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THE FIRST RETURN TIME TEST OF PSEUDORANDOM NUMBERS
DONG HAN KIM

ABSTRACT. An algorithm for obtaining the probability distribution of the first return
time R,, for the initial n-block with overlapping is presented and used to test pseudo-
random number generators. The averages and the standard deviations of log R, are

computed theoretically and the Z-test is applied.

1. INTRODUCTION

We introduce a new method of testing PRNGs based on the first return time of the
some fixed length blocks in a randomly generated binary sequence. The first return time
is closely related to entropy, which is the central idea in the information theory founded
by C. Shannon(13]. For a binary source it is defined to be the limit of —1 2" p; log p; as
n increases to infinity \'Nhere the p;’s are the relative frequencies of 2" blocks of length n
in a typical binary sequence generated by the source. Entropy measures the information
content or the amount of randomness. In data compression the entropy measures the
maximum compression rate. If there are more patterns, that is, less randomness in a
given sequence, then it has smaller entropy and can be compressed more.

In this article the first return time in a random binary sequence is investigated. Con-
sider a stationary ergodic binary process on the space of infinite sequence ({0,1}*, u),
where p is the shift invariant ergodic probability measure on the o-field generated by

finite dimensional cylinders. For each sample sequence z define the first return time by

Ro(z) =min{j > 1:21...Zp = Zj31...Tjtn}

A.D. Wyner and Ziv[15] proved that Xlog R,(z) converges to the entropy of the se-
quence in measure and Ornstein and Weiss[9] showed that the convergence is pointwise.
Later, A.J. Wyner[16] discovered that for a stationary aperiodic Markov chain with en-

tropy h the random variable %log R, has approximately a normal distribution with mean
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h in a suitable sense. For a sharp estimate of the convergence of the average of %log R,,
see [2].
Kac’s lemmal4] implies that E[R,|z} = af] = 1/u(a}) for any finite string a7 with
p(a?) > 0. Since Kac’s lemma implies E[R,] = #{a} € A" : u(a?) > 0}, we have
nh_)nolo % log E[R,] = topological entropy.

This implies that the algorithm using log R, is much more efficient than the algorithm
of R,,. '

Since Maurer’s work[8], the nonoverlapping first return time which corresponds to
Rmy(z) =min{j > 1:z;...ZTn = Tjnt1- o Ljn4n}

has been investigated to be used in cryptography or in testing PRNGs. Nonoverlapping
algorithm is relatively easier to analyze but overlapping method is more efficient and

natural.

2. THE PROBABILITY DISTRIBUTION OF THE FIRST RETURN TIMEv

A block is a finite sequence of elements of A and an n-block is a block of length n.
For an n-block B = byby - - -b,, we write Bf = bibip1---b;,1 < ¢ < j < n. Since the
distribution of return time is different from block to block. We classify the blocks to each

set of blocks have the same return time distribution.

Definition 1. Let B be an n-block. Suppose m satisfies 1 < m < n and

Bl =By ™

m+1 —

The smallest such m is denoted by );(B), and the next smallest such m which is not a
multiple of \;(B) is called M\2(B), and we define A\¢(B) by the smallest such m which is
not a multiple of \;(B) for every i < k. Let A(B) = {A:(B), A2(B),-.- }-

If A € A(B) then
(B)B}...B)); = B,

or

B=[b;.. bx|[b1... 05 . [br..-bx][br...0;

v
n




28

THE FIRST RETURN TIME TEST OF PSEUDORANDOM NUMBERS

TABLE 1. The Expectation of R, and log R,

Block [ A(B) | E[Rn] | E[log R,] | Var[log R,]
00000000 | 1 256 | 4.122127 | 18.37019
00000001 | O | 256 | 7.299403 | 2.441935
00000010 | 7 | 256 | 7.273498 | 2.589157
00000100 | 6,7 | 256 | 7.219351 | 2.905512
00001000 | 5,6,7 | 256 | 7.106875 | 3.576236
00010001 | 4 | 256 | 7.055111 | 3.986235
00100001 | 5 | 256 | 7.183896 | 3.147559
00100010 | 4,7 | 256 | 7.031221 | 4.110117
00100100 | 3,7 | 256 | 6.717126 | 6.102838
01000001 | 6 | 256 | 7.244771 | 2.763759
01000010 | 5,7 | 256 | 7.158986 | 3.283393
01001001 | 3 | 256 | 6.738698 | 6.005312
01010101 | 2 | 256 | 6.015615 | 10.32028

forsome 1 < j < A.
Table 2 shows A(B) for some 8-blocks. For more of the definition of A(B), see [1].

