
and viscosity subsolutions with d;. To this end, it will turn out that fine properties
of d; are useful.

First, we recall a construction of strictly viscosity subsolutions (originally by
[5]) which approximate viscosity subsolutions.
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Lemma 2.3 (Lemma 4.2 in [3]). Let u € C(Q) be a viscosity subsolution of
(1.4). For any € > 0, there are a function @ and a constant T > 0 satisfying the
following properties:

max |u — s < €.
Q
U s a viscosity subsolution of
min{|Dw|e — 1, Foo (Dw, D*w)} + 7 =0 in Q.

Using these lemmas, we obtain the comparison principle for viscosity solutions
of (1.4).

Theorem 2.4. Let u € C(Q) be a viscosity subsolution of (1.4) and v € C(2) be
a viscosity supersolution of (1.4). If we assume that supyq u < infaqv, then we
have u < v in Q.

Proof. Without loss of generality, we may assume that

supu < 0 < info.
an an

First, we shall compare v with d;. Our purpose is to show that d; < v in Q.
Here, we note that v is a viscosity supersolution of (2.1). Thus, applying to the
comparison result for viscosity solutions of eikonal equations (see [4]), we obtain
that d; < v in Q.

Next, we shall compare u with d;. We argue by contradiction. We assume that
maxsn(u — d) < maxg(u — d;). By Lemma 2.3, there exist 7 > 0 and a function
u satisfying that @ is a viscosity subsolution of

min{|Dw|o — 1, Foo(Dw, D*w)} +7=0 in Q,
and
magx(ﬂ —dy) < mgx(ﬁ —dy). (2.2)

At a maximum point zy € (2, the gradient of @ and d, are equal at least formally;
Diu(zg) = Ddy(zo). Moreover, we obtain

D2'L_t($o) S Dzdl(zo).
Since d; is a supersolution of (1.4), we have

|Ddy (o) |oo — 1 2 0. (2.3)
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On the other hand, since @ solves
min{|Dile — 1, Foor(D@, D*W)} +7<0  in
we obtain that
Foor(Dii(x0)), D*5i(z0)) + 7 < 0. | (2.4)
This is a contradiction to Lemma 2.2. Indeed, by (2.4) and Lemma 2.2, we have
—7 > Foou(D(z0)), D*(20)) > Fooe(Ddi1(z0), D*d1(z0)) > 0.

By using the standard argument of the theory of viscosity solutions, this formal
argument can be justified. Thus, we get d; > u in Q. O

As a consequence of Theorem 2.4, we can easily show the uniqueness result for
viscosity solutions of (1.4) under the homogeneous Dirichelet boundary condition.
Moreover, we obtain the full sequence convergence of minimizers of (1.3), and the
formula (1.6) for the limit function.

Corollary 2.5. Ifu € C(Q) is a viscosity solution of (1.4) and u = 0 on 02, then
u=d; in Q.

Corollary 2.6. Let u, be the minimizer of variational problem (1.3),. Then, we
obtain that

up = dy as p—>00

uniformly in Q.
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