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Abstract

This paper is concerned with the antimaximum principle for the quasilinear prob-
$1\mathrm{e}\mathrm{m}-\Delta_{p}u=\lambda m(x)|u|^{p-2}u+h(x)$, under Dirichlet or Neumann boundary conditions.
Here $\Delta_{p}$ is the -laplacian and $m(x)$ is aweight function which may change sign. We
will in particular investigate the question of the uniformity of this principle and
provide avariational characterization for the interval of uniformity. An identity of
Picone’s type for the $\mathrm{p}$-laplacian plays an important role in our approach.
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1 Introduction
This paper is concerned with the study of the antimaximum principle (in brief AMP) for
the problem

$-\Delta_{p}u=\lambda m(x)|u|^{p-2}u+h(x)$ in $\Omega$ , $Bu=0$ on $\partial\Omega$ . (1.1)

Here $\Omega$ is abounded domain in $\mathbb{R}^{N}$ , whose smoothness will be specified later, $Apu:=$
$\mathrm{d}\mathrm{i}\mathrm{v}((|\nabla u|^{p-2}\nabla u),$ $1<p<\infty$ , is the $\mathrm{p}$-laplacian and $Bu=0$ represents either the

Dirichlet or the Neumann homogeneous boundary conditions.
The original form of the AMP concerns the case where $p=2$ (linear operator) and

$m\equiv 1$ (no weight). It reads as follows :given $h>0$ there exists $\delta=\delta(h)>0$ such that

if $\lambda_{1}<\lambda<\lambda_{1}+\delta$ , then any solution $u$ of (1.1) (
$\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\not\equiv$

$p=2$ and $m\equiv 1$ ) satisfies $u<0$
in $\Omega$ (cf. [8]). We will refer to such asituation by saying that “the AMP holds at the
right of $\lambda_{1}$

” Here $\lambda_{1}$ denotes the principal eigenvalue of $-\Delta$ under the corresponding
boundary condition. It is also shown in [8] that $\delta$ can be taken independently of $h$ for the
Neumann problem in dimension $N=1$ . In such asituation we will say that “the AMP
holds uniformly at the right of $\lambda_{1}"$ .

The AMP was extended in [17] to the case of alinear operator with weight, i.e. $(^{*})p=2$

and $m$ indefinite in (1.1). The proof in [17] involves as in [8] estimating the projections of
the solution onto the eigenspace associated to the principal eigenvalue and onto one of its
complementary subspaces. The AMP was also extended in [13] to the case of anonlinear
operator without weight, i.e. $(^{**})1<p<\infty$ and $m\equiv 1$ in (1.1). The argument here
is quite different. It goes by contradiction and involves apreliminary nonexistence result
whose proof uses Diaz-Saa’s inequality. Further investigations in each of the two cases $(^{*})$

and $(^{**})$ were carried out recently in [16] and [5] respectively.
It is our purpose in this paper to study the general situation of anonlinear operator

with weight, i.e. $1<p<\infty$ and $m$ indefinite in (1.1). We will in particular investigate
the question of the uniformity of the AMP and provide avariational characterization for
the interval of uniformity.

To give an idea of our results, let us consider in (1.1) the Neumann problem with a
weight $m$ which changes sign in O. Suppose first $\int_{\Omega}m\neq 0$ , say $\int_{\Omega}m<0$ . It is then known
that there are two principal eigenvalues :0and apositive one which we denote by $\lambda^{*}$ (cf.
[19], [10] as well as section 2below). We show that the AMP holds at the right of $\lambda^{*}$ and
at the left of 0. Moreover it is non uniform when $p\leq N$ and uniform when $p>N$ . In the
latter case, the intervals of uniformity are exactly $\lambda^{*}<\lambda\leq\overline{\lambda}(m)\mathrm{a}\mathrm{n}\mathrm{d}-\overline{\lambda}(-m)\leq\lambda<0$,
where

$\overline{\lambda}(m):=\inf${ $\int_{\Omega}|\nabla u|^{p}$ : $u\in W^{1,p}(\Omega)$ , $\int_{\Omega}m|u|^{p}=1$ and $u$ vanishes somewhere in $\overline{\Omega}$ }.
(1.2)

We also show in this latter case that the AMP still holds at the right of $\overline{\lambda}(m)$ and at the
left $\mathrm{o}\mathrm{f}-\overline{\lambda}(-m)$ , of course now non uniformly. Suppose now $\int_{\Omega}m=0$ . In this singula
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case, 0is the unique principal eigenvalue. We show that the AMP holds at the right and
at the left of 0. Moreover it is non uniform when $p\leq N$ and uniform when $p>N$ . In the
latter case the intervals of uniformity are exactly $0<\lambda\leq\overline{\lambda}(m)$ and $-\overline{\lambda}(-m)\leq\lambda<0$,
with $\overline{\lambda}(m)$ as in (1.2). In this latter case also the AMP still holds (non uniformly) at the
right of $\overline{\lambda}(m)$ and at the left $\mathrm{o}\mathrm{f}-\overline{\lambda}(-m)$ . We will also see that the AMP cannot hold far
away to the right of $\overline{\lambda}(m)$ or to the left $\mathrm{o}\mathrm{f}-\overline{\lambda}(-m)$ . This is true for all $p$ , with asuitable
extension of definition (1.2) for $p\leq N$ (cf. formula (3.1)).

In each of the two particular cases $(^{*})$ and $(^{**})$ considered above, our present results
reduce to those in [16] and [5] respectively. Some our arguments of course are inspired
from [16], [5]. The main difference occurs in the proof of the non uniformity and, in case
of uniformity, in the proof of the sharpness of A. Indeed, in the case $(^{**})$ considered in [5],
the proof of these facts was based on some properties of the asymptotic behaviour of the
first curve of the corresponding Fucik spectrum. But it was observed recently that these
properties are not valid anymore in the presence of ageneral weight (cf. [1], [4]). This
difficulty was bypassed in the case (’) considered in [16] through some argument which
involves “completing asquare” (cf. formula (2.9) in [16]). This latter argument of course
does not extend to the nonlinear case. But it turns out that one of its consequences can be
suitably adapted and derived for the $\mathrm{p}$-laplacian, which suffices for our purposes. This is
the inequality provided by Lemmas 2.5 and 2.12 (as well as 4.2). Its proof uses an identity
of Picone’s type for the $\mathrm{p}$-laplacian which was established recently in [2]. We observe that
this inequality also enters the proof of the preliminary nonexistence results which are used
to derive the AMP itself (cf. Propositions 2.4 and 2.7, as well as 4.1 and 4.3).

Our results relative to the Neumann problem, as briefly described above, are given in
details in section 3. The case of the Dirichlet problem is considered in section 5. We
show in particular that for the Dirichlet problem, whatever the weight and whatever $p$ , the
AMP is always nonuniform. This should be compared with the recent result of [4] which
says that for the Dirichlet problem, if the weight has compact support in $\Omega$ and if $p>N$ ,
then the first curves in the corresponding $\mathrm{F}\mathrm{h}\check{\mathrm{c}}\mathrm{i}\mathrm{k}$ spectrum are not asymptotic to the trivial
horizontal and vertical lines of that spectrum (cf. also [1] when $p=2$ and $N=1$ ).

In sections 2and 4we collect some preliminary results on the principal eigenvalues for
the Neumann and Dirichlet problems respectively. Less regularity on the domain is needed
in parts of these two sections.

The authors wish to express their gratitude for the referee’s careful and detailed com-
ments.

2Principal eigenvalues in the Neumann case
Part of this paper is concerned with the Neumann problem

$-\Delta_{p}u=\lambda m(x)|u|^{p-2}u+h(x)$ in $\Omega$ , $\partial u/\partial\nu=0$ on an. (2.1)

Here $\Omega$ is abounded domain in $\mathbb{R}^{N}$ with Lipschitz boundary and $\partial/\partial\nu$ represents, at
least formally, the derivative of $u$ in the direction of the unit exterior normal to $\partial\Omega$ . The
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real-valued functions m and h will always be assumed to belong to $L”(\mathrm{O})$ , with, unless
otherwise stated, the assumption that m changes sign in Q, i.e.

meas{x $\in\Omega$ : $m(x)>0$} $>0$ and meas{z $\in\Omega$ : $m(x)<0$} $>0$ . (2.2)

Also, without loss of generality, we can assume

$|m(x)|<1$ $\mathrm{a}$ . $\mathrm{e}$ . in Q. (2.3)

Note that more regularity on 0will be required later.
Solutions of (2.1) (or of (2.6) below) are always understood in the weak sense : $u\in$

$W^{1,p}(\Omega)$ with

$\int_{\Omega}|\nabla u|^{p-2}\nabla u\nabla\varphi=\lambda\int_{\Omega}m|u|^{p-2}u\varphi+\int_{\Omega}h\varphi$ $\forall\varphi\in W^{1,p}(\Omega)$ . (2.4)

Adapting to the Neumann problem the $L^{\infty}$ estimates of [3] and using the regularity results
of [11], one has that any solution of (2.1) (or (2.6) below) belongs to $L^{\infty}(\Omega)\cap C^{1}(\Omega)$ .