Lemma 2 ([1}, Lemma 3). If \,(B) < n/2, then \(B) > n — A (B) for every i > 2 if
Ai(B) ezists.

Definition 3. For a given n-block B, let F(B, k) be the set of k-blocks, k > n defined
by

F(B,k)={C:C} = B,C;}} # B for any i > 1},
and let S(B, k) be the set of k-blocks, k > 1 defined by

S(B,k) ={C: (CB)} = B,(CB)i}? # B for any 4,1 < i < k}.

Example 4. Consider the case of B = ‘010’ and k¥ = 6. The 6-block ‘010001’ is not
elements in $(‘010’,6) but in F(‘010’,6), since the 9-block ‘010001010’ has three ‘010’
blocks (e.g. ‘010001010’ ). Hence

F(‘010’,6) = {010000, 010001, 010011,010110,010111},

5(010°,6) = {010000, 010011, 010110, 010111}.
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The following shows the relation between F(B, k) and S(B, k). Note that for k > n,

S(B,k)-C F(B,k).
Lemma 5. For all n-block B

S(B,k)=F(B,k)\ |J {C€F(Bk):Ci =B}
A€A(B)

where the union is disjoint union. For X € A(B) and £(X) = max{j € N: jA < n} we

have
&) :
C € F(B,k . Ck_ =BM = CB)...-B):C e S(B,k—j\}
{ ( ) k—X+1 1} JLle{ 1 1 ( J )}

J

Proof. See [1], Lemma 6.

0

Note that for any n-block B, we have \;(B) > n/2, i > 2 and £ =1 except A = A1(B).

Definition 6. Define r,(B) and sx(B) by
ry(B) = Pr(z; .. Tk € F(B,k)), k=>mn,
sk(B) = Pr(z; ...z € S(B,k)). k=1
From now on we consider i.i.d. processes. For i.i.d. processes we have
Pr(z;...%n = B, Ra(z) > k—n) = rk(B), k<n
Pr(z;...2n, = B, Ra(z) = k) = se(B)u(B), k=1
We can calculate the distribution of the first return time from the followings:
Proposition 7. Fori.i.d. processes, if k > n, we have
rk(B) = r%-1(B) — p(B)sk-n(B)-

Let m = |A(B)| and £ = max{i:i- A\ (B) <n}. Fork2>n

£ ) ) m
sk(B) = rx(B) — Zu(Bfl(B))isk—i-Al(B)(B) — 3" w(BY P sex ) (B).

For initial seeds, we have

ra(B) = u(B)
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and fori <n

0 ifi ¢ A(B),
B fi¢ A(B)

u(Bi) ifieA(B).
Proof. For k > n
rx(B) = Pr(z® = B, Rn(z) > k — n)
= Pr(s? = B,Ry(z) > k—n—1) — Pr(a® = B, Ra(z) =k —n)
= 1-1(B) — p(B)sk-n(B).

For k > n by Lemma 5 we have

£\)
sk(B) =re(B)— Y. Y Pr(z{™ € S(B,k - j)), zf_j5,1 = BY... B).

A€A(B) j=1

4

By Lemma 2, for 7 > 2, £(\;) = 1. Hence

¢ m
sk(B) = r(B) = D sk-in(®) (B)(BY" P = D ser.m) (B)u(BY ).

i=1 =2

a

The computation of si(B) for every n-block B is necessary for the application in later
sections and it is done recursively on computers. To save time we use the fact that
the blocks with the same A(B) have the same pattern as far as the first return time is
concerned. Thus we classify all the n-blocks using A(B) and compute s; for each block

B from different classes.

3. APPLICATION: TEST FOR THE PSEUDORANDOM NUMBER GENERATORS

We calculate Pr(R, = k) for every integer k¥ > 1 numerically by using the formula
in the previous section. The averages and the standard deviations of the logarithm of
the first return time are computed and the deviation of the experimental data from the
theoretical prediction is used to test PRNGs. We apply the standard Z-test for sample
mean of 1log R, of each block. In each case the sample size is 100,000. The test result is
shown in Table 1. Test A is to consider the Z-values for each 14-block. Since the Z-values

among each blocks are highly correlated, we need to reduce the correlation among the
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TABLE 2. Theoretical values for (1/2,1/2)-Bernoulli process

n | E[R,] | E[log R.]/n | o(log Rn)/n
2 4 0.7687192 0.5783033
3 8 0.8005356 | 0.4596296
4 16 0.8278062 0.3838731
5 32 0.8506853 0.3289105
6 64 0.8696175 0.2864550
7 128 0.8841787 0.2525540
8 256 0.8979582 0.2249535
9 512 0.9084916 0.2021856
10 | 1024 0.9172324 0.1832064
11| 2048 0.9245484 0.1672354
12| 4094 0.9307304 0.1536739
13| 8192 0.9360054 0.1420567
14 | 16384 | 0.9405495 0.1320201
15| 32768 | 0.9444992 0.1232780
16 | 65536 | 0.9479612 0.1156049
171 131072 | 0.9510188 0.1088215

Z-values. A binary block can be regarded as an integer in binary expansion We say that

B is of

type I  if B = (110101)(zk -+ (101001),
type I if B = (1011001) )k + (111011) ),
type I if B = (1001001))k + (11111)g,
type IV if B = (1100101) )k + (111101)z,

for some integer k > 0.

Test B-I, II, III, IV is the variance test of the Z-values over the blocks of type I, II, III,
IV. The experiments show that correlations among the blocks of type I, II, III and IV are
negligible. The symbols A and X denote the cases when the corresponding generators

fail the test with statistical confidence of 95% and 99%, respectively.
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TABLE 3. The test result for n = 14

Generator Test A Test B-I Test B-II Test B-III Test B-IV
Randu X - - - -
ANSI X - - - -

MS X - - - -

Fishman X A | X A

ICG
Ran0 X X X X
Ranl X X X
Ran2
Ran3
F90

4. PSEUDORANDOM NUMBER GENERATORS

The following is a list of pseudorandom number generators tested in Section 3. We
generate binary sequences using the algorithms listed in Table 4. A linear congruential

generator LCG(M, a,b) means the algorithm given by
Xnr1=aX,+b (mod M).

Randu is an outdated generator developed by IBM in the sixties. ANSI and Microsoft are
the generators used in C libraries by American National Standard Institute and Microsoft,

respectively. For a prime p, the inversive congruential generator ICG(p, a, b) is that
Xnt1=aX, +b (mod p),

where X is the multiplicative inverse of z modulo p. The generators Ran0, Ranl, Ran2
and Ran3 are from [11]. Ran0 is the linear congruential generator by Park and Miller[10].
Ranl is Ran0 with Bays-Durham shuffle. Ran2 is L’Ecuyer’s generator[7] made up of

LCG(2147483563,40014,0) and LCG(2147483399, 40692, 0)

with Bays-Durham shuffle. Ran3 is a subtractive lagged Fibonacci sequences. The sub-

tract with borrow generator (SWB) is the form of X, = X,,_,— X,,_,—b (mod M), where
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TABLE 4. The tested random number generators

Name Generator ) Period
Randu LOG(2%, 65539, 0) 929
ANSI LCG(2%,1103515245,12345) 231
Microsoft LCG(2%, 214013, 2531011) 981
Fishman LCG(2% — 1,950706376,0) 231 —2
ICG ICG(2* - 1,1,1) P
Ran0 LCG(2% — 1,16807,0) 281 _ 9
Ranl Ran0 with shuffle > 231 -2
Ran2 L’Ecuyer’s algorithm with shuffle > 2.3 x 10'®
Ran3 Xp = Xp-ss — Xn—2a (mod 231) > 2% 1

F90 Ran0 combined with shift register ~ ~ 3.1 x 108
SR Xp=Xa1(I+L¥)(IT+R7)I + L ’
SWB Xn = Xn_24 — Xn_37 —b (mod 232) ~ 21178

the borrow b is —1 if the previous subtraction is negative and 0 otherwise. The shift regis-
ter generator (SR) is the form of X, = Xp_1(I+L")(I+R?) or X, = Xn1(I+R")(I+L°),
where @ denotes the binary exclusive-or operation and L (resp. R) is the bitwise left-shift
(resp. right-shift). F90 is Ran0 combined with SR{12].
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