Our purpose in this preliminary section is to collect some results relative to the principal
eigenvalues of

-Apu $=\lambda m(x)|u|^{p-2}u$ in $\Omega$ , $\partial u/\partial\nu=0$ on $\partial\Omega$ . (2.3)

Some of these results can be found in [19], [10], although not with the same approach nor
with the same degree of generality. For the sake of completeness and for later references,
some proofs will be sketched.

The fundamental tool is the following form of the maximum principle.

Proposition 2.1 Let $u$ be a solution of
$-\Delta_{p}u+a_{0}(x)|u|^{p-2}u=h$ in $\Omega$ , $\partial u/\partial\nu=0$ on $\partial\Omega$ , (2.6)

where $a_{0}\in L^{\infty}(\Omega)$ , $a_{0}\geq 0$ , $h\in L^{\infty}(\Omega)$ ,
$h>0\not\equiv$

. Then

$u>0$ in $\Omega$ (2.7)

Proof. As observed above $u\in C^{1}(\Omega)$ and so (2.7) makes sense in the usual way. Writing
$u=u^{+}-u^{-}$ with $u^{\pm}= \max\{\pm u, 0\}$ and taking $-u^{-}$ as testing function in (2.6), one
deduces $u\geq 0$ in Q. The maximum principle of [24] then implies $u>0$ in Q. Q. E. D.

We are thus interested in the principal eigenvalues of (2.5). Clearly 0is aprincipal
eigenvalue, with the nonzero constants as eigenfunctions. We also observe that if

$u>0\not\equiv$
is a

solution of (2.1) with $h\geq 0$ (for instance an eigenfunction of (2.5) associated to aprincipal
eigenvalue), then $u>0$ in Q. (This follows ffom Proposition 2.1 by writing equation (2.1
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as $\ovalbox{\tt\small REJECT}_{p}\mathrm{u}\ovalbox{\tt\small REJECT}$
$\mathrm{A}|\mathrm{u}|^{p}2u\ovalbox{\tt\small REJECT} \mathrm{A}(\mathrm{r}\mathrm{n}$ $\ovalbox{\tt\small REJECT}_{\ovalbox{\tt\small REJECT}}1\ovalbox{\tt\small REJECT} \mathrm{u}|^{p}2u\ovalbox{\tt\small REJECT}$ h and using (2.3); $\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}+\mathrm{i}\mathrm{s}$ used if A $\ovalbox{\tt\small REJECT}$ 0, \yen if

A $<0$).
The following expression will play acentral role in our approach

$\lambda^{*}(m):=\inf${ $\int_{\Omega}|\nabla u|^{p}$ : $u\in W^{1,p}(\Omega)$ and $\int_{\Omega}m|u|^{p}=1$ }. (2.8)

Proposition 2.2 (i) Suppose $\int_{\Omega}m<0$ . Then $\lambda^{*}(m)>0$ and $\lambda^{*}(m)$ is the unique nonzero
principal eigenvalue; moreover the interval]0, $\lambda^{*}(m)$ [ does not contain any eigenvalue. (ii)
Suppose $\int_{\Omega}m\geq 0$ . Then $\lambda^{*}(m)=0$;moreover, if $\int_{\Omega}m=0$ , then 0is the unique principal
eigenvalue.

Proposition 2.2 of course also applies to the weight $-m$ . In particular, if $\int_{\Omega}m>0$ ,
$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}-\lambda^{*}(-m)$ is the unique nonzero principal eigenvalue of (2.5).

The statements relative to the unicity of the principal eigenvalues in Proposition 2.2
follow from Proposition 2.4 below. The proof of the remaining parts of Proposition 2.2 can
be easily adapted from that of an analogous result in [16]. It uses the following lemma,
whose proof is also easily adapted from that of acorresponding lemma in [16].

Lemma 2.3 Assume $\int_{\Omega}m<0$ . Then there eists a constant $c>0$ such that $\int_{\Omega}|\nabla u|^{p}\geq$

$c \int_{\Omega}|u|^{p}$ for all $u\in W^{1,p}(\Omega)$ with $\int_{\Omega}m|u|^{p}>0$ .

Proposition 2.4 Suppose $\int_{\Omega}m\leq 0$ . If A $\not\in[0, \lambda^{*}(m)]$ , then problem (2.1) with $h\geq 0$ has
no solution

$u>0\not\equiv$
.

Proof. Assume that there exists asolution $u>0$ of (2.1) for some $\lambda\in \mathrm{R}$ and some h $\geq 0$ .

Applying Proposition 2.1, we get $u>0$ in O. So Lemma 2.5 below can be applied, which
gives

A $\int_{\Omega}m|\varphi|^{p}\leq\int_{\Omega}|\nabla\varphi|^{p}$

for all $\varphi\in W^{1,p}(\Omega)\cap L^{\infty}(\Omega)\cap C^{1}(\Omega)$ with $\varphi\geq 0$ . By density this inequality still holds for
all $\varphi\in W^{1,p}(\Omega)$ . This implies $\lambda\leq\lambda^{*}(m)$ as well as -A $\leq\lambda^{*}(-m)$ . Since $\int_{\Omega}(-m)\geq 0$ ,
one has $\lambda^{*}(-m)=0$ by Proposition 2.2, and we conclude $\lambda\in[0, \lambda^{*}(m)]$ . Q. E. D.

Lemma 2.5 Let $u$ be a solution of (2.1) with $h\geq 0$ and $u>0$ in Q. Then, for any
$\varphi\in W^{1,p}(\Omega)\cap L^{\infty}(\Omega)\cap C^{1}(\Omega)$ with $\varphi\geq 0$ , one has $h\varphi^{\rho}/u^{p-1}\in L^{1}(\Omega)$ and

$\lambda\int_{\Omega}m\varphi^{p}+\int_{\Omega}h\varphi^{\mathrm{p}}/u^{p-1}\leq\int_{\Omega}|\nabla\varphi|^{p}$ . (2.9)

Moreover equality holds in (2.9) if and only if $\varphi$ is a multiple of $u$ .
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Proof. It is inspired from [2] (which deals with the Dirichlet problem). For $u,\mathrm{p}|$ E $C^{1}(\mathrm{O})$

with u $>\mathit{0}$ and |p $\ovalbox{\tt\small REJECT}$ 0 in Q, denote

$R(\varphi, u)$ $:=$ $|\nabla\varphi|^{p}-|\nabla u|^{p-2}\nabla u\nabla(\varphi^{p}/u^{p-1})$ ,

$L(\varphi, u)$ $:=$
$| \nabla\varphi|^{p}+(p-1)\frac{\varphi^{\mathrm{p}}}{u^{p}}|\nabla u|^{p}-p\frac{\varphi^{p-1}}{u^{\rho-1}}|\nabla u|^{p-2}\nabla u\nabla\varphi$.

The following version of Picone’s identity is proved in [2] : $R(\varphi, u)=L(\varphi, u)\geq 0$ in $\Omega$ ,
with moreover $L(\varphi, u)=0$ in $\Omega$ if and only if $\varphi$ is amultiple of $u$ . (The equality of $R(\varphi,u)$

with $L(\varphi, u)$ follows by direct calculation, and the rest can be deduced from Minkowski’s
inequality). Let now $u$ and $\varphi$ be as in the statement of Lemma 2.5. Applying the above
to $u1$ $\epsilon$ with $\epsilon>0$ and to $\varphi$ , we obtain, for $\Omega_{0}$ adomain with compact closure in $\Omega$ ,

0 $\leq$ $\int_{\Omega_{0}}L(\varphi, u+\epsilon)\leq\int_{\Omega}L(\varphi, u+\epsilon)=\int_{\Omega}R(\varphi, u+\epsilon)$

$=$ $\int_{\Omega}|\nabla\varphi|^{p}-\int_{\Omega}|\nabla u|^{p-2}\nabla u\nabla(\varphi^{p}/(u+\epsilon)^{p-1})$

$=$ $\int_{\Omega}|\nabla\varphi|^{p}-\lambda\int_{\Omega}m(\frac{u}{u+\epsilon})^{p-1}\varphi^{\mathrm{p}}-\int_{\Omega}h\frac{\varphi^{p}}{(u+\epsilon)^{p-1}}$ ,

where we have used that $\varphi^{p}/(u+\epsilon)^{p-1}$ belongs to $W^{1,p}(\Omega)$ and consequently is an admissible
testing function in (2.1). Letting $\epsilon\downarrow 0$ , one applies first the dominated convergence theo

rem to $\int_{\Omega_{0}}L(\varphi, u+\epsilon)$ and to $\int_{\Omega}m(u/(u+\epsilon))^{p-1}\varphi^{p}$ , and then the monotone convergence

theorem to $\int_{\Omega}h\varphi^{p}/(u+\epsilon)^{p-1}$ . This yields $h\varphi^{p}/u^{p-1}\in L^{1}(\Omega)$ and

$0 \leq\int_{\Omega_{0}}L(\varphi, u)\leq\int_{\Omega}|\nabla\varphi|^{p}-\lambda\int_{\Omega}m\varphi^{p}-\int_{\Omega}h\varphi^{p}/u^{p-1}$ . (2.10)

So (2.9) follows. Moreover, if equality holds in (2.9), then, by (2.10), $L(\varphi,u)=0$ on $\Omega_{0}$ ,
and so on $\Omega$ since $\Omega_{0}$ is arbitrary. The conclusion that $\varphi$ is amultiple of $u$ then follows.
Q. E. D.

Remark 2.6 Taking $\varphi^{p}/u^{p-1}$ as testing function in the study of the $p$-laplacian is awell-
known technical device (cf. e.g. [12]). This device is already present for $p=2$ in [18],
although in anon explicit way.

Proposition 2.7 Suppose $\int_{\Omega}m\leq 0$ . Then problem (2.1) with
$h>0\not\equiv$

does not admit any

solution if A $=0$ or A $=\lambda^{*}(m)$ . It admits an unique solution, which $is>0$ in $\Omega$ , if
$0<\lambda<\lambda^{*}(m)$ .

Proof. Nonexistence when $\lambda=0$ immediately follows by taking $\varphi=1$ as testing function
in (2.1). Nonexistence in the case $\lambda=\lambda^{*}(m)$ requires more care. Assume by contradictio$\mathrm{n}$
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that (2.1) with A $\ovalbox{\tt\small REJECT} \mathrm{A}’(\mathrm{r}\mathrm{n})$ has asolution u. We first show that u $>\mathit{0}$ in O. Indeed if
u $ 0, then taking $-\ovalbox{\tt\small REJECT} \mathrm{u}$ as testing function in (2.1) gives

$\int_{\Omega}|\nabla u^{-}|^{p}=\lambda^{*}(m)\int_{\Omega}m|u^{-}|^{p}-\int_{\Omega}hu^{-}$

and consequently, since $h\geq 0$ , $u^{-}$ is aminimizer in the defiriition of $\lambda^{*}(m)$ and $\int_{\Omega}hu^{-}=0$ .
But then, by Lagrange multipliers, $u^{-}$ solves

$-\Delta_{p}u^{-}=\lambda^{*}(m)m|u^{-}|^{p-2}u^{-}$ in $\Omega$ , $\partial u^{-}/\partial\nu=0$ on $\partial\Omega$ ,

and consequently, by Proposition 2.1 applied to $-\Delta_{p}u^{-}+\lambda^{*}(m)|u^{-}|^{p-2}u^{-}=\lambda^{*}(m)(m+$

$1)|u^{-}|^{p-2}u^{-}$ , $u^{-}$ is $>0$ in $\Omega$ , which contradicts $\int_{\Omega}hu^{-}=0$ . So $u\geq 0$ in $\Omega$ , and applying
once more Proposition 2.1, one gets $u>0$ in 0. Lemma 2.5 can thus be applied, which
gives

$\lambda^{*}(m)\int_{\Omega}m\varphi^{\rho}+\int_{\Omega}h\varphi^{\rho}/u^{p-1}\leq\int_{\Omega}|\nabla\varphi|^{p}$

for all $\varphi\in W^{1,p}(\Omega)\cap L^{\infty}(\Omega)\cup C^{1}(\Omega)$ with $\varphi\geq 0$ . Taking for $\varphi$ apositive eigenfunction
associated to $\lambda^{*}(m)$ , we deduce $\int_{\Omega}h\varphi^{p}/u^{p-1}\leq 0$ , which is impossible since $\varphi>0$ in $\Omega$ and
$h>0\not\equiv$

.

We now consider (2.1) with $0<\lambda<\lambda^{*}(m)$ and first prove the existence of asolution.
This can be done for instance by minimization of the functional

$\Phi(u):=\int_{\Omega}|\nabla u|^{p}-\lambda\int_{\Omega}m|u|^{p}-p\int_{\Omega}hu$ .

The existence of aminimum for 4(and consequently of asolution to (2.1)) will follow
by standard arguments if we show that $\Phi$ is coercive. For that purpose first note that
Proposition 2.2 implies $\int_{\Omega}m<0$ (since $\lambda^{*}(m)>0$). We will distinguish two cases : $u\in A$

or $u\in B$ , where $A$ (resp. $B$ ) denotes the set of those $u\in W^{1,p}(\Omega)$ such that $\int_{\Omega}m|u|^{p}>0$

(resp. $\leq 0$). For $u\in A$ one has, using $0<\lambda<\lambda^{*}$ and Lemma 2.3,

$\Phi(u)$ $\geq$ $(1- \frac{\lambda}{\lambda^{*}(m)})\int_{\Omega}|\nabla u|^{p}-p\int_{\Omega}hu$

$\geq$ $c_{1} \int_{\Omega}|\nabla u|^{p}+c_{2}\int_{\Omega}|u|^{p}-p\int_{\Omega}hu$

for some constants Ci, $c_{2}>0$ . So $\Phi$ is coercive on $A$ . For $u\in B$ one has, using $\lambda>0$ and
Lemma 2.8 below,

$\Phi(u)\geq c_{3}\int_{\Omega}|\nabla u|^{p}+c_{4}\int_{\Omega}|u|^{p}-p\int_{\Omega}hu$

for some constants Ci, $c_{4}>0$ . So $\Phi$ is also coercive on $B$ . The existence of at least
one solution to (2.1) is thus proved. Now if $u$ is asolution of (2.1), taking as before
$-u^{-}$ as testing function and applying Proposition 2.1, one gets $u>0$ in O. We will
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now prove unicity. Suppose that v is another solution of (2.1). Applying Lemma 2.5 to
$\ovalbox{\tt\small REJECT}_{p}\mathrm{u}\ovalbox{\tt\small REJECT} Am|u|" u$ $+h$ with tp $\ovalbox{\tt\small REJECT}$ v gives

(2.12)

$\lambda\int_{\Omega}mv^{p}+\int_{\Omega}hv^{p}/u^{p-1}\leq\int_{\Omega}|\nabla v|^{p}=\lambda\int_{\Omega}mv^{p}+\int_{\Omega}hv$ . (2.11)

Consequently
$\int_{\Omega}hv(1-\frac{v^{p-1}}{u^{p-1}})\geq 0$ .

Interchanging $u$ and $v$ and adding, we get

$\int_{\Omega}h[v(1-\frac{v^{p-1}}{u^{p-1}})+u(1-\frac{u^{p-1}}{v^{p-1}})]\geq 0$ .

But the bracket $[$ . . . $]$ in (2.12) is $\leq 0$ , which implies that equality holds in (2.12). It
follows that equality also holds in (2.11). Lemma 2.5 then yields that $v=cu$ in $\Omega$ for some
constant $c$ . Using in (2.1) the fact that $h\not\equiv \mathrm{O}$ finally gives $c=1$ , i.e. $v=u$. Q. E. D.

Lemma 2.8 Assume $\int_{\Omega}m\neq 0$ and let $\lambda>0$ . Then there exists a constant $c>0$ such
that $\int_{\Omega}|\nabla u|^{p}-\lambda\int_{\Omega}m|u|^{p}\geq c\int_{\Omega}|u|^{p}$ for all $u \in B:=\{u\in W^{1,p}(\Omega) : \int_{\Omega}m|u|^{p}\leq 0\}$ .

Proof. Assume by contradiction that for each $k=1,2$ , $\ldots$ , there exists $u_{k}\in B$ such that
$\int_{\Omega}|\nabla u_{k}|^{p}-\lambda\int_{\Omega}m|u_{k}|^{p}\leq 1/k\int_{\Omega}|u_{k}|^{p}$. Considering $v_{k}:=u_{k}/||u_{k}||_{p}$ , one has

$0 \leq\int_{\Omega}|\nabla v_{k}|^{p}\leq\int_{\Omega}|\nabla v_{k}|^{p}-\lambda\int_{\Omega}m|v_{k}|^{p}arrow 0$ .

It follows that for asubsequence, $v_{k}$ converges in $W^{1,p}(\Omega)$ to anonzero constant function

$v$ , which satisfies-A $\int_{\Omega}m|v|^{p}=0$ . This contradicts $\int_{\Omega}m\neq 0$ . Q. E. D.

Proposition 2.9 Suppose $\int_{\Omega}m\leq 0$ . The principal eigenvalues 0and $\lambda^{*}(m)$ are simple.

Proof. This is clearly true for $\lambda=0$ . So let us consider $\lambda^{*}(m)$ . If $u$ is an eigenfunction
associated to $\lambda^{*}(m)$ , then standard arguments as above based on Proposition 2.1 give that
if $u^{-}\equiv 0$ then $u>0$ in $\Omega$ and if $u^{-}\not\equiv 0$ then $u<0$ in O. Similarly for another eigenfunction
$v$ associated to $\lambda^{*}(m)$ . So replacing if necessary $u$ or $v\mathrm{b}\mathrm{y}-u\mathrm{o}\mathrm{r}-v$ , we can assume $u>0$
and $v>0$ . Applying Lemma 2.5 $\mathrm{t}\mathrm{o}-\Delta_{p}u=\lambda^{*}(m)|u|^{p-2}u$ with $\varphi=v$ then gives

$\lambda^{*}(m)\int_{\Omega}mv^{p}\leq\int_{\Omega}|\nabla v|^{p}$ . (2.13)

In fact equality holds in (2.13) since $v$ is an eigenfunction associated to $\lambda^{*}(m)$ . Conse-
quently, by Lemma 2.5, $v$ is amultiple of $u$ . Q. E. D.
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Remark 2.10 The above results can easily be adapted to the simpler case where $m$ does
not change sign in 0, say

$m>0\not\equiv$
. In this case 0is the unique principal eigenvalue. Problem

(2.1) with
$h>0\not\equiv$

has no solution $u\geq 0$ if $\lambda>0$ , and no solution at all if $\lambda=0$;its (unique)

solution is $>0$ in $\Omega$ if $\lambda<0$ .

More regularity on $\Omega$ will be required to study the AMP. In the final part of this section,
we assume $\Omega$ of class $C^{1,1}$ and indicate briefly how some of the previous results should be
modified.

Under this stronger assumption on $\Omega$ , any solution $u$ of (2.4) belongs to $C^{1,\gamma}(\overline{\Omega})$ for
some $\gamma=\gamma(N,p, M)\in]\mathrm{O}$ , 1 [, where $M$ is abound for $|\lambda|$ , $||m||_{\infty}$ and $||h||_{\infty}$ ;moreover the
following estimate holds :

$||u||_{C^{1.\gamma}(\overline{\Omega})}\leq C=C(\Omega, N,p, M, M’)$ (2.14)

where $M’$ is abound for $||u||_{\infty}$ (cf. [20]). One also has that if $u$ solves (2.4), then

$\frac{\partial u}{\partial\nu}=0$ on an in the usual pointwise sense. (2.15)

The proof of (2.15) is given in the annex. These above considerations on the regularity
of the solutions and on the meaning of the boundary condition of course also apply to
solutions of (2.6).

The maximum principle of Proposition 2.1 can be strengthened in the following way.

Proposition 2.11 Let tz be a solution of (2.6) with $a_{0}\in L^{\infty}(\Omega)$ , $a_{0}\geq 0$ , $h\in L^{\infty}(\Omega)$ ,
$h>0\not\equiv$

. Then $u>0$ in 0.

Proof. Arguing as in the proof of Proposition 2.1, one deduces from [24] that $u>0$ in
$\Omega$ with $\partial u/\partial\nu<0$ at the points of $\partial\Omega$ where $u=0$ (since a $C^{1,1}$ domain satisfies the
interior ball condition). But by (2.15) above, $\partial u/\partial\nu=0$ on CM2 in the usual pointwise
sense. Consequently $u$ cannot vanish on $\partial\Omega$ and so $u>0$ on $\overline{\Omega}$ . Q. E. D.

It follows as before from Proposition 2.11 that any solution
$u>0\not\equiv$

of (2.1) with $h\geq 0$

satisfies $u>0$ in $\overline{\Omega}$ .
The inequality of Lemma 2.5 remains valid without any restriction on the sign of $h$ ,

which will be useful later in the proof of Theorem 3.5. More precisely we have

Lemma 2.12 Let $u$ be a solution of (2.1) with $u>0$ in $\overline{\Omega}$ . Then

A $\int_{\Omega}m|\varphi|^{p}+\int_{\Omega}h|\varphi|^{p}/u^{p-1}\leq\int_{\Omega}|\nabla\varphi|^{p}$ (2.16)

for any $\varphi\in W^{1,p}(\Omega)$ .
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Proof. One first derives (2.16) for tp cE $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}_{1}p}(\mathrm{O})\mathrm{m}$ $L”(\mathrm{O})\mathrm{f}^{\ovalbox{\tt\small REJECT} 3}C^{1}(\mathrm{O})$ with tP $\ovalbox{\tt\small REJECT}$ 0. The
argument here can in fact be slightly simplified with respect to that in the proof of Lemma
2.5 since $t\mathit{7}/u^{p}1\mathrm{E}$ $W’ p(\mathrm{O})$ and so there is no need to introduce u-l- $\epsilon$ nor $\mathrm{Q}_{0}$ . One then
deduces (2.16) for \langle pE $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}_{\mathrm{y}}p}(\mathrm{O})$ by astandard density argument. Q. E. D.

Finally, in Proposition 2.7, the solution $u$ is $>0$ in $\overline{\Omega}$ when $0<\lambda<\lambda^{*}(m)$ .

3Antimaximum Principle in the Neumann case
We consider in this section problem (2.1) with $\Omega$ of class $C^{1,1}$ and $m$ , $h$ as before, i.e. in
$L^{\infty}(\Omega)$ with (2.2), (2.3). The following expression will play an important role in our study
of the AMP :

$\overline{\lambda}(m):=\inf$ { $\int_{\Omega}|\nabla u|^{p}$ : $u\in W^{1,p}(\Omega)$ , $\int_{\Omega}m|u|^{p}=1$ and $u$ vanishes on some ball in $\Omega$ }.
(3.1)

It is easily seen that when $p>N$ , this definition coincides with that given in (1.2). (This
follows from the easily verified fact that if $p>N$ and $u\in W^{1,p}(\Omega)$ is $\geq 0$ and vanishes at
$x_{0}\in\overline{\Omega}$ , then $(u-\epsilon)^{+}$ vanishes on some ball in $\Omega$ and converges to $u$ in $W^{1,p}(\Omega))$ . Clearly
$\lambda^{*}(m)\leq\overline{\lambda}(m)$ . Whether these two numbers differ or are equal depends on $p$ and $N$ , as is
seen from the following

Lemma 3.1 If $p\leq N$ , then $\lambda^{*}(m)=\overline{\lambda}(m)$ . If $p>N$ , then $\lambda^{*}(m)<\overline{\lambda}(m)$ . Moreover, in
the latter case, there is no eigenvalue in]\lambda (m), $\overline{\lambda}(m)]$ .

As in section 2we can limit ourselves without loss of generality in the study of (2.1) to
the case where

$\int_{\Omega}m\leq 0$ (3.2)

We recall that if $\int_{\Omega}m<0$ and $0<\lambda<\lambda^{*}(m)$ , then the solution $u$ of (2.1) with
$h>0\not\equiv$

is $>0$ in $\overline{\Omega}$ . If $\int_{\Omega}m=0$ , then no result of the type “

$h>0\not\equiv$
implies $u\geq 0$”holds. The

following four theorems concern the AMP. Theorem 3.2 states its validity in general and
its non uniformity when $p\leq N$ . Theorem 3.3 characterizes the interval of uniformity when
$p>N$ . Theorem 3.4 shows that some form of the AMP still holds outside this interval of
uniformity. Finally Theorem 3.5 makes precise the statement in the introduction that the
AMP cannot hold far away to the right of $\overline{\lambda}(m)$ or to the left $\mathrm{o}\mathrm{f}-\overline{\lambda}(-m)$ .

Theorem 3.2 Assume (3.2). (i) Given
$h>0\not\equiv$ ’ there exists $\delta=\delta(h)>0$ such that if

$\lambda^{*}(m)<\lambda<\lambda^{*}(m)+\delta or-\delta<\lambda<0$, then any solution $u$ of (2.1) satisfies $u<0$ in $\overline{\Omega}$ .
(ii) If 7 $\leq N$ , then no such $\delta$ independent of $h$ exists (either at the right of $\lambda^{*}(m)$ or at
the left of 0).
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Theorem 3.3 Assume (3.2) and p $>N$ . (i) If $\mathrm{A}’(\mathrm{m})<\mathrm{A}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}(\mathrm{v}\mathrm{r}\mathrm{r})$ or $-\ovalbox{\tt\small REJECT}(-\mathrm{m})\ovalbox{\tt\small REJECT}$ A $<0$ ,
then any solution u of (2.1) with $h>0$ satisfies u $<\mathit{0}$ in $\langle\ovalbox{\tt\small REJECT}$ . (ii) $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}(m)$ and $-\ovalbox{\tt\small REJECT}(-\mathrm{m})$ are

$\mathrm{z}$

respectively the largest and the smallest numbers such that the preceding implications hold.

Theorem 3.4 Assume (3.2) and $p>N$ . (i) Given
$h>0\not\equiv$ ’there exists $\delta$ $=\delta(h)>0$ such

that if $\overline{\lambda}(m)<\lambda<\overline{\lambda}(m)+\delta or-\overline{\lambda}(-m)-\delta<\lambda<-\overline{\lambda}(-m)$, then any solution $u$ of (2.1)

satisfies $u<0$ in $\overline{\Omega}$ . (ii) No such $\delta$ independent of $h$ exists (either at the right of $\overline{\lambda}(m)$ or
at the left $of-\overline{\lambda}(-m))$ .

Theorem 3.5 Assume (3.2). (i) Given $\epsilon>0$ , there exists
$h>0\not\equiv$

such that for any $\lambda\geq$

$\overline{\lambda}(m)+\epsilon$ , (2.1) has no solution $u$ satisfying $u<0$ in $\overline{\Omega}$ . (ii) Given $\epsilon>0$ , there exists
$h>0\not\equiv$

such that for any $\lambda\leq-\overline{\lambda}(-m)-\epsilon$ , (2.1) has no solution $u$ satisfying $u<0$ in Q.

We thus see that if (3.2) holds, then the following four numbers

$-\overline{\lambda}(-m)\leq-\lambda^{*}(-m)=0\leq\lambda^{*}(m)\leq\overline{\lambda}(m)$

control the domain of validity of the maximum principle and of the antimaximum principle.
We now turn to the proof of the preceding results.

Proof of Lemma 3.1. The proof that $\lambda^{*}(m)=\overline{\lambda}(m)$ in the case $p\leq N$ can be easily
adapted from that of asimilar result in [16]. We thus turn to the proof that if $p>N$ , then

$\lambda^{*}(m)<\overline{\lambda}(m)$ . (3.3)

As observed at the beginning of this section, when $p>N,\overline{\lambda}(m)$ is equivalently defined
by (1.2). Since $p>N$ , $W^{1,p}(\Omega)$ is compactly imbedded into $C(\overline{\Omega})$ , and consequently the
infimum in (1.2) is achieved. Replacing $u$ by $|u|$ if necessary, we can assume that this
infimum is achieved at some $u$ with $u\geq 0$ .
Claim, u vanishes at exactly one point $x_{0}$ in $\overline{\Omega}$ .

The proof of this claim can easily be adapted ffom that of asimilar result in [5], [16].
The idea of the proof of (3.3) is now the following. Define, for $\epsilon>0$ , $u_{\epsilon}(x):=$

$\max\{u(x), \epsilon\}$ . Clearly $u_{\epsilon}arrow u$ in $W^{1,p}(\Omega)$ as $\epsilonarrow 0$ . We will show that for $\epsilon>0$ suf-
ficiently small

$\int_{\Omega}|\nabla u_{\epsilon}|^{p}/\int_{\Omega}m|u_{\epsilon}|^{p}<\int_{\Omega}|\nabla u|^{p}/\int_{\Omega}m|u|^{p}$. (3.4)

This will imply (3.3) since the left-hand side is $\geq\lambda^{*}(m)$ (because $\int_{\Omega}m|u_{\epsilon}|^{p}>0$ for $\epsilon$ small)
and the right-hand side is equal to $\overline{\lambda}(m)$ .

To prove (3.4) we write the difference between the two sides of (3.4) as

$\frac{\int_{\Omega}|\nabla u_{\epsilon}|^{p}}{\int_{\Omega}m|u_{\epsilon}|p}-\frac{\int_{\Omega}|\nabla u|^{p}}{\int_{\Omega}mu^{p}}=\frac{-\int_{B_{\mathrm{e}}}|\nabla u|^{p}\int_{\Omega}mu^{p}+\int_{\Omega}|\nabla u|^{p}(\int_{B_{\epsilon}}mu^{p}-\epsilon^{p}\int_{B_{e}}m)}{(\int_{\Omega}mu^{\mathrm{p}}-\int_{B_{\epsilon}}mu^{p}+\epsilon^{p}\int_{B_{\epsilon}}m)(\int_{\Omega}mu^{p})}$
(3.5)
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where $B_{\epsilon}:=\{u<\epsilon\}$ . Since $u$ vanishes only at $\# 0$ , $B_{\epsilon}$ decreases to $\{x_{0}\}$ as $\epsilon\downarrow 0$ , and
consequently the measure of $B_{\epsilon}arrow \mathrm{O}$ . The denominator in (3.5) thus goes to $( \int_{\Omega}mu^{p})^{2}=1$ ,
while the second and third terms of the numerator are $o(\epsilon^{p})$ . We will show that the first
term in the numerator of (3.5) satisfies

$- \frac{1}{\epsilon}\int_{B_{\epsilon}}|\nabla u|^{p}\int_{\Omega}mu^{p}arrow \mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e}$ $r<0$ (3.6)

as $\epsilonarrow 0$ . Combining these informations, one deduces that (3.5) is $<0$ for $\epsilon>0$ sufficiently
small, and consequently (3.4) holds.

To prove (3.6), we first observe that the minimizer $u$ of (1.2) is also aminimizer for

$\inf${ $\int_{\Omega}|\nabla\varphi|^{p}$ : $\varphi\in W_{x_{0}}$ and $\int_{\Omega}m|\varphi|^{p}=1$ }

where $W_{x_{0}}:=\{\varphi\in W^{1,p}(\Omega) : \varphi(x_{0})=0\}$ . Applying Lagrange multipliers rule in the space
$W_{x_{0}}$ , we thus have

$\int_{\Omega}|\nabla u|^{p-2}\nabla u\nabla\varphi=\overline{\lambda}(m)\int_{\Omega}m|u|^{p-2}u\varphi$ $\forall\varphi\in W_{x_{0}}$ . (3.7)

This allows us to write

$\int_{B_{\epsilon}}|\nabla u|^{p}=\int_{\Omega}|\nabla u|^{p-2}\nabla u\nabla v_{\epsilon}=\overline{\lambda}(m)\int_{\Omega}m|u|^{p-2}uv_{\epsilon}$

(3.8)
$= \overline{\lambda}(m)\int_{B_{\epsilon}}m|u|^{p}+\overline{\lambda}(m)\epsilon\int_{\Omega-B_{\epsilon}}m|u|^{p-2}u$

where $v_{\epsilon}:= \min\{u, \epsilon\}\in W_{x_{0}}$ . The first term in (3.8) is $o(\epsilon^{p})$ and we will show that

$\int_{\Omega}m|u|^{p-2}u>0$ . (3.9)

Relation (3.6) then clearly follows.
To prove (3.9), we first show that $\int_{\Omega}m|u|^{p-2}u=0$ is impossible. Indeed if $\int_{\Omega}m|u|^{p-2}u=$

$0$ , then (3.7) holds not only for $\varphi\in W_{x_{0}}$ but also for $\varphi\equiv 1$ . Since any $\varphi$ in $W^{1,p}(\Omega)$ can be
written as the sum of $\varphi-\varphi(x_{0})\in W_{x_{0}}$ and of the constant $\varphi(x_{0})$ , we conclude that (3.7)
holds for all $\varphi\in W^{1,p}(\Omega)$ . But this means that

$u>0\not\equiv$
is asolution of the Neumann problem

$-\Delta_{p}u=\overline{\lambda}(m)m|u|^{p-2}u$ in $\Omega$ , $\partial u/\partial\nu=0$ on $\partial\Omega$ ,

and consequently, by Proposition 2.11, $u>0$ in $\overline{\Omega}$ , which contradicts the fact that
$u$ vanishes at $x_{0}$ . We now show that $\int_{\Omega}m|u|^{p-2}u<0$ is also impossible. Indeed if
$\int_{\Omega}m|u|^{p-2}u<0$ , then the last integral in (3.8) converges to $\int_{\Omega}m|u|^{p-2}u<0$ and conse-
quently, by (3.8), $\int_{B_{\epsilon}}|\nabla u|^{p}<0$ for $\epsilon>0$ sufficiently small, which is clearly acontradiction.

To conclude the proof of Lemma 3.1, it remains to see that when $p>N$ , there is no
eigenvalue in]\lambda $(m),$ $\overline{\lambda}(m)]$ . The argument here can be easily adapted from the proof of a
similar result in [16]. Q. E. D.
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Remark 3.6 Lemma 3.1 still holds, with the same proof, if m does not change sign, with
$m>0$ . In this case of course $\mathrm{A}’(\mathrm{v}\mathrm{r}\mathrm{r})\ovalbox{\tt\small REJECT}$ 0.

$\mathrm{z}$

Proof of Theorem 3.2. We first prove part (i) at the right of $\lambda^{*}(m)$ (the argument at
the left of 0is similar). Assume by contradiction the existence for some

$h>0\not\equiv$
of sequences

$\lambda_{k}>\lambda^{*}(m)$ and $u_{k}$ such that $\lambda_{k}arrow\lambda^{*}(m)$ ,

$-\Delta_{p}u_{k}=\lambda_{k}m|u_{k}|^{p-2}u_{k}+h$ in $\Omega$ , $\partial u_{k}/\partial\nu=0$ on (M2 (3.10)

and

$u_{k}\geq 0$ somewhere in Q. (3.10)

We distinguish two cases :either $||u_{k}||_{\infty}$ remains bounded, or, for asubsequence, $||u_{k}||_{\infty}arrow$

$+\infty$ . In the first case one derives from (3.10) and (2.14) that $u_{k}$ remains bounded in
$C^{1,\gamma}(\overline{\Omega})$ . Consequently, for asubsequence, $u_{k}$ converges to some $u$ in $C^{1}(\overline{\Omega})$ . Going to the
limit in (3.10), one sees that $u$ solves

$-\Delta_{p}u=\lambda^{*}(m)m|u|^{p-2}u+h$ in $\Omega$ , $\partial u/\partial\nu=0$ on an,

which contradicts Proposition 2.7. In the second case, one considers $v_{k}:=u_{k}/||u_{k}||_{\infty}$ , and
arguing in away similar as above ffom

$-\Delta_{p}v_{k}=\lambda_{k}m|v_{k}|^{p-2}v_{k}+h/||u_{k}||_{\infty}$ in $\Omega$ , $\partial v_{k}/\partial\nu=0$ on an,

one gets that, for asubsequence, $v_{k}$ converges to some $v$ in $C^{1}(\overline{\Omega})$ where $||v||_{\infty}=1$ and

$-\Delta_{p}v=\lambda^{*}(m)m|v|^{p-2}v$ in $\Omega$ , $\partial v/\partial\nu=0$ on $\partial\Omega$ .

Consequently $v$ is an eigenfunction associated to $\lambda^{*}(m)$ and so either $v>0$ in $\overline{\Omega}$ or $v<0$
in 0. If $v>0$ in $\overline{\Omega}$ we deduce $v_{k}>0$ in $\overline{\Omega}$ for $k$ sufficiently large, which leads to a
contradiction with Proposition 2.4. If $v<0$ in $\overline{\Omega}$ we deduce $v_{k}<0$ in $\overline{\Omega}$ for $k$ sufficiently
large, which leads to acontradiction with (3.11). (This argument to derive the AMP is
adapted ffom [13] $)$ .

Part (ii) of Theorem 3.2 is aconsequence of Theorem 3.5 since (3.2) and $p\leq N$ imply
$\overline{\lambda}(m)=\lambda^{*}(m)$ and $\overline{\lambda}(-m)=\lambda^{*}(-m)=0$ . Q. E. D.
Proof of Theorem 3.3. Part (i) is easily adapted from the proof of asimilar result in
[5] or [16]. Part (ii) is aconsequence of Theorem 3.5. Q. E. D.
Proof of Theorem 3.4. The proof is easily adapted from that of asimilar result in [5]
or [16]. Q. E. D.

Proof of Theorem 3.5. We prove part (i) (part (ii) is proved similarly). Assume by
contradiction that there exists $\epsilon>0$ such that for any

$h>0\not\equiv$
there exists Awith $\lambda\geq$

166



$\overline{\lambda}(m)+\epsilon$ such that (2.1) has asolution $u<0$ in $\overline{\Omega}$ . We start with $\varphi\in W^{1,p}(\Omega)$ satisfying
$\int_{\Omega}m|\varphi|^{p}>0$ and vanishing on some ball in $\Omega$ , as in the definition (3.1) of $\overline{\lambda}(m)$ . Then
we choose

$h>0\not\equiv$
with $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}h\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\varphi=\emptyset$, and finally we consider $\lambda=\lambda_{\varphi}$ and $u=u_{\varphi}$ as

provided by the above contradictory hypothesis. So $v:=-u>0$ in $\overline{\Omega}$ solves

$-\Delta_{p}v=\lambda m|v|^{p-2}v-h$ in $\Omega$ , $\partial u/\partial\nu=0$ on $\partial\Omega$ .

Applying to this equation Lemma 2.12 with the function $\varphi$ above as testing function, we
get

A $\int_{\Omega}m|\varphi|^{p}-\int_{\Omega}h|\varphi|^{p}/v^{p-1}\leq\int_{\Omega}|\nabla\varphi|^{p}$ .

But the integral involving $h$ vanishes since $h$ and $\varphi$ have disjoint supports. Consequently

$\overline{\lambda}(m)+\epsilon\leq\lambda_{\varphi}\leq\int_{\Omega}|\nabla\varphi|^{p}/\int_{\Omega}m|\varphi|^{p}$

for all $\varphi$ as above. Taking the infimum with respect to $\varphi$ yields $\overline{\lambda}(m)+\epsilon\leq\overline{\lambda}(m)$ , a
contradiction. Q. E. D.

Remark 3.7 The above arguments can easily be adapted to the case where $m$ does not
change sign in $\Omega$ , say $m>0$ , as in Remark 2.10. In this case the AMP holds at the right of

0. It is non uniform
$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}p\not\equiv\leq N$

and uniform when $p>N$ . In this latter case the interval
of uniformity is exactly $0<\lambda\leq\overline{\lambda}(m)$ with $\overline{\lambda}(m)$ given by (1.2); moreover the AMP still
holds at the right of $\overline{\lambda}(m)$ , in anon uniform way. Finally, as in Theorem 3.5, the AMP
cannot hold far away to the right of $\overline{\lambda}(m)$ .

4Principal eigenvalues in the Dirichlet case
In this section, which as section 2has apreliminary character, we briefly collect some
results relative to the principal eigenvalues associated to the Dirichlet problem

$-\Delta_{p}u=\lambda m(x)|u|^{p-2}u+\mathrm{h}\{\mathrm{x}$ ) in $\Omega$ , $u=0$ on an. (4.1)

Here $m$ and $h$ lies as before in $L^{\infty}(\Omega)$ , with (2.2) and (2.3), and at the beginning we do
not assume any regularity on the bounded domain Q.

The basic spectral theory for (4.1) has been extensively studied in the last twenty years
(cf. e.g. [22], [3], [21], [2],. ). Solutions of (4.1) belong to $L^{\infty}(\Omega)\cap C^{1}(\Omega)$ . There are two
principal eigenvalues : $\lambda_{1}(m)>0$ and $\lambda_{-1}(m):=-\lambda_{1}(-m)$ , where

$\lambda_{1}(m):=\inf${ $\int$

.
$\Omega|\nabla u|^{p}$

: $u\in W_{0}^{1,p}(\Omega)$ and $\int_{\Omega}m|u|^{p}=1$ }.

These eigenvalues are simple and the corresponding eigenfunctions can be taken $>0$ in Q.
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Proposition 4.1 If $\lambda\not\in[\lambda_{-1}(m), \lambda_{1}(m)]$ , then problem (4.1) with $h\geq 0$ has no solution
$u>0\not\equiv$

.

The proof of this proposition follows the same lines as that of Proposition 2.4. It uses
the following lemma whose proof is analogous to that of Lemmas 2.5 and 2.12.

Lemma 4.2 Let $u$ be a solution of (4.1) with $h\geq 0$ and $u>0$ in Q. Then for any
$\varphi\in W_{0}^{1,p}(\Omega)\cap L^{\infty}(\Omega)\cap C^{1}(\Omega)$ with $\varphi\geq 0$ in 0, one has that $h\varphi^{p}/u^{p-1}\in L^{1}(\Omega)$ and (2.9)
holds. Moreover equality holds in (2.9) if and only if $\varphi$ is a multiple of $u$ . Finally the
restriction that $h$ $is\geq 0$ is not needed to get (2.16) for all $\varphi\in C_{\mathrm{c}}^{1}(\Omega)$ .

Proposition 4.3 Problem (4.1) with
$h>0\not\equiv$

does not have any solution if A $=\lambda_{-1}(m)$ or

A $=\lambda_{1}(m)$ . It admits an unique solution, which is $>0$ in $\Omega$ , if $\lambda_{-1}(m)<\lambda<\mathrm{X}\mathrm{i}(\mathrm{m})$ .

The proof of this proposition follows the same lines as that of Proposition 2.7. In fact
it is simpler since for instance, in the functional $\Phi$ , $\int_{\Omega}|\nabla u|^{p}$ is anorm on $W_{0}^{1,p}(\Omega)$ . We
observe that the nonexistence part in Proposition 4.3 was already derived in [2] (see also
[13] when $m\equiv 1$ and $\Omega$ is regular). The unicity part was already derived in [15] when
$m\geq 0$ and $\Omega$ is regular.

Let us now assume in the final part of this section that $\Omega$ is of class $C^{1,1}$ . The solutions
then belong to $C^{1,\gamma}(\overline{\Omega})$ and one has an estimate analogous to (2.14). Moreover, by a
standard property of Sobolev spaces (cf. e.g. [7]), the boundary condition $u=0$ is
satisfied in the usual pointwise sense. Consequently the maximum principle of [24] implies
that asolution

$u>0\not\equiv$
of (4.1) with $h\geq 0$ satisfies $u>0$ in 0and $\partial u/\partial\nu<0$ on an.

5Antimaximum Principle in the Dirichlet Case
We assume in this section $\Omega$ of class $C^{1,1}$ , and m and h as before.

Theorem 5.1 (i) Given
$h>0\not\equiv$’there eists $\delta$ $=\delta(h)>0$ such that ifXi (m) $<\lambda<\lambda_{1}(m)+\delta$

or $\lambda_{-1}(m)-\delta<\lambda<\lambda_{-1}(m)$ , then any solution $u$ of (4.1) satisfies $u<0$ in $\Omega$ and
$\partial u/\partial\nu>0$ on $\partial\Omega$ . (ii) No such $\delta$ independent of $h$ exists (either at the right of Xi(m) or
at the left of $\lambda_{-1}(m))$ .

Theorem 5.2 (i) Given $\epsilon>0$ there eists
$h>0\not\equiv$

such that for any $\lambda\geq\lambda_{1}(m)+\epsilon$ , $(4\cdot 1)$

has no solution $u$ satisfying $u<0$ in Q. (ii) Similar statement at the left of $\lambda_{-1}(m)$ .
The proof of part (i) of Theorem 5.1 can be carried out by contradiction in away

similar to the proof of Theorem 3.2. Part (ii) of Theorem 5.1 follows from Theorem 5.2.
Let us sketch the proof of the latter
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Proof of Theorem 5.2. We only consider part (i). Assume by contradiction that there
exists $\epsilon>0$ such that for any

$h>0\not\equiv$
there exists Awith $\lambda\geq\lambda_{1}(m)+\epsilon$ such that (4.1) has a

solution $u$ satisfying $u<0$ in Q. We start with $\varphi\in C_{c}^{\infty}(\Omega)$ satisfying $\int_{\Omega}m|\varphi|^{p}>0$ . Then
we choose $h>0$ with $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}h\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\varphi=\emptyset$, and finally we consider $\lambda=\lambda_{\varphi}$ and $u=u_{\varphi}$ as

provided by the above contradictory hypothesis. So $v:=-u>0$ in $\Omega$ solves

$-\Delta_{p}v=\lambda m|v|^{p-2}v-h$ in $\Omega$ , $u=0$ on an.
Applying to $v$ the last part of Lemma 4.2, with the function $\varphi$ as testing function, and
using the fact that $h$ and $\varphi$ have disjoint supports, we get

$\lambda_{1}(m)+\epsilon\leq\lambda_{\varphi}\leq\int_{\Omega}|\nabla\varphi|^{p}/\int_{\Omega}m|\varphi|^{p}$

for all $\varphi$ as above. Since the infimum of the right-hand side with respect to $\varphi$ is equal to
$\lambda_{1}(m)$ , we reach acontradiction. Q. E. D.

Remark 5.3 The result of Theorem 5.2 holds (with the same proof) without assuming
any regularity on Q.

Remark 5.4 Aresult analogous to that of part (i) of Theorem 5.1 is stated in [2] for a
general, even unbounded, domain Q. This however cannot hold true as stated there since
it is known that the AMP does not hold for $p=2$ , $m\equiv 1$ and $\Omega=\mathrm{a}$ square in $\mathbb{R}^{2}$ (cf. [6]).
We also observe that new difficulties arise in the unbounded case (cf. [23], [14]).

Remark 5.5 Results similar to those in sections 4and 5of course also hold when the
weight does not change sign in Q.

6Annex
It is our purpose in this annex to prove (2.15). This equality will clearly follow by applying
the local result of Proposition 6.1 below to the vector field $\mathrm{a}:=|\nabla u|^{p-2}\nabla u$ .

Proposition 6.1 Let $D$ be an open subset of $\mathbb{R}^{N}$ which is of class $C^{1}$ near $x_{0}\in\partial D$ . Let
abe a continuous vector field on D. Assume that for some $f\in L^{1}(D)$ ,

$\int_{D}<\mathrm{a}$ , $\nabla\varphi>=\int_{D}f\varphi$ (6.1)

for all $\varphi\in C^{1}(\overline{D})$ with bounded support, where $<,$ $>denotes$ the scalar product in $\mathbb{R}^{N}$ .
$Then<\mathrm{a}(x_{0})$ , $\nu(x_{0})>=0$ , there $\nu(x_{0})$ denotes the unit exterior norrmal to $D$ at $x_{0}$ .

169



Proof. We start by representing an open neighbourhood $U$ of $x_{0}$ in $\mathbb{R}^{N}$ as $\psi(W\cross]-\delta, \delta[)$ ,
with $\psi(s, t)=\overline{x}(s)-t\nu(x_{0})$ given by Lemma 6.2 below. We will write $\psi^{-1}(x)$ as $(\overline{s}(x),\overline{t}(x))$

where $x\in U,\overline{s}(x)\in W$ and $\overline{t}(x)\in]-\delta$ , $\delta$ [. Let us fix two functions $g$ and $h$ with
$g\in C^{\infty}(\mathbb{R}^{N-1})$ , $0\leq g\leq 1$ , $g\equiv 1$ on the ball $B_{1}(0)$ , $g\equiv 0$ outside $B_{2}(0)$ , $h\in C^{\infty}(\mathbb{R})$ ,
$0\leq h\leq 1$ , $h\equiv 1$ on]–1, 1[, $h\equiv 0$ 0utside]-2, $2$ [. For $\epsilon>0$ , $\eta>0$ , we then define

$\varphi_{\epsilon,\eta}(x):=g(\frac{\overline{s}(x)}{\eta})$ $h( \frac{\overline{t}(x)}{\epsilon})$

where $x\in U$ . Clearly $\varphi_{\epsilon,\eta}$ is a $C^{1}$ function on $U$ , $0\leq\varphi_{\epsilon,\eta}\leq 1$ , $\varphi_{\epsilon,\eta}\equiv 1$ on $\psi(B_{\eta}(0)\cross]-\epsilon, \epsilon[)$

and $\varphi_{\epsilon,\eta}\equiv 0$ outside $\psi(B_{2\eta}(0)\cross]-2\epsilon, 2\epsilon[)$ . So, for $\epsilon$ , $\eta$ sufficiently small, $\varphi_{\epsilon,\eta}$ has compact
support in $U$ . Consequently its restriction to $D$ is an admissible testing function in (6.1) :

$\int_{D}<\mathrm{a}(x)$ , $\nabla\varphi_{\epsilon,\eta}(x)>dx=\int_{D}f(x)\varphi_{\epsilon,\eta}(x)dx$. (6.2)

Let us start by fixing $\eta>0$ and go to the limit in (6.2) as $\epsilonarrow 0$ . Since the measure
of the support of $\varphi_{\epsilon,\eta}$ goes to zero as $\epsilonarrow 0$ , the right hand side of (6.2) goes to zero.
Computing $\nabla\varphi_{\epsilon,\eta}$ , one sees that the left hand side of (6.2) is asum $\mathrm{I}+\mathrm{I}\mathrm{I}$ , where

$I=$ $\int_{D}g(\frac{\overline{s}(x)}{\eta})<\mathrm{a}(x)$ , $\nabla\overline{t}(x)>\frac{1}{\epsilon}h’(\frac{\overline{t}(x)}{\epsilon})dx$,

$II=$ $\int_{D}<\mathrm{a}(x)$ , $\frac{1}{\eta}\nabla g(\frac{\overline{s}(x)}{\eta})\nabla\overline{s}(x)>h(\frac{\overline{t}(x)}{\epsilon})dx$ .

Since the measure of the support of the integrand in II goes to zero as $\epsilonarrow 0$ , we see that II
goes to zero. To study $\mathrm{I}$ , we go from the $x$-coordinates to the $(s, t)$ coordinates and apply
Fubini’s theorem to get

$I= \int_{0}^{2\epsilon}[\int_{B_{2\eta}(0)}g(\frac{s}{\eta})<\mathrm{a}(\psi(s, t)),$ $\sqrt{t}(\psi(s, t))>|J(s, t)|ds]h’(\frac{t}{\epsilon})/\epsilon dt$

where $J$ denotes the Jacobian determinant of $\psi$ . Since the bracket $[$ ... $]$ in the above
integrand is acontinuous function of $t$ , call it $G(t)$ , the definition of $h$ implies that
$\int_{0}^{2\epsilon}G(t)h’(t/\epsilon)/\epsilon dtarrow-G(0)$ as $\epsilonarrow 0$ . Consequently, for any $\eta>0$ , we have

$\int_{B_{2\eta}(0)}g(s/\eta)<\mathrm{a}(\overline{x}(s))$ , $\nabla t^{-}(\overline{x}(s))>|J(s,0)|ds=0$ .

Dividing by $\eta^{N-1}$ , letting $\etaarrow 0$ , and using $|J(0,0)|\neq 0$ , one gets

$<\mathrm{a}(\overline{x}(0))$ , $Vt^{-}(\overline{x}(0))>=0$ .

This yields the conclusion of Proposition 6.1 since it is easily verified that $\nabla\overline{t}(x_{0})=-\nu(x_{0})$ .
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Lemma 6.2 Let $D$ be an open subset of $\mathbb{R}^{N}$ which is of class $C^{1}$ near $x_{0}\in\partial D$ . Then
there exists a $C^{1}$ chart of $D$ near $x_{0}$ : $\overline{x}$ : $Warrow\partial D$ with $W$ an open neighbourhood of 0in
$\mathbb{R}^{N-1},\overline{x}(0)=\mathrm{x}0$, and there exists $\delta>0$ such that $\psi$ : $W\cross$ ] $-\delta$ , $\delta$ [ : $(s, t)arrow\overline{x}(s)-t\nu(x_{0})$

is a $C^{1}$ diffeomorphism onto a neighbourhood $U$ of $x_{0}$ in $\mathbb{R}^{N}$ , with moreover $\psi(s, t)\in D$

(resp. $\in\partial D,$ $\not\in\overline{D}$) whenever $s\in W$ and $0<t<\delta$ (resp. $t=0$, $-\delta<t<0$).

Proof. Since $D$ is of class $C^{1}$ near $x_{0}$ , there exists an open neighbourhood $V$ of $x_{0}$ in $\mathbb{R}^{N}$

of the form $V=X(W\cross]-\delta, \delta[)$ , where $W$ is an open neighbourhood of 0in $\mathbb{R}^{N-1}$ , $\delta>0$ ,
$X$ is a $C^{1}$ diffeomorphism from $W\cross$ ] $-\delta$, $\delta$ [ onto $V$ , with the property that $X(0,0)=x_{0}$ ,
$X(\sigma, \tau)\in D$ (resp. 6 $\partial D,$ $\not\in\overline{D}$ ) whenever $\sigma\in W$ and $0<\tau<\delta$ (resp. $\tau=0,$ $-\delta<\tau<0$).
Clearly we can assume $\partial X/\partial\tau(0,0)=-\nu(x_{0})$ . Let us define $\psi(s, t):=X(s, 0)-t\nu(x_{0})$

for $s\in W$ and $t\in \mathbb{R}$ . Since the Jacobian matrix of $\psi$ at $(0, 0)$ is invertible, $\psi$ is a $C^{1}$

diffeomorphism from $W_{1}\cross$ ] $-\delta_{1}$ , $\delta_{1}$ [ onto an open neighbourhood $V_{1}\subset V$ of $x_{0}$ in $\mathbb{R}^{N}$ ,
where $W_{1}\subset W$ is an open neighbourhood of 0in $\mathbb{R}^{N-1}$ and $\delta_{1}>0$ . Clearly $\overline{x}(s):=X(s,0)$

is a $C^{1}$ chart of $\partial D$ near $x_{0}$ , $\psi(0,0)=x_{0}$ and $\psi(s, \mathrm{O})\in\partial D$ if $s\in W_{1}$ . We have to show
that, by diminishing $W_{1}$ and $\delta_{1}$ if necessary, $\psi(s, t)\in D$ (resp. $\not\in\overline{D}$) whenever $s\in W_{1}$ and
$0<t<\delta_{1}$ (resp. $-\delta_{1}<t<0$ ).

To prove this property of $\psi$ , we first observe that for any $(s, t)\in W_{1}\cross]-\delta_{1}$ , $\delta_{1}$ [, there ex-
ists an unique $(\sigma, \tau):=(\overline{\sigma}(s, t),\overline{\tau}(s, t))\in W\cross]-\delta$, $\delta[\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$ that $\psi(s, t)=X(\sigma, \tau).\mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}$

the implicit function theorem to $F(s, t, \sigma, \tau):=\psi(s, t)-X(\sigma, \tau)$ and diminishing $W_{1}$

and $\delta_{1}$ if necessary, one sees that $\overline{\sigma}(s, t)$ and $\overline{\tau}(s, t)$ are $C^{1}$ functions. Moreover, com-
puting the derivative of $X(s, 0)-t\nu(x_{0})\equiv X(\overline{\sigma}(s, t),\overline{\tau}(s, t))$ with respect to $t$ and using
$\partial X/\partial\tau(0,0)=-\nu(x_{0})$ , one easily gets that $\partial\overline{\tau}/\partial t(0,0)=1$ . It follows that $\partial\overline{\tau}/\partial t(s, t)>0$

for $(s, t)$ in some convex open neighbourhood $W_{2}\cross$ ] $-\delta_{2}$ , $\delta_{2}$ [ of $(0, 0)$ . Since $\overline{\tau}(s, 0)=0$ ,
we thus have $\overline{\tau}(s, t)>0$ (resp. $<0$ ) for $s\in W_{2}$ and $0<t<\delta_{2}$ (resp. $-\delta_{2}<t<0$), and
consequently the desired property of $\psi$ follows from the corresponding property of $X$ . Q.
E. D.

Remark 6.3 If the bounded domain $\Omega$ is of class $C^{2}$ , then (2.15) can be derived by
applying aversion of the divergence theorem given in [9]. Indeed first observe that (2.4)
implies that -Apu $=\lambda m(x)|u|^{p-2}u+h(x)$ in $D’(\Omega)$ . It follows that, for agiven $\varphi\in C^{1}(\overline{\Omega})$ ,
the vector field $\mathrm{b}:=\varphi|\nabla u|^{p-2}\nabla u$ belongs to $C(\overline{\Omega})$ and has adistributional derivative which
belongs to $L^{\infty}(\Omega)\subset L^{1}(\Omega)$ . Applying to $\mathrm{b}$ the divergence theorem of [9] and using (2.4),

one gets $\int_{\Omega}|\nabla u|^{p-2}<\nabla u$ , $\nu>\varphi=0$ . Since $\varphi$ is arbitrary in $C^{1}(\overline{\Omega})$ , the conclusion (2.15)

follows.
